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Abstract
Background: Single nucleotide polymorphisms (SNPs) may be correlated due to linkage
disequilibrium (LD). Association studies look for both direct and indirect associations with disease
loci. In a Random Forest (RF) analysis, correlation between a true risk SNP and SNPs in LD may
lead to diminished variable importance for the true risk SNP. One approach to address this
problem is to select SNPs in linkage equilibrium (LE) for analysis. Here, we explore alternative
methods for dealing with SNPs in LD: change the tree-building algorithm by building each tree in
an RF only with SNPs in LE, modify the importance measure (IM), and use haplotypes instead of
SNPs to build a RF.

Results: We evaluated the performance of our alternative methods by simulation of a spectrum
of complex genetics models. When a haplotype rather than an individual SNP is the risk factor, we
find that the original Random Forest method performed on SNPs provides good performance.
When individual, genotyped SNPs are the risk factors, we find that the stronger the genetic effect,
the stronger the effect LD has on the performance of the original RF. A revised importance
measure used with the original RF is relatively robust to LD among SNPs; this revised importance
measure used with the revised RF is sometimes inflated. Overall, we find that the revised
importance measure used with the original RF is the best choice when the genetic model and the
number of SNPs in LD with risk SNPs are unknown. For the haplotype-based method, under a
multiplicative heterogeneity model, we observed a decrease in the performance of RF with
increasing LD among the SNPs in the haplotype.

Conclusion: Our results suggest that by strategically revising the Random Forest method tree-
building or importance measure calculation, power can increase when LD exists between SNPs.
We conclude that the revised Random Forest method performed on SNPs offers an advantage of
not requiring genotype phase, making it a viable tool for use in the context of thousands of SNPs,
such as candidate gene studies and follow-up of top candidates from genome wide association
studies.

Published: 5 March 2009

BMC Bioinformatics 2009, 10:78 doi:10.1186/1471-2105-10-78

Received: 15 July 2008
Accepted: 5 March 2009

This article is available from: http://www.biomedcentral.com/1471-2105/10/78

© 2009 Meng et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 17
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10/78
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19265542
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2009, 10:78 http://www.biomedcentral.com/1471-2105/10/78
Background
Association studies for complex phenotypes consider gen-
otypes for thousands of single nucleotide polymorphisms
(SNPs), either derived from genome wide association
studies, or candidate gene studies. One approach to deal-
ing with large numbers of SNPs is to screen the data using
some criterion to rank SNPs for follow-up. Machine learn-
ing approaches can be efficient at selecting from large
numbers of predictor variables. In this paper, we evaluate
the performance of Random Forests [1], one machine-
learning method, in association studies. Previously,
Lunetta et al. [2] showed that when unknown interactions
among SNPs exist in a data set consisting of thousands of
SNPs, random forest (RF) analysis can be substantially
more efficient than standard univariate screening meth-
ods in ranking the true disease-associated SNPs from
among large numbers of unassociated SNPs.

Random Forests are built using Classification and Regres-
sion Tree methods, Ensemble methods, Bagging, and
Boosting with desirable characteristics such as good accu-
racy; robustness to outliers and noise; speed; internal esti-
mation of error, strength, correlation and variable
importance; simplicity and ease of parallelization [1,3-6].
The approach grows many classification trees or regres-
sion trees, called "forests", with no trimming or pruning
of the fully grown trees. Two stochastic features distin-
guish Random Forests from deterministic methods. First,
every tree is built using a bootstrap sample of the observa-
tions. Second, at each node, a random subset of all predic-
tors (the size of which is referred to as mtry in this paper)
is chosen to determine the best split rather than the full
set. Therefore, all trees in a forest are different. For each
tree, approximately one third of all the observations are
left out of the bootstrap sample; these observations are
called "out-of-bag" (OOB) data. The OOB data are then
used to estimate prediction accuracy. For a particular tree,
each OOB observation is given an outcome prediction.
The overall prediction of each individual is then obtained
by counting the predictions over all trees for which the
individual was out-of-bag, and