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Abstract
Background: Scanning large genomes with a sliding window in search of locally stable RNA
structures is a well motivated problem in bioinformatics. Given a predefined window size L and an
RNA sequence S of size N (L < N), the consecutive windows folding problem is to compute the
minimal free energy (MFE) for the folding of each of the L-sized substrings of S. The consecutive
windows folding problem can be naively solved in O(NL3) by applying any of the classical cubic-time
RNA folding algorithms to each of the N-L windows of size L. Recently an O(NL2) solution for this
problem has been described.

Results: Here, we describe and implement an O(NL(L)) engine for the consecutive windows
folding problem, where (L) is shown to converge to O(1) under the assumption of a standard
probabilistic polymer folding model, yielding an O(L) speedup which is experimentally confirmed.
Using this tool, we note an intriguing directionality (5'-3' vs. 3'-5') folding bias, i.e. that the minimal
free energy (MFE) of folding is higher in the native direction of the DNA than in the reverse
direction of various genomic regions in several organisms including regions of the genomes that do
not encode proteins or ncRNA. This bias largely emerges from the genomic dinucleotide bias which
affects the MFE, however we see some variations in the folding bias in the different genomic regions
when normalized to the dinucleotide bias. We also present results from calculating the MFE
landscape of a mouse chromosome 1, characterizing the MFE of the long ncRNA molecules that
reside in this chromosome.

Conclusion: The efficient consecutive windows folding engine described in this paper allows for
genome wide scans for ncRNA molecules as well as large-scale statistics. This is implemented here
as a software tool, called RNAslider, and applied to the scanning of long chromosomes, leading to
the observation of features that are visible only on a large scale.

Background
RNA is typically produced as a single stranded molecule

which then folds intra-molecularly to form short base
paired stem structures while the unpaired regions form
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loops. This base paired structure is referred to as the sec-
ondary structure of the RNA. Base pairs almost always
occur in a non-crossing fashion in RNA secondary struc-
ture. Informally, this means that if we draw arcs over an
RNA sequence connecting base pairs, none of the arcs
cross each other. When crossing base pairs occur, they are
called pseudoknots. In this paper, pseudoknots are
ignored, and therefore no two arcs are allowed to cross.
Under this assumption, a model was proposed in [1] to
calculate the stability (in terms of free energy) of a folded
RNA molecule by adding independent contributions from
base pair stacking and loop-destabilization. This model
has been shown to provide a good approximation of the
forces governing RNA structure formation, thus enabling
fairly accurate predictions of real structures by determin-
ing the most stable structure of a given sequence and its
corresponding free energy, known as the MFE (Minimal
Free Energy). Based on this model, O(N3) time algorithms
have been proposed and implemented for computing the
most stable RNA structure and its MFE, where N denotes
the length of the sequences to be folded [2,3]; accordingly,
various tools for RNA secondary structure prediction were
developed. The tools commonly used today are MFOLD
[4], Vienna Package [5] and FOLDRNA [6]. Thus, map-
ping the entire landscape of a genome of length N look-
ing, for example, at the potential to form ncRNA
molecules of size L, can be done by a straight forward
application of the classical cubic-time RNA folding algo-
rithm with a sliding window of size L over the genome,
resulting in total O(NL3) running time. Hofacker et al. [7]
suggested an elegant algorithm for this task with run-time
of O(NL2). Here, we suggest a more efficient consecutive
windows folder, whose expected time complexity is
O(NL), and give an implementation of this engine, called
RNAslider. This faster solution makes consecutive win-
dows folding practical on a genome-wide level and we
envision several possible applications for this program,
especially as part of a search strategy for long ncRNA mol-
ecules. As a demonstration we present an intriguing bias
in minimal free energy of genomes depending on their
reading direction that we observed by using the program.
We also show preliminary results of running RNAslider to
characterize long ncRNA molecules on a mouse chromo-
some and discuss this application further.

Results
The fast sliding algorithm
The main recursion used by the current RNA folding algo-
rithms is explicated below:

Eq. 1, whose time complexity is classically O(N), where N
denotes the length of the RNA sequence S to be folded,
computes the optimal folding of substring si...sj, which is
the value of the entry in row i and column j of the main,
upper triangular two dimensional N × N dynamic pro-
gramming table, W. The application of Eq. 1 involves the
computation of the two dimensional matrix, V, whose
entries are computed via three additional auxiliary equa-
tions. We discuss them briefly below and refer the inter-
ested reader to [4] for a thorough discussion and time
complexity analysis of these additional auxiliary recur-
sions.

