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Abstract
Background: One common goal of a case/control genome wide association study (GWAS) is to
find SNPs associated with a disease. Traditionally, the first step in such studies is to assign a
genotype to each SNP in each subject, based on a statistic summarizing fluorescence
measurements. When the distributions of the summary statistics are not well separated by
genotype, the act of genotype assignment can lead to more potential problems than acknowledged
by the literature.

Results: Specifically, we show that the proportions of each called genotype need not equal the true
proportions in the population, even as the number of subjects grows infinitely large. The called
genotypes for two subjects need not be independent, even when their true genotypes are
independent. Consequently, p-values from tests of association can be anti-conservative, even when
the distributions of the summary statistic for the cases and controls are identical. To address these
problems, we propose two new tests designed to reduce the inflation in the type I error rate
caused by these problems. The first algorithm, logiCALL, measures call quality by fully exploring
the likelihood profile of intensity measurements, and the second algorithm avoids genotyping by
using a likelihood ratio statistic.

Conclusion: Genotyping can introduce avoidable false positives in GWAS.

Background
One common goal of a genome wide association (GWAS)
study is to search the entire genome for single nucleotide
polymorphisms (SNPs) and copy number variations
(CNVs) associated with a disease or some other pheno-
type. In this article, we focus our analysis on SNPs. The
two possible alleles at a SNP are arbitrarily labeled A and
B, and association is often tested by measuring and com-
paring the frequencies of the genotypes AA, AB, and BB, in
case and control groups. As technology currently allows
close to one million SNPs to be examined simultaneously,
there is a need for fast, automated methods to test for

association. As only a small minority of SNPs are expected
to be associated with the disease, even a modest false pos-
itive rate could bury true associations beneath those
occurring by chance.

Using Affymetrix 500 k GeneChips as an example, each of
the 500,000+ SNPs is represented by a series of probes on
a pair of arrays. Each probe is an oligonucleotide designed
to bind to either the A or B allele. A subject's fluorescently
labeled DNA is allowed to hybridize with these probes,
and then a spectrometer measures the relative fluorescent
levels between the A and B probes. Each genotyping algo-
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rithm (see Methods) summarizes the fluorescence infor-
mation, or the likelihood a subject has allele A at that
SNP, by its own statistic. In any population, these statistics
usually cluster into three groups, corresponding to the
three genotypes. Studies have noted that 1) The mean and
variance of these clusters, or the shape of their distribution
in general, varies by SNP and 2) For a single SNP, because
of differences in processing or duration of storage, the
shape of the statistic's distribution can differ between the
case and control groups [1-3].

The current test of association requires calling, or assigning
a genotype, to each SNP for each study subject and then
comparing the called genotypes between the case and
control groups. The majority of SNPs are easy to call and
any of the available methods will call them correctly.
Unfortunately, there is a difficult minority that cannot be
easily clustered into three distinct groups. Because there
can be as many as 500,000 SNPs, this minority can greatly
inflate the type I error rate and cause the large, character-
istic, deviations from the x = y line in the qq-plots of test
statistics. Most studies assume these consequences are the
unavoidable results of population substructure and poor
data. In this paper, we dispel the myth that these are the
sole issues. In fact, the inflated type I error rate and general
misbehavior of the test statistic may also result from the
act of genotype assignment and a poor choice of statistical
methodology.

The goal of this manuscript is two-fold. First, our primary
goal is to show that genotyping overlapping clusters can
lead to potential problems that we have yet to see fully
acknowledged in the literature. The proportions of each
called genotype need not equal their true proportions in
the population, even as the number of subjects grows infinitely
large. As we compare genotype calls, p-values from tests of
association will be anti-conservative when the distribu-
tion of the summary statistic differs between cases and
controls. Moreover, the called genotypes for two subjects
need not be independent, even when their true genotypes are
independent. Therefore, p-values from tests of association
can be anti-conservative, even when the distributions of the
summary statistic for the cases and controls are identical, a fact
we believe has yet to be fully demonstrated. Although pre-
vious studies have examined the effects of genotyping
error on tests of association [4-6], studies has neither fully
explored the effects caused by case/control differences in
distributions nor dependence of error. Second, we discuss
two new tests that can circumvent these potential prob-
lems. One test compares calls made from a genotyping
algorithm designed to minimize the type I error. The sec-
ond test compares the fluorescence distributions, instead
of the called genotypes. We start the Methods section by dis-
cussing currently available methods for genotyping SNPs
and testing for association. Concurrently, we introduce
logiCALL, our new genotyping algorithm, and the likeli-

hood ratio-based test of association. In the Results and Dis-
cussion section, we start by showing that the proportion of
genotypes called AA, AB, and BB need not converge to the
true population proportions. Then we discuss how the
called genotypes can be dependent. We conclude the sec-
tion by comparing the proposed tests of association with
the current standards through both simulation studies
and real data analysis. Then a short Conclusions section
summarizes the key points.