Eq. 2 computes the optimal folding energy of a substring
si...sj in which si base pairs with sj, where eh denotes the
energy term for a hairpin closed by positions i and j and
es denotes the energy term for the stacking of the base pair
(i, j) in a stem that is continued by the base pairing of
positions i+1 and j-1. For the sake of simplicity, assume
that V(i, j) is set to infinity if the base at position i does not
pair with the base at position j of the sequence.

Eq. 3 computes the score of an optimal folding of sub-
string si...sj given the energy of the bulge (ebi) formed at
indices (i, i', j', j). (Similarly to the current heavily used
folding engines, we assume that the sizes of an internal
loop (i' - i) and (j' - j) are bounded by a constant and
therefore this term is quadratic.)

where a is a constant multi-branch penalty. We note that,
for the sake of simplicity of presentation, the current
description neglects the contribution for inner pairs of a
multiloop and unpaired bases in a multiloop. However, it
can easily be extended to apply these contributions with-
out breaking the triangle inequality property on which
our algorithm relies.

DEFINITION 1 (closed structure).

A "closed structure" over the sequence sx...sy, is a folding in
which sx pairs with sy.

From Equations 1 and 2 it is easy to see that W(i, j)
denotes the optimal (minimal) folding energy that can be

W i j V i j W i k W k j
i k j

, min , ,min , ,( ) = ( ) ( ) + +( ){ }⎧
⎨
⎩

⎫
⎬
⎭≤ <

1

(1)

V i j

eh i j

es i j V i j

VG i j

VM i j

, min

, ,

, ,

, ,

,

( ) =

( )
( ) + + −( )

( )
( )}

⎧

⎨

⎪
⎪

⎩

⎪

1 1

⎪⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

(2)

VBI i j ebi i j i j V i j
i i j j

, min , , ,( ) = ′ ′( ) + ( ){ }
≤ ′< ′<

(3)

VM i j W i k W k j a
i k j

, min , ,( ) = +( ) + + −( ){ } +
≤ < −1

1 1 1

(4)
Page 2 of 13
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:76 http://www.biomedcentral.com/1471-2105/10/76
obtained by folding the sequence si...sj in any possible
way. V(i, j), on the other hand, denotes the optimal (min-
imal) folding energy that can be obtained by a closed struc-
ture over the sequence si...sj. Thus, W(i, j) is computed as
the minimum between the lowest folding energy of a
"closed structure" V(i, j) and the lowest folding energy of
an "unclosed structure", where the energy of each
"unclosed structure' can recursively be computed as the
sum of two independent parts: W(i, k) + W(k+1, j), where
index k is denoted a "partition point". Since the current
RNA folding engines bind the size of internal loops (in
Eq. 3) to a constant, the main recursion, described in Eq.
1, is the bottleneck recursion. Thus, computing all entries
in the upper-triangle of W is classically O(N3).

The consecutive windows folding problem
In this paper, we address a variant of the folding problem,
defined below.

DEFINITION 2 (Consecutive Windows Folding). Given a
predefined window size L and an RNA sequence S of size N (L
< N), the consecutive windows folding problem is to compute
the MFE for all L-sized substrings of S.

The consecutive windows folding problem can be naively
solved in O(NL3) by applying any of the classical cubic-
time folding algorithms to each of the N-L windows of
size L. An O(NL2) algorithm was described in [7] for the
consecutive windows folding problem, which exploits the
fact that, when the sliding windows are computed incre-
mentally, in decreasing start-index order, only an L-width
diagonal of the original N × N dynamic programming
matrix W (for folding the full N-sized sequence), needs to
be computed.

An efficient RNA folding algorithm, which computed the
optimal folding in expected time complexity of
O(N2)(N), where (N) was shown to be constant, on
average, under standard polymer folding models, was sug-
gested in [8]. This algorithm is briefly reviewed in the next
section, and we refer the interested reader to [8] for a more
detailed description.

Review: RNA folding in O(N2) expected time
The quadratic-time algorithm for computing an optimal
RNA folding utilizes the observation that the main matrix
W, which is the final output of the RNA folding recursion,
as given in the previous section, obeys the triangle ine-
quality, i.e.

i  j <j' W(i, j')  W(i, j)+W(j + 1, j')

The above claim is used in the next lemma to show that
any sum which yields the minimum of Eq. 1 can be refor-

mulated as a corresponding, equal-scoring sum, in which
the left term is a closed structure (see Def. 1).

LEMMA 1. Consider Eq. 1. For every entry W(i, j), if there
exists an index k, i  k < j, such that W(i, j) = W(i, k) +
W(k+1, j), then W(i, j) = V(i, k') + W(k'+1, j) for some index
k'  k.

The proof of Lemma 1, based on the triangle inequality
property of the RNA folding recursion, can be found in
[8]. According to Lemma 1, Eq. 1 can be reformulated as
follows.

Thus, Eq. 2 could be viewed as a competition between
O(N) partition points V(i, k), k = i...j, for the sum: V(i, k)
+ W(k+1, j) that yields the minimum folding energy. Fur-
thermore, it turns out that some of the competing closed
structure partition points dominate others, as becomes
clear by the following theorem.

THEOREM 1 [8].

If V(i, j)  V(i, k) + W(k + 1, j) for some i  k < j then,

j' > j V(i, j) + W(j + 1, j')  V(i, k) + W(k + 1, j').

The redundancies indicated by Theorem 1 can be
exploited by maintaining a list of only those partition
points V(i, k) that are not dominated by others.

DEFINITION 3 (candidate).A column index j is a candidate
in a row i  j iff:

V(i, j) < V(i, k) +W(k +1, j)  i  k < j.

Note that the above condition is obtained by applying
Lemma 1 to the condition

V(i, j) < W(i, k) +W(k +1, j)  i  k < j.

The above definition may be applied to speed up the com-
putation of W(i, j), as follows: Rather than considering all
possible O(N) partition point indices for the computation
of Eq. 2, only partition points V(i, k) that satisfy the can-
didacy criterion according to Definition 3 need to be con-
sidered. This is formalized in the following equation:
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Eq. 3 is implemented, in the quadratic-time RNA folding
algorithm, via a candidate list that is empty at the start of
each row and is extended throughout the left-to-right
computation of row i by appending only those partition
points V(i, j) which are candidates by Definition 3.

To bind the expected size of the candidate list it is
assumed, and later confirmed by benchmark analysis, that
the folding predictions generated by the classical RNA
folding algorithm follow the standard polymer-folding
model. Previous analysis, both theoretical and experimen-
tal, has shown that the probability that a closed structure
is formed, pairing two positions at distance q monomers

apart, is P(q) =  where b = 1 and c > 1. (See [9,10] for

self-avoiding random walk (SAW) models for collapsing
RNA and other polymers and [11] for a SAW model for
DNA denaturation). This fact is explained by modelling
the folding of a polymer chain as a self-avoiding random
walk in a 2D lattice [12]. In this model, the spatial posi-
tion of each nucleotide in the original polymer corre-
sponds to a random step within the lattice, where edges of
the lattice represent possible transition directions. This
walk is called "self avoiding", i.e. it assumes that two bases
cannot occupy the same lattice point. The query of interest
here is the probability of the q-th step in the walk return-
ing to the origin. The theoretical exponent for the 2D SAW
model has been shown to be c = 1.5 [13].

Note that, by Definition 3, each candidate corresponds to
a closed structure. Thus, the probability for column j to be
a candidate in row i is equivalent to the probability for the
optimal folding of si...sj to form a closed structure, i.e. b·(j

- i)-c. Thus, the expected number of candidates in a

sequence of length N is (N) = . For values c 

1, which is the case in polymer folding, this series is a par-
tial sum of the Riemann Zeta function, defined as

, and is known to converge to a constant. Thus,

by applying the candidate list approach described above,
the computations performed for each entry in the main
dynamic programming matrix W are reduced from O(N)
to O(1), yielding the following theorem.

THEOREM 2 [8]. Applying the candidate list algorithm to
the folding of an RNA sequence of size N, requires an
expected number of O(N2) operations.