Methods
Calling Genotypes

There is currently a wide variety of programs available for
genotyping SNPs. The most popular supporting Affyme-
trix are RLMM [7], BRLMM [8], CRLMM [9], CHIAMO
[10], SNiPer-HD [11], and MAMS [12]. The most popular
program for Illumina is their own proprietary software,
BeadStudio, but other methods have been recently sug-
gested by Moorhead et. al. [3], Teo et. al. [13], and Dun-
ning et. al. [14] (Table 1). To introduce these methods, we

start by defining notation. Let there be n subjects. Let Gij ∈
{AA, AB, BB} be the true genotype of SNP j in subject i, 1

≤ i ≤ n. For Affymetrix chips, assume there are np probe

quartets representing each SNP on an array, and let

 be the normalized probe

intensities for subject i, SNP j, and probe k. Here, the sub-
scripts PMA and MMA signify the perfect match and mis-

match probes for allele A. PMB and MMB are similarly

defined for allele B. The log transformed intensities will be

. To maintain notational consistency, for

Illumina chips, we denote the BeadStudio intensity values

of the two SNP alleles by . As we will only

discuss a single SNP for the majority of the paper, we will
omit the superscript "j" from all future notation.

With the exception of dynamic modeling (DM) [15], all
calling algorithms share the same general form, and we
exploit this form to summarize their key features. The
process of transforming raw signal into genotypes can be
divided into four steps: 1) Normalize the intensity values;
2) Describe the normalized intensity values by a single,
possibly multivariate, summary statistic; 3) Estimate the
mean and variance of the summary statistic for the three
possible genotypes, AA, AB, and BB; and 4) Compare the
value of the statistic from a subject to the group parame-
ters found in the third step to make the call. The universal
first step, normalizing the intensity values, is tangential to
our discussion here. The second step is to choose a statis-
tic, Si that Summarizes the intensities. For example,
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RLMM models the probe intensities as

 and . Then,

. In the updated version, CRLMM models

sense(+) and antisense(-) probes separately, resulting in a

4D statistic,  Each method

assumes that the distribution, φM(Si|θq), of their statistic

in a given population q is a Mixture of multivariate nor-

mal distributions where θ, to be defined below, are the
parameters characterizing the distribution in population
q. When it is clear we are discussing only a single popula-
tion, we will omit the superscript q. Although problems
can arise when the distribution is not a true mixture of
normals, those complications are beyond the scope of this
paper [16]. For completeness, we point out that a minor-
ity of programs, including CRLMM, allow these parame-
ters to vary within a group (e.g. to be subject/array
specific). Ignoring that some methods allow for an addi-
tional null distribution, the general form is

where ψ(·) is the multivariate normal density. The three

mean vectors, , variance matrices, Σ ≡

{ΣAA, ΣAB, ΣBB}, and probabilities, p ≡ {pAA, pAB, pBB}, cor-

respond to the three possible genotypes, AA, AB, and BB.

Define  and later, we let Φ(·) and ΦM(·) be

the cumulative distribution for a normal variable and a

mixture of normals. The third step is to estimate θ. Some
algorithms, such as RLMM, use a training data set, where
the genotypes are known. Other algorithms, such as
SNiPer-HD, use no training data, and find the best esti-
mates that describe their experimental values. The fourth

step is to assign a genotype, , to SNP j in subject i.

Often, for a given value of Si, the assigned genotype max-

imizes a similarity function:  = argmaxg D(g, Si|θ). The

similarity function is usually a modified version of one of
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Table 1: Programs available for genotyping SNPs.

Name Summary Statistic MM1 Data2 Data3 Notes

RLMM {ΘA, ΘB} No T M

BRLMM No E-U M

Assumes genotypes in "training" data are known. 
"Training" data only uses high quality SNPs. Incorporates 
info from other SNPs as a Bayesian Prior.

CRLMM {ΘA+ - ΘB+, ΘA- - ΘB-} No T L Corrects for the effect of total intensity level and probe 
length on {Sij} through more complex method, and allows 
corrections to vary by array.

CHIAMO Yes E-L, T* W CHIAMO is a Bayesian hierarchical mixture model and is 
greatly simplified by this brief summary

SNiPer-
HD No E-U W

Assumes genotypes in "training" data are unknown and 
requires the EM algorithm. "Training" data should only use 
high quality SNPs.

Moorhead N/A E-U W
Originally for MIP, but applicable to Affymetrix. Plagnol 
demonstrated how to link genotype probabilities between 
cases and controls.

logiCALL No E-L W-F Designed to lower false positive rate and assigns calls 
based on cumulative distribution, not density functions.