An O(NL) algorithm for the consecutive windows folding 
problem
Hofacker et al. [7] achieved a run-time of O(NL2) for the
consecutive windows folding problem by observing that,
in this application, only an L-width diagonal of the origi-
nal N × N dynamic programming matrix W (for folding
the full N-sized sequence), needs to be computed. In this
section we apply this observation to the candidate list
algorithm for RNA folding [8] which we briefly discussed
above, in order to obtain a faster solution for the consec-
utive windows folding problem, whose expected time
complexity is O(NL). The suggested algorithm also com-
putes an L-width diagonal in the N × N matrix W. The val-
ues of this L-width diagonal are computed in decreasing
row index order, and then for each row, in increasing col-
umn index order. Within this order, the candidate list is
emptied out when the computation of each row begins,
and then incrementally extended, during the computation
of values of this row, by appending only those partition
points which are candidates by Definition 3. Each parti-
tion point is considered for candidacy once per row, when
its column is reached. The algorithm finally returns the
vector windowsEnergy, where windowsEnergy[i] denotes
the folding energy of S[i ... i+L-1].

The pseudo-code for the algorithm is given below.

Algorithm:

0 windowsEnergy  NULL

1 for each row i = N-L+1 down to 1 do

2  candidate_list  NULL

3  for each column j = i up to i + L - 1 do

4  

5  if V(i, j) < W(i, j) then

6  W(i, j)  V(i, j)

7  Append index j to the candidate_list

8  if j = i + L - 1 then

9  windowsEnergy[i]  W(i, j)

THEOREM 3. The above algorithm computes the optimal
folding of N sliding windows, of size L each, in O(NL)
expected time and O(N+L2) space.

b
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PROOF: The algorithm fills the L-sized diagonal of an N ×
N matrix, but needs to maintain only an L2 sub-matrix at
each step, and thus can be implemented to require
O(N+L2) space. For each of the N rows, calculating the
value for each of the L entries requires the computation of
the minimum among (L) candidates, and possibly the
addition of a single candidate to the list. Since (L) has
been shown to converge to O(1) on average (see Section
1.2), the algorithm spends a constant time on each of the
O(NL) entries computed, yielding an O(NL) expected
time complexity.

A traceback of an optimal solution is supported at the cost
of an additional negligible O(L) term, by maintaining, for
each computed entry in W(i, j), a label indicating whether
its score was obtained in Eq. 1 from the closed structure
term V(i, j) or from one of the partitioning terms V(i, k) +
W(k+1, j), and storing the value k in the latter case. Based
on this stored information in the computed matrix W, one
can recursively recover an optimal traceback for the entire
window in O(L) time and in O(L2) space, starting from
entry W(1, N) [2].

Testing
We implemented our Consecutive Windows Folding algo-
rithm in a program called RNAslider. RNAslider is imple-
mented on top of the publicly available code of Michael
Zuker and Rune Lyngs using its default energy parame-
ters. First, we validated that the running window algo-
rithm gives exactly the same results as running the MFE
algorithm on each window separately. Then, we ran it on
various sequence lengths and on windows of various
sizes. The running time was compared with the running
time of RNALfold from the Vienna package, a program
that implements the algorithm of Hofacker et al. [7]. Fig-
ure 1 demonstrates that the run times of our implementa-
tion indeed grow linearly with increasing window sizes,
while the RNALfold algorithm has a quadratic running
time. We can see that for windows of size of up to 500 bp,
the running times are quite similar, with a slight advan-
tage to RNALfold. From size of about 500 bp and up,
RNAslider runs increasingly faster than RNALfold. The dif-
ference reaches a three fold speed-up for the longer win-
dows of 2,000 bp which are relevant for the analysis of
long ncRNA (see Discussion).

Bioinformatic applications
Directional Bias – Comparing histograms of MFE 
distributions
The ability to rapidly calculate the minimal free energy
(MFE) values of sliding windows along very large chromo-
somes enables the probing of MFE landscapes on a
genome wide level. First, we explored the MFE landscape
of sequences when reading them in the natural 5' to 3'
direction, and compared these with the MFEs when read-

ing either in the opposite direction (3' to 5') or on the
complementary strand. While the first comparison
yielded an intriguing systematic difference between MFEs
computed on the "native" sequences versus the "reverse"
ones, the comparison of the two opposite strands yielded
almost indistinguishable distributions.

Figure 2 illustrates histograms based on scanning the larg-
est chromosome from six different species: Human, C. ele-
gans (worm), Drosophila melanogaster (fruit fly),
Saccharomyces cerevisiae (yeast), Oryzias latipes (rice
fish), and Anopheles gambiae (mosquito). A sliding win-
dow of 200 bases was used to scan each chromosome in
three directions: native, reverse, and complementary. Vis-
ually, the results show that the histograms of the native
and reverse complement direction are almost indistin-
guishable from each other, but the results for folding the
reversed sequences show a small offset from the other two
histograms, suggesting that sequences that are read from
the reverse direction have higher MFEs. This small differ-
ence is highly statistically significant. To demonstrate this,
and to make sure that the effect is not due to sliding over
overlapping and thus dependent windows, we randomly
sampled 10,000 non-overlapping sequences of 100 bases
taken from human chromosome 1, and found that 6,109
sequences had more stable predicted structures (i.e. got
lower MFE) in their native direction, 3,661 sequences pre-
ferred the reverse direction, and 230 sequences had the
same MFE in both directions. With the null hypothesis of
an equal chance to prefer either direction, (counting the
230 indifferent sequences as preferring the reversed direc-
tion), a binomial test yielded a p-value < 4.3·10-110.

Since each nucleotide monomer of RNA consists of a
ribose backbone and phosphate groups attached to the
base, it has an inherent asymmetric direction from 5' to 3'.
Thus, it is clear for example that the sequence ACGUG is
not identical to the reverse sequence GUGCA in its ability
to fold into secondary structure. However, it is not clear
why, consistently in several genomes, the native coding
direction should necessarily have a lower MFE than the
reverse direction, especially since only a small portion of
genome, especially in higher eukaryotes, is believed to be
transcribed and expressed as RNA. In the rest of this sec-
tion, we further explore this phenomenon.

DEFINITION 4 (Directionality Bias): For a given sequence,
S, and a given window-size L, the Directionality Bias (DB) of
S by L is the ratio between the number of L-sized sliding win-
dows in S that have a lower MFE when scanned and folded in
the native direction, versus the number of L-sized sliding win-
dows in S that have a lower MFE when scanned and folded in
the reverse direction.
Page 5 of 13
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For example, in the human chromosome 1, out of
224,998,871 windows of length 200 bases, 148,824,318
(66.14%) yield a lower MFE when folded in the native
direction, and only 75,312,478 (33.47%) yield lower MFE
when folded in the reverse direction, resulting in a DB of
1.98. We repeated this experiment with the six chromo-
somes mentioned earlier, and obtained DBs of 1.23, 1.79,
1.32, 1.75, and 1.12 for C. elegans, Drosophila, Yeast,
Medaka and Anopheles, respectively.

Note that the DBs reported here were computed in over-
lapping windows. Similar experiments using different
windows sizes (from 50 to 150 nt) yielded similar results.

In addition, we checked the magnitude of this effect. For
all windows of length 200 of the human chromosome 1,
we made an histogram of the differences in MFE between
the native and reverse direction. On average the MFE gap
is -1.06 Kcal/mol with standard deviation of 2.45. The his-
togram, shown in Figure 3, demonstrates that while many
of the differences are relatively small (34.5% are within 1
Kcal/mol from the average) there are still a significant
number of windows in which the difference is high (e.g.
3.08% of the windows have a difference of 6 Kcal/mol or
more).

In order to reveal the origin of this phenomenon we did
the following experiment. We created random genomes
that maintain the same dinucleotide frequencies of real

Measuring the run time of the algorithmFigure 1
Measuring the run time of the algorithm. The first 1,000,000 bps of Oryzias latipes chromosome 9 were scanned with 
windows of size 100, 200, ..., 2000. As expected, the RNALfold graph fits a quadratic trend line with R = 0.9964, and the 
RNAslider graph fits a linear trend line with R = 0.999. The runtime measurement was made with an Intel Xeon 3.0 GHz CPU 
on a Linux machine.
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genomes by using the algorithm described in [14]. Then,
we reversed the random genomes and compared the DB
of real genomes to that of the random genomes. The com-
parison shown in Table 1 suggests that most of the effect
that we observed comes from the dinucleotide frequencies
since the ratio between the DB of real genomes and the
DB of shuffled genomes is close to 1. In other words, the
DB bias that is attributed only to the dinucleotide fre-
quencies (as is in the shuffled sequences) can account for
most of the DB in the real genomes.

Despite this fact, we noted that there are some variations
in this normalized ratio along different regions in
genomes. Figure 4 shows the DB real/DB random ratio
over several types of genomic regions of the Drosophila

annotated genome (Flybase, version 5.2, Feb 2007). It is
interesting to note that in general the coding regions (CDs
and introns) have a DB ratio greater than 1 for all win-
dows lengths, while UTR regions (especially the 5' UTRs)
have DB ratio less than 1. Intergenic regions seem to have
ratio that is closer to 1. These results suggest that for func-
tional regions of the genomes there are additional factors,
in addition to the dinucleotide composition, that deter-
mine the DB values.