1Indicates use of mismatched probes
2Parameters were estimated by Experimental or Training data. For experimental data, under the null, cases and control genotype proportions could 
be Linked or Unlinked. * indicates optional.
3Distance can be Mahalanobis, W eighted Likelihood, or unweighted Likelihood
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the following three quantities: Mahalanobis distance:

, Unweighted Likelihood:

, or the Weighted Likelihood:

pg . The similarity function is also modified

to ensure monotonicity of assignment. When we let Si =

{Mi, Ai}, we force D(AB, Si|θ) = D(BB, Si|θ) = 0 if Mi ≤ μAA,

D(BB, Si|θ) = 0 if μAA ≤ Mi ≤ μAB, D(AA, Si|θ) = 0 if μAB ≤ Mi

≤ · μBB, and D(AB, Si|θ) = D(AA, Si|θ) = 0 if Mi ≥ μBB,

where μg, in this case, is the mean of Mi when Gi = g. This

modification is standard in calling algorithms. As we do
not know the true value of the parameters in experiments,

we replace D(g, Si|θ) by D(g, Si| ). A subject's SNP may

not be called, or assigned a missing value, if the difference

or ratio between D( , Si| ) and D(g2i, Si| ) is not large

enough, where g2iis the genotype with the second largest

value of D(g, Si| ). A SNP may be omitted from further

study if too many values were set to missing. Table 1
describes the details of the four steps for popular meth-
ods. For many purposes or to understand the details of the
method, especially in handling rare alleles, this table will
seem an oversimplification. For our purposes here, it
highlights the features of interest.

Tests of Association

The current tests of association start by calling genotypes
for a given SNP j in a group of subjects with the disease
and in a group of controls. They then compare the result-

ing proportions,  and

, from these Affected and Unaffected

groups using either a Cochran-Armitage test or logistic

regression. Here , where the

indicator function is defined by 1(x) = 1 if x is true, 0 oth-

erwise, Qi ∈ {A, U} is the disease status for individual i,

and nq is the number of subjects with disease status q. In

this manuscript, any 'p-value' from a genotype-based
association test will be calculated using ANOVA on the
logistic regression model with Qi and genotype (unor-

dered grouping) as the dependent and independent varia-
bles.

Standard tests tend to err anti-conservatively as we will
discuss below. We will propose four alterations that can
reduce type I error rate, with only a minimal decrease in
power. These are the four differences that separate logi-

CALL from standard methods. The first is based on the
observation, which is discussed later, that the likelihood

profile of φM(Si|θ) will have multiple local maxima near

the overall maximum. When estimating θ, the EM algo-
rithm converges to multiple solutions. For many of those

solutions, the resulting parameter set, , satisfies

. For each parameter

set satisfying this inequality, we will make a new group of

genotype assignments, . If more than 10% of such

assignments disagree with  (τ = 0.06), we label that

subject's call as questionable. We also continue the prac-

tice of marking calls with small values of D( , Si| )/

D(g2i, Si| ) as questionable. The second alteration is that

we do not discard questionable calls, an act which can cre-
ate false positives. Instead, we assign questionable Si so

the proportions of genotypes in the cases and controls are
as similar as possible, which is defined as minimizing

, with the restriction that the final call for

subject i must be either  or g2i. Here, we let g2i be the

genotype which is either the runner-up in terms of dis-
tance or the most common genotype among the dissent-
ing calls, depending on why the genotype was labeled as
questionable. The third alteration, which is already incor-
porated into other programs is to perform the EM algo-
rithm under the null hypothesis that the genotype
proportions in the two populations are identical [3]. The
fourth is the use of a weighted Mahalonobis distance,
which is defined later. Given these changes, logiCALL
then compares the estimated genotype proportions in
cases and controls using logistic regression. Note that
none of the changes affect calls for the vast majority of
SNPs.

We also introduce a completely new method for testing
association based on a likelihood ratio statistic. For our
method, steps 1 and 2, normalization and choice of sum-
mary statistic, can mimic any of the previously described
methods. As our real data to be analyzed was collected on
Illumina chips, we choose the statistic from Moorhead, et

al. [3],  for exposition. We

then assume that Si follows the mixture model described

by equation (1), but allow the parameters to differ by dis-
ease status:
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and θ = {θA, θU}, where

Although θ contains 18 parameters, it has only 16 degrees

of freedom (df) because  for q ∈ {A,

U}. Our new test will reject the null hypothesis of no asso-

ciation, when LR( ), the likelihood ratio, is large, where

Clearly, the restricted parameter space,

 is a subset of the

unrestricted parameter space, Ω. In an ideal scenario, the
distribution of 2log(LR) would converge to a chi-squared

distribution, , with 2 degrees of freedom. Therefore,

the 'p-value' from a likelihood ratio-based test will be cal-

culated as 1 - (2log(LR)).

Data Source

To demonstrate the problems of genotyping and compare
the genotype- and likelihood ratio-based tests of associa-
tion, we use three types of data. First, for discussion, we
may assume a hypothetical study measuring a one dimen-
sional summary statistic, Si, for a SNP j with only two pos-

sible genotypes, Gi ∈ {0, 1}. Furthermore, to show

problems can exist even under the best conditions, where
model and truth coincide, we assume that Si follows a nor-

mal distribution given Qi and Gij, and that the full distri-

bution can be described by

.