Analysis of long ncRNA molecules from the mouse genome
We computed the MFE for the entire Chromosome 1 of
the mouse of length 197,195,432 bp using sliding win-
dows of 1,000 and 2,000 nt. We then calculated separately
the MFE of the windows that contain ncRNA molecules, 

Genome-wide scansFigure 2
Genome-wide scans. Histograms of MFEs for a sliding window of 200 bases calculated by scanning the largest chromosomes 
of six species. The histograms for the native direction (blue line) and the reverse direction (dashed red line) show a small but 
clear offset towards lower MFEs (in Kcal/mol units) in the native direction. In contract, the complementary sequence (green 
line) is almost indistinguishable from the native direction (blue line). The X axis in all six histograms represents the MFE (set to 
range between -60 to -10), and the Y axis is the number of sliding windows that yielded the respective MFE value.
Page 7 of 13
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Difference of MFE histogramFigure 3
Difference of MFE histogram. Human chromosome 1 was scanned with a sliding window of 200 bps twice: first in its native 
from and then in its reversed form. The MFE gap between each two corresponding windows (i.e. the native window and its 
reversed) was recorded and is shown with a histogram. The average gap (native MFE – reversed MFE) is -1.06 (dotted line), 
34.5% of the volume is confined within 1 Kcal/mol (dashed line) and the standard deviation is 2.45 (solid line). The line is 
smoothed for visibility.

Table 1: The DB ratios for real and shuffled chromosomes.

Organism Real DB Shuffled DB DB/DB Ratio

Homo sapience 1.98 1.66 1.19
C. elegans 1.23 1.27 0.97
Drosophila melanogaste 1.79 1.88 0.95
Saccharomyces cerevisiae 1.32 1.38 0.96
Oryzias latipes 1.75 1.94 0.9
Anopheles gambiae 1.12 1.18 0.95
Page 8 of 13
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i.e. we calculated the average MFE of all windows that are
contained within each ncRNA molecule. For example, for
a molecule of length 2,300, the average is calculated over
301 (2300-2000+1) such windows.

For windows of length 1,000, the genome average MFE is
-220.4 Kcal/mol and the average MFE of the 585 ncRNA
molecules of size longer than 1,000 (calculated as the
average of all windows of length 1,000 that are contained
in each molecule) is -231.3 Kcal/mol. For windows of
2,000, the average MFE for the chromosome is -457.8
Kcal/mol and the average over the 339 ncRNA molecules
longer than 2,000 nt is -471.6 Kcal/mol. The distributions

of the MFE values of the ncRNA molecules and the MFE
values of the windows along the entire chromosome are
statistically different: Using a two sample t-test, the null
hypothesis that the two distributions have the same mean
and variance can be rejected with p-values of 5.9·10-12

and 2.5·10-4 for window of 1,000 and 2,000, respectively.

The histograms for the entire chromosome and for the
windows that contain the 339 ncRNA molecules with
length over 2,000 are shown in Figure 5. It is apparent that
the population of the MFE values for the ncRNA mole-
cules is shifted towards the lower MFE values.

DB ratio in different genomic regionsFigure 4
DB ratio in different genomic regions. DB ratios (real to shuffled) in different regions of the Drosophila annotated 
genome, grouped by lengths. We note that in general the coding regions (CDs and introns) have a DB ratio greater than 1 for 
all windows lengths, while UTR regions (especially the 5' UTRs) have DB ratio less than 1. Intergenic regions seem to have a 
ratio that is closer to 1.
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We also computed the average MFE of ncRNA molecules
of length between 1,000–2,000 nt, using a window of
2,000 nt. In this case we calculated the average MFE over
all windows in which the entire molecule is contained.
For example, a molecule of length 1,700 nt is fully con-
tained within 301 windows of length 2,000. Although
each one of these windows contains regions that are out-
side the molecule, the average MFE for the 243 ncRNA
molecules in this size range was -488 Kcal/mol. We noted
that the average MFE calculated for molecules shorter than
the 2,000 bp window (243 molecules, average MFE of -
488 Kcal/mol) is lower than the average MFE calculated

for molecules longer than the same size window (339
molecules, average MFE of -471.6 Kcal/mol). A two sam-
ple t-test for the two distributions yields a p-value of
0.0028. This observation suggests that there is an advan-
tage in using windows that are longer than the target mol-
ecule size and therefore contain the target molecule in its
entirety, over using partial windows that do not contain
the entire molecule.

The low MFE for windows associated with ncRNA applies
to group averages and thus it is an observation on a statis-
tical level. For some of the ncRNA molecules, there is a

Distribution of MFE values for long ncRNA molecules in chromosome 1 of the mouseFigure 5
Distribution of MFE values for long ncRNA molecules in chromosome 1 of the mouse. The histogram shows the 
distribution of MFE values for all 197,193,433 windows of size 2,000 nt in chromosome 1 of mouse, compared with the distri-
bution of average MFE values of 339 known ncRNA molecules of length longer than 2,000 nt. For each ncRNA molecule, the 
average was calculated over all the 2,000 nt windows that are contained within the molecule. The two distributions were nor-
malized to the same size. As can be seen, ncRNA molecules (green) have a tendency to the left; i.e. they have lower MFE values 
than the rest of the chromosome (gray).
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correspondence between (negative) peaks of the MFE
landscape and the location of individual ncRNA mole-
cules. Figure 6 shows the MFE landscape (using a sliding
window of 2,000 nt) of a region of 300,000 nt on mouse
chromosome 1, where four ncRNA molecules of length
longer than 1,000 nt reside. For three out of the four mol-
ecules there is a peak in the genomic location of the
ncRNA molecules. We must stress however that this exam-
ple is not the rule; there are many peaks in the MFE land-
scape that do not correspond to ncRNA molecules, and
there are ncRNA molecules that do not reside within or
near MFE peaks.

Discussion
By combining two algorithmic techniques, the sliding
window version of the dynamic programming calculation
of MFE (Hofacker et al. [7]) and the utilization of a trian-
gle inequality property of the dynamic programming
matrix computed by the RNA folding algorithm (Wexler et
al. [8]) we are able to provide a fast algorithm to calculate
the MFE of windows along long stretches of DNA or RNA
(like chromosomes or genomes) in a time that is linear in
the size of the chromosome/genome.

What are the possible applications of such a fast algo-
rithm? As a simple demonstration we first applied our
tool to the analysis of the difference in MFE between the
native direction of the genome and the reversed direction.
As a second application example, we used the tool to com-
pute the MFE for long ncRNA molecules on the back-
ground of the MFE landscape of the mouse genome.

Directional Bias
We have shown that this difference in Directional Bias is
largely due to the dinucleotide frequencies, although
within a genome there are differences in the DB between
different genomic regions. The interplay between the

dinucleotide frequency and folding energies is delicate
and a source of debate. Seffens and Digby [15] claimed
that mRNA sequences tend to have lower free energy than
random sequences. Workman and Krogh [16] claim that
this tendency originates from the dinucleotide frequency
in the genome. A similar position has been taken by Shab-
alina et al. [17]. It was argued that the periodic pattern of
nucleotides, which is created by the structure of the
genetic code, influences the dinucleotide frequency which
in turn influences folding energies and mRNA secondary
structure formation. Our observation that the DB is
largely determined by the dinucleotide frequency is con-
sistent with this view. However, there is a kind of a
"chicken and an egg" problem here: Does the dinucle-
otide bias determine folding energy and influence forma-
tion of secondary structure, or does the need to form
secondary structure influence the dinucleotide composi-
tion? We refer the interested reader to a recent paper of
Forsdyke [18] that deals directly with this question and
highlights the delicate issues in the interplay between
dinucleotide composition and folding energies.

Long ncRNA molecules
Recently, there is an increasing interest in very long non
coding RNA sequences. The FANTOM project [19] that is
dedicated to the study of the mouse Transciptome has
published [20] a list of 34,030 non coding RNA sequences
that are transcribed in the mouse. Out of these sequences,
32,364 (95%) are longer than 500 bps, 27,189 (80%) are
longer than 1,000 bps, and 15,429 (45%) are longer than
2,000 bps. A very recent study [21] has demonstrated that
such long ncRNAs are differentially expressed in the brain
and thus are likely to have functional roles, perhaps in
memory formation [22]. In [21] it was estimated that
about 39% of these transcripts have a conserved second-
ary structure. It is clear that the field of ncRNA is moving
towards studying these long ncRNAs, and for this purpose