We compare our two new tests of association to a standard
method using simulated data. The standard method mim-
ics the general Bead-Studio approach by a) fitting param-
eters with the EM algorithm; b) calling genotypes based
on the Mahalanobis Distance; c) removing all calls where

D( , Si| )/D(g2, Si| ) > 0.5; and d) comparing the two

sets of resulting estimates,  and

. We generated 10 simulated datasets, con-

taining 1000 subjects (500 cases, 500 controls) and
303,100 SNPs for each of 18 scenarios. For each gene j and
each subject i, we generated a 2D summary statistic (Mji,

Aji). The distribution of Mji depended on genotype. If Gji =

AA, then Mji ~ 2X - 1, and if Gji = BB, then Mji ~1 - 2X,

where X ~ beta(α = 3, β = 30). If Gji = AB, then Mji also fol-

lowed a beta distribution, but the parameters varied by
SNP, disease status, and scenario. For all SNPs and all sub-
jects, Aji ~ N (10, 1.5). We generated three types of SNPs,

background, shifted, and influential. First, 300,000 back-
ground SNPs were generated and included in all 10 × 18
= 180 data sets. For each SNP, a single minor allele fre-
quency was generated from a uniform(0.2, 0.4) distribu-

tion and genotype probabilities  were

generated assuming Hardy-Weinberg Equilibrium. Here,
E [Mji|Gji = AB] = 0 and was independent of disease status.

These SNPs, which formed three distinct clusters, can be
easily identified and represent a well-behaved group. For
3,000 shifted SNPs, MAF ~uniform(0.2, 0.4) and genotype

probabilities  were generated assuming Hardy-

Weinberg Equilibrium. Here, E [Mji|Gji = AB] ∈ {-0.739 +

0.2, - 0.739 + 0.3 - 0.739 + 0.5}, where we note E [Mji|Gji

= AA] = -0.739 and E [Mji|Gji = AB, Qi = A] - E [Mji|Gji = AB,

Qi = U] ∈ {0, 0.2}. This group represents difficult to call

SNPs. For 100 influential SNPs, MAF ~uniform(0.2, 0.4)

and genotype probabilities  were chosen so

that, under a disease prevalence of 0.01 and a model of
additive effects, the genotype relative risk for subjects
homogeneous for the minor allele, P(Qi = A|BB)/P (Qi =

A|AA) ∈ {1.5, 2.0, 2.5}. Combing the degree of shift for
poor quality SNPs and the effect size of truly associated
SNPs, we have a total of 18 scenarios used in our simula-
tion.

The next set of data is from a recent GWAS of Inflamma-
tory Bowel Disease (IBD) that compared 983 subjects
with IBD to 1004 subjects without the disease. Using Illu-
mina microarrays, 308,330 SNPs on the autosomal chro-
mosomes were tested. Jewish and non-Jewish cohorts,
approximately equal in size, were analyzed separately, a
practice continued here. Details have been previously
published [17,18]. Because the overwhelming majority of
the SNPs are easy to genotype, as any of the summary sta-
tistics neatly divide into three clusters, we chose a 3137
difficult SNP subset where at least two clusters overlap
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(definition below). Because association was tested sepa-
rately in Jewish and non-Jewish cohorts, a total of 3137 ×
2 = 6274 tests were possible. To demonstrate called geno-
type dependency, we bootstrapped 40 samples, ignoring
case/control status, of 500 subjects for each SNP. A sample
would be discarded, and replaced by another random
selection, if one or both of the groups were lacking an AA
(Si<-0.7) or a BB (Si > 0.7) genotype.

We defined difficult SNPs as follows. For SNP j, we first

estimated the density, (Mj.) nonparametrically using the

R function 'density(adjust = 0.3)'. In theory, (Mj.) is a

mixture of three normal distributions, corresponding to
the three genotypes. If the SNP is well-behaved, then the
three underlying densities will not overlap, and the empir-

ical density (Mj.) will attain minima near 0 in the valleys

between μjAA and μjAB and between μjAB and μjBB. If either

of these minima exceeded 0.2, then at least two of under-
lying densities overlapped, and that SNP was defined as
difficult. To speed the process, we found that approximat-

ing the center of the peaks (i.e. μjAA, μjAB, and μjBB) by the

median values of Mj. in the three windows, {Mj. ≤ -0.6; -0.3

≤ Mj. ≤ 0.3, Mj. ≥ 0.5}, worked well.

Results and discussion
Two Genotype Example: Parameters
We choose to use the hypothetical, two-genotype, study,
to highlight that the estimated parameters can be incon-
sistent even in the simplest scenario, where the summary
statistic is distributed normally and our fitted model is
correct. When dealing with only a single population, we
define the parameter p0 (p1) to be the probability that a
subject's true genotype is 0 (1).

p0 ≡ P (Gi = 0) and p1 ≡ P(Gi = 1) (4)

We define the parameter  to be the probability

that a subject's called genotype is 0 (1).

Probabilities of called genotypes implicitly depend on the
number of subjects in the sample. We then define the
parameter c* to be the point which is equidistant to the
two genotype groups when θ is known.