The MFE landscape and the location of ncRNA moleculesFigure 6
The MFE landscape and the location of ncRNA molecules. The MFE landscape (using a sliding window of 2,000 nt) of a 
region of 300,000 nt from location 88,100,000 to 88,400,000 on mouse chromosome 1. There are four ncRNA molecules of 
length longer than 1,000 nt in this region. For three out of the four molecules there is a (negative) peak around the genomic 
location of the ncRNA molecules. Note however that this example is not typical, and there are many peaks in the MFE land-
scape that do not correspond to ncRNA molecules, and there are also ncRNA molecules that don't reside within or near MFE 
peaks. The figure was prepared using the Lightweight Genome Viewer available at http://lwgv.sourceforge.net.
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our RNASlider may turn out to be a helpful component in
the analysis toolkit.

We have shown here that the MFE of windows that are
contained within long mcRNA molecules is lower, on
average, from the MFE of windows that are not associated
with ncRNA molecules. Still, as we mentioned above this
observation is valid only for large-scale statistics, and it is
yet to be determined how it can be exploited, possibly in
collaboration with additional RNA analysis tools, to iden-
tify long ncRNA molecules. As discussed above, there is
evidence to suggest that ncRNA molecules do have lower
folding energies than random sequences even when the
dinucleotide frequencies are accounted for [23]. Still,
since the accuracy of the MFE prediction is known to be
limited [24] and a scan of a fixed-length window is bound
to add some additional noise, realistically this signal can
not be used as a single source for the prediction. An inter-
esting possible direction might be a careful combination
of the signal from windows of several lengths. Our obser-
vation that MFE values are lower for molecules that are
fully contained within a window compared with windows
of the same length that cover parts of a longer molecule,
suggests that crossing information from different lengths
might yield a stronger signal and help to identify approx-
imate borders of suspected molecules. Of course other sig-
nals, both experimental (e.g. expression by deep
sequencing experiments [25]) and computational (like
comparative genomics) must be combined into a compre-
hensive strategy to identify novel ncRNA molecules.

Conclusion
We have designed a practical engine that can calculate the
RNA minimal free folding energy (MFE) of windows
along complete genomes in a reasonable time. For exam-
ple, calculating all overlapping windows of size 200 of
chromosome IV in Saccharomyces cerevisiae, a length of
roughly 1.5 million bps, takes about 30 minutes on a sin-
gle Xeon 3.0 GHz CPU, and the entire human chromo-
some 1, of roughly 225 million bps, was scanned in about
100 hours. We used this tool to explore an intriguing
asymmetry in MFE between the native and the reverse
reading frames for both coding and non-coding regions of
the genome. We found that the reason for this phenome-
non is, largely, the dinucleotide distribution in the
genome that apparently prefers, in the native direction,
dinucleotides that stabilize folding as reflected in lower
MFEs.

This study is only a first demonstration of the kind of large
scale questions that could be addressed by our efficient
"sliding window folder". As RNA molecules are receiving
increased recognition and attention, we believe that a tool
that can efficiently scan long sequences and compute their
MFEs is likely to be useful for many additional bioinfor-

matic applications, especially when long ncRNAs are ana-
lyzed.

Methods
Datasets
Genomic sequences for the directional bias analysis
The bioinformatic tests were performed on the largest
chromosome from six different species: chromosome 1 in
Human, chromosome V in C. elegans, chromosome 3R in
Drosophila melanogaster, chromosome IV in Saccharo-
myces cerevisiae (yeast), chromosome 1 in Oryzias latipes
(Medaka), and chromosome 2R in Anopheles gambiae.
The sequence of the human chromosome was taken from
Ensembl version 45 and the sequences of the other organ-
isms were taken from Ensembl version 43.

Long ncRNA molecules
Fantom sequences were downloaded from the Fantom3
DB (fantom.gsc.riken.jp). 34,030 sequences were selected
as potential non-coding RNAs according to the list taken
from ftp://fantom.gsc.riken.jp/FANTOM3/noncoding.
Chromosome 1 of Mus musculus was downloaded from
www.ensembl.org (version 47). The locations of the
sequences on the mouse genome were determined by
MegaBlast. Chromosome 1 of the mouse contains 1,004
Fantom non-coding sequences on the positive strand,
however only 686 of them are built from one exon only,
and were selected for further analysis.

Availability and requirements
Project name: RNAslider.

Source code and documentation: http://sourceforge.net/
projects/rnaslider

Operating systems: Unix, Linux, Windows.

Programming language: C.

Restrictions on non-academic use: See license.
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