Therefore, μ0 ≤ c* ≤ μ1 is defined to be a solution to equation 6

D(Gi = 0, Si = c*|θ) = D(Gi = 1, Si = c*|θ) (6)

For the remainder of the paper, we shall assume such a c*
exists. This assumption is safe in practice as genes with
extremely rare minor alleles are discarded. When D is the
Mahalanobis distance, c* is a solution to

We define the final parameter, , to be the probabil-

ity that a subject's Si value is less than c* given their true

genotype is 0 (1).

Our first goal in this Results section is to show that

may be true when two clusters, {Si:Gi = 0} and {Si:Gi = 1}

overlap. We will refer to  - p0 as asymptotic bias, or bias,

and we note that it depends on D, p0, and the magnitude

of the overlap. Here, we also define C, our estimate for c*,
to be the solution to the equation

such that . If no such C exists, to be consistent

with monotonicity of assignment, we let  where D(Gi

= g, Si = C ) is the smaller of the two measures when

. The variable C is the cut-point or threshold

value of S which separates 0 and 1 calls. Therefore, by monot-

onicity of assignment, Si <C ⇒  = 0 and Si > C ⇒  = 1. If

Si = C, we assign the genotype randomly. In the specific exam-

ple of the Mahalanobis distance, C is usually the solution to

Therefore, by convergence of the MLE, we know that

limn → ∞ C →p c* (12)

which will useful for the next section.

Two Genotype Example: 

We start by assigning genotypes according to their Maha-
lanobis distance, as done in BRLMM. Recall, we assign
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subject i to genotype 0 if Si <C, and to genotype 1 other-

wise. Therefore, the probability, , that a subject with

genotype 1 is misclassified as genotype 0 will be  = P(Si

<C|n, θ, Gi = 1), and in the limit, we know

. Now, it's easy to show that

 must also be the limiting probability that a subject

with genotype 0 is assigned as genotype 1.

Therefore, given the genotype, the limiting conditional

probabilities, P(  = 1 Ω  ≠ Gi|Gi = 0) and P(  = 0 Ω

 ≠ Gi|Gi = 1) are equal. If p0 > p1, then the unconditional

probabilities cannot be equal, specifically

Obviously the opposite inequality holds if p0 <p1. There-
fore, with the Mahalanobis distance, the bias will be

Clearly, when p0 = p1 = 0.5,  for all values of . How-

ever, when p0 ≠ p1, the bias is a non-zero function , and

therefore depends on the parameter group,

 (Figure 1). As shown by Figure 1, the

bias can be quite large when either  and/or |p0 - 0.5 |

is large.

Next, assume that genotype assignments are based on a

likelihood, or weighted likelihood measure. For a value ω
∈ c(0, 1), the probability that φg(Si) exceeds ω, or

, changes with , where 

returns a value greater than μg. Therefore, φ0(s) = φ1(s)

does not imply anything about the relationship between

Φ0(s) = Φ1(s). We illustrate the potential for bias by a sim-

ple example where μ0 = 0,  = 1, and μ1 = 1. Let p0 = p1 =

0.5. Then, for any value of

. Equivalently, when

two normal densities intersect at the threshold value, the
probability of misclassifying a genotype 0 subject will not
equal the probability of misclassifying a genotype 1 sub-

ject, and therefore . For a given

threshold, c*, we can define the bias by

. Unlike the previous example, with the Mahalanobis dis-
tance, Figure 2 shows that describing the bias as a function

of  and p0 can be difficult. In current tests of associa-
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tion, this inequality shows that it possible for 

even when , which as we will see, will lead to an

inflated type I error and too many low p-values. Start by
noting that GWAS test a surrogate hypothesis,

, not the true hypothesis of interest,

. Because  need not equal  when

the distributions for cases and controls differ, , the

tested hypothesis, can be false even when H0 is true. Let T*

be a standard test statistic for , which is believed to

have the following property, . Let us

make the reasonable assumption that the difference

between  and  is

small, or, in words, when  is known to be true, the

validity of H0 has little effect on the distribution of T*.

Then,

Here β is a measure of the power to reject  and we

assume β > α. Therefore, the current method of rejecting

H0 whenever T* >  is actually anti-conservative if the

stated p-value is α

Two Genotype Example: Inconsistency
As with any GWAS experiment, we can estimate p0 and p1
by

For presentation, we will omit the superscript n, writing

 and  as  and . As , from equation 5, is

equivalent to E [P(Si <C|n, θ)], we know that

Therefore, by the convergence of  and  to constants

and the convergence of the MLE, we have

Having just discussed cases where equation (9) holds, our
standard estimates of p0 and p1 are not consistent. Specifi-
cally,

for these scenarios.

Return of Consistency: Modifying the Mahalanobis 
Distance
The Mahalanobis Distance, D(g, si|θ), measures the condi-
tional probability of getting a value as extreme as si given gen-
otype g. Therefore, we could achieve the same results using
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where g ∈ {0, 1} and Si is again presumed to be normally

distributed. As we saw, the current estimators suffer
because they don't account for the genotype probabilities.
Borrowing Bayesian terminology, we simply need to
weight our distance measure by the prior probability of a
subject having each genotype. Therefore, returning to step

4 of our genotyping process, we now define  = gmax

where gmax maximizes the function , a weighted

version of the Mahalanobis distance. Let c† be the point

such that . Then we are guaranteed

consistency as

With this change, our estimate  would

now be consistent.

Dependence/Correlation of Called Genotypes

If we knew {G1,..., Gn}, the true genotypes for a group of

n subjects at SNP j, as opposed to only knowing their

called genotypes, , it would easy to construct a

test of H0:  with a specified α level. Reject H0

if . Here,  is the 1-α

percentile of a  distribution, and

The central limit theorem allows us to be confident that

we have an α-level test because

 when {G1,..., Gn is a vec-

tor of independent Bernoulli random variables. Again, we

have returned to the two genotype scenario to simplify
our discussion.

By statements about the perceived α-levels of ,

 are often implicitly treated as the true genotypes

and are assumed to be a vector of independent Bernoulli ran-

dom variables. The truth, however, is that  is not inde-

pendent of . Specifically if C, the threshold for calls, is

relatively small, then both P(  = 1|C) and P(  = 1|C)

are relatively large. Using this common dependence on C, it

is simple to show that  and  are positively correlated.

This proof, which uses Jensen's inequality, clearly shows

that the two variables,  and , are not independent

as that would have implied

. The consequence of this dependence is that 

does not follow a  distribution, and in

turn, that  neither follows a  distribution

nor has P(  > tα) = α.

We next examine the behavior of , and .

First, as is common, the dependence increases the vari-
ance of these estimates. For any population,
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Ĝi1
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The first term, , represents the

uncertainty in the true number of subjects with genotype

0, and can be roughly approximated by . The

second term,  reflects that there

will be a subpopulation, of a random size ~n|ΦM(C) - ΦM

(E[C])|, that is assigned the 'non-ideal' genotype, where a
call is labeled 'non-ideal' if it would have been different
had the threshold been E [C]. We can approximate this
second term, the overall increase in the variance, by

nvar(ΦM(C)) if P(  = 0|C) ≈ ΦM(C) and the cor( ,

|C) ≈ 0. In experiments, we can estimate nvar(ΦM(C))

by bootstrapping samples of C or (C).

To focus on the distributions instead of just the variances,

we decompose  as

Note that  and . The appro-

priate multiple of the first term, n( (C) - ΦM(C)),
should be well approximated by X-E [C], where X ~bino-
mial(n, E [C]). From our own experience, we have seen

that the third term, (ΦM(E[C]) - E (C)]), is a constant

close to 0. The second term, (ΦM(C) - ΦM(E[C])) is the var-
iable which causes deviation from normality. Again, we
could approximate the distribution of this term by boot-
strapping C.

Next, we offer an example to demonstrate the effect of
dependence among called genotypes. Specifically, using

the IBD data, we show that a  is a

poor approximation for the distribution of

. Because we will use real data, we have

purposely chosen to discuss

 instead of T .

There are many reasons that T may not follow a  distri-

bution, including  being a poor estimate of pg, the dis-

tributions of Si being far from normal and population

substructure. However, for large n, the only reason that

 will not be

approximately normal is if  are not independ-

ent. Also, we chose to focus on the AB genotype as this is
certain to be one of the genotypes with an overlapping
cluster.

For each of our 3137 SNPs in the IBD data, we bootstrap
40 samples of 500 subjects, and calculate 40 values of

, where  is

estimated by . The qq-plot in Figure 3 com-

pares these 40 × 3137 values with a N(0,1). The distribu-

tion is far from normal, which implies that 

are dependent. Some SNPs were more likely to contribute
skewed values than others, but the top and bottom 100
values (200 total) are from 64 different SNPs, indicating
that no one SNP, or small number of SNPs, is responsible
for the deviation in the qq plot. In contrast, the qq-plot
from well-behaved SNPs, where the contributions to the
density of S from the three genotypes were separated, was
the expected straight line, showing that it was not the nor-
mal approximation skewing the results (Figure 3).
Because the magnitude of the observed values were larger
than predicted by theory, the practical implication is that

tests based on the statistic, T, estimated by (T), will be

anti-conservative(i.e. too many significant p-values after
adjusting for multiple testing) under the null hypothesis.
Here we also note that if Si were truly normal, the impact

of the dependency would be much less. For more details
on the origin of dependency, please see Table 1.

Comparing Tests of Association

Table 2 shows the results from the simulations, and lists
the percentage of the influential SNPs that were ranked
among the top 100 most significant SNPs, where the rank-
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Ĝi2

Φ̂ M

n p pn( )*
0 0−

n p p

n C E C

n C C C E

n

M M

M M M M

( )

( ( ) [ ( )])

( ( ) ( )) ( ) (

*
0 0− =

− =

− + −

Φ Φ

Φ Φ Φ Φ [[ ]))

( ( [ ]) [ ( )]))

C

E C E CM M

+

−Φ Φ
(26)

ˆ ˆ ( )p CM
0 ≡ Φ p E Cn M

0
* [ ( )]≡ Φ

Φ̂ M

Φ̂ M

N E p E pAB AB( , [ ]( [ ]))0 1 −

n p E pAB AB( [ ])−

n p E p E p E pAB AB AB AB( [ ]) / [ ] ( [ ])− − 2

χ2
2

pg
*

n p E p E p E pAB AB AB AB( [ ]) / [ ] ( [ ])− − 2

{ ,..., }G Gn1

n p E p E p E pAB AB AB AB( [ ]) / [ ] ( [ ])− − 2 E[ ]pAB

1
40 1

40
p̂ ABk=∑

{ ,..., }G Gn1

Fχ2
2

Page 10 of 13
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:68 http://www.biomedcentral.com/1471-2105/10/68
ings were determined by either LogiCALL, a likelihood
ratio test, or a standard test, similar to Bead-Studio. As
there were 100 influential SNPs in each simulation, an
ideal scenario would have 100% of the influential SNPs in
the top 100 SNPs. As expected, the percentages increase as
the relative risk, comparing the two homogeneous geno-
types, increases from 1.5 to 2.5. So long as the densities of

φ (Mji|Gji = AA) and φ (Mji|Gji = AB) were distinct, which

was the case when the distance between μAA and

 exceeded 0.5 (and was less than 1.239),

all three tests performed equally well. As the shifts were
decreased in simulations, many of these shifted SNPs
started to appear in the top 100 most significant SNPs,
when ranked by a standard test. Furthermore, the loss in
power was exaggerated when the amount of overlap dif-

fered between cases and controls, φ(Mji|Gji = AB, Qi = A) ≠

φ (Mij|Gij = AB, Qi = U). In the most extreme case, when E

[Mji|Gji = AB] = -0.539 and E [Mji|Gji = AB, Qi = A] - E

[Mji|Gji = AB, Qi = U] = 0.2, the standard test only detected

about half as many influential genes as it did when there
were no shifted genes. In contrast, LogiCALL almost never
ranked any of the shifted SNPs in the top 100. However,
had these shifted SNPs been influential, LogiCALL would
have had less power to detect them. The performance of
the likelihood ratio was in between the two other tests,

but performed nearly as well as LogiCALL when φ (Mji|Gji

= AB, Qi = A) = φ (Mij|Gij = AB, Qi = U).

In GWAS, each marker is tested for association with the
disease. Here, we compare four methods for testing the
3137 chosen SNPs in the IBD study. In the first method,
we let Bead-Studio call the genotypes and perform its

( ) /μ μAB
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(Dependency of Calls) The density of  is compared to a N(0,1) density for 500 subject samples in a quantile-quantile plotFigure 3
(Dependency of Calls) The density of 

 is compared to a 

N(0,1) density for 500 subject samples in a quantile-quantile 

plot. The deviation from the Y = X line indicates that  is 

not distributed as a binomial(n, pAB) variable.
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Table 2: The percentage of influential genes among the top 100 most significant SNPs, as ranked by LogiCALL, a likelihood ratio test, 
and a standard test.

RR = 1.5 RR = 2.0 RR = 2.5
Shift Difference LogiCALL LR Standard LogiCALL LR Standard LogiCALL LR Standard

0.5 0 4.4 4.6 4.5 41.8 41.8 41.3 78.8 79.2 79.3
0.2 4.4 4.6 4.5 42.0 41.8 41.3 78.8 79.3 79.4

0.3 0 4.4 4.6 4.6 42.0 41.9 41.2 78.8 79.2 79.4
0.2 4.4 1.9 0.2 41.6 29.5 14.4 78.8 67.3 42.7

0.2 0 4.4 4.4 2.1 42.0 41.4 25.9 78.8 78.9 47.1
0.2 3.7 0.1 0.0 38.9 3.4 0.0 75.3 21.3 0.0

Simulated data sets are full described in the Methods Section. The shift is the distance between the and μAA and . The Difference 

is the distance between  and . RR is the genotype relative risk for subjects homogeneous for the minor allele.

( ) /μ μAB
A

AB
U+ 2

μAB
A μAB

U

Page 11 of 13
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:68 http://www.biomedcentral.com/1471-2105/10/68
standard Cochran-Armitage test. Default settings were
used to assign calls as missing and remove poor quality
SNPs. In the second method, we call the SNPs using logi-
CALL and test for association using logistic regression,
although using Cochran-Armitage would not change our
conclusions. In the third method, we calculate the Likeli-

hood Ratio Statistic comparing  and  from equation

(3) using all SNPs, and in the fourth method, we calculate

the LR statistic using only those SNPs where  and 

yield identical calls, and Hardy-Weinberg equilibrium, for
controls alone, is not violated at a statistical significance
level of < 10-16. For each method, we calculated the pro-
portion of 'p-values' that were less than 0.005, 0.001, and
0.0005 (Table 3).

When genotyping all SNPs and all subjects, the propor-
tion of Bead-Studio 'p-values' below the three thresholds
far exceeded 0.005, 0.001, and 0.0005. Even after remov-
ing low quality SNPs and allowing missing calls, the pro-
portion of 'p-values' below the three thresholds were
0.015, 0.005, and 0.004. In contrast, LogiCALL elimi-
nated nearly all false positives. The proportion below the
three thresholds were 0.004, 0.002, and 0.002. If the
majority of these SNPs are presumed to be null associa-
tions, logiCALL appears to be the superior method, so
long as the power loss is minimal. Assigning conservative
'p-values' to problematic SNPs is nearly equivalent to
removing them. However, because of the tendency for
there to be multiple, nearly equivalent, maximum likeli-
hood estimates, the relative distances to the AA, AB, and
BB genotypes using the single set of maximum likelihood
estimates may not be adequate in identifying questiona-
ble calls. Therefore, logiCALL gains an advantage by com-
bining two methods for identifying suspect calls.
Additionally, it avoids false positives caused by differen-
tial bias, where the proportion of missing calls differs
between cases and controls. This new method simplifies
testing by requiring no preprocessing and testing all SNPs.

The power loss from logiCALL depends on the quality of
the data. When the statistic for a SNP cleanly separates
into an AA, AB, and BB group, there is no power loss. In
our IBD example, the 'p-values' reported for rs2066843
and rs2076756, the two SNPs that are believed to be truly
associated with IBD were similar for the two methods,
Bead-Studio (2.9 × 10-9 and 5.1 × 10-10) and logiCALL (1.5
× 10-8 and 1.6 × 10-9). Among those subjects meeting the
96% Bead-Studio call rate, logiCALL found no questiona-
ble calls.

The likelihood ratio method had mixed results. Clearly,
when the distribution of the summary statistic is a mixture
of normals, the estimated genotype proportions are
asymptotically unbiased. Unfortunately, this method still
resulted in an increased number of false positives. How-
ever, if we removed those SNPs where at least one call

changed when switching from  to , the false positive

rate decreased to the expected level. In theory, all calls
should be identical and only the resulting likelihoods
should differ. When assigning genotypes, the cost, in like-
lihood, incurred from forcing the vectors of genotype pro-
portions to be equal should be far less than the cost of
switching calls. When the reverse is true, and calls switch,
the statistic for the three groups cannot be well separated,
and the p-value is suspect.

Conclusion
In genome-wide association tests, under the null hypoth-
esis, the test statistic rarely follows the expected chi-
squared distribution. This deviation tends to result in an
excess of false positives. Unfortunately, the investigation
into the origin of this deviation has yet to be completed.
The problems associated with poor signal quality and
population substructure have been thoroughly explored.
However, the overlap of fluorescent signals has only been
identified as a serious problem, and has yet to be fully
explained. In this paper, we have provided two reasons,
parameter inconsistency and called genotype depend-
ency, that help explain how overlap causes this deviant
behavior. Furthermore, we propose two methods, logi-
CALL and a method based on the likelihood ratio statistic
that better handle the problems of inconsistency and
dependency. These methods will perform similarly to the
common, genotype-based, test statistics for the well-
behaved SNPs and appear to create fewer false positives
for the difficult-to-call SNPs. We have also identified a
new characteristic of some false positives, that the call dif-

fers when using  vs. , that will help distinguish

θ̂ j θ̂R
j

θ̂ j θ̂R
j

θ̂ θ̂R

θ̂R
j θ̂ j

Table 3: The percentage of 'p-values' less than traditional α-levels 
(0.005,0.001,0.005) are listed for four tests of association. 

Method n p < 0.005 p < 0.001 p < 0.0005

BeadStudio 3487 0.015 0.005 0.004
logiCALL 5533 0.004 0.002 0.002
LR 5533 0.087 0.061 0.052
LR-(same) 3014 0.006 0.002 0.001

1) BeadStudio (default setting for missing assignements and omitting 
SNPs). 
2) logiCALL. 
3) Likelihood Ratio (LR) using all SNP.
4) Likelihood ratio (LR-same) using only SNP where calls were the 
same for restricted and unrestricted parameter sets.
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which low p-values represent significant disease/marker
association.

We have demonstrated that increasing sample size alone
will not eliminate type I error, as genotyping, in its current
form, leads to inconsistent estimates of population
parameters. To alleviate this inconsistency, the distance
measure used for assignment would need to be switched

to , defined in the Results and Discussion Section.

Moreover, we have proven that the called genotypes can
be dependent under certain conditions, and that tests
based on called genotypes need to account for the
increased variance caused by dependence. Finally, we
illustrated that the likelihood profile of the data can be
relatively flat near the MLEs. Therefore, judging the qual-
ity of calls from distances based only on the MLE may not
provide an adequate means to identify questionable calls.
Hence logiCALL, which looks at all locally-maximal like-
lihood estimates of the parameters can reduce the type I
error rate. Testing association by the likelihood ratio sta-
tistic is another promising method for addressing the
problems associated with overlapping signals.
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Computer programs are available on author's website,
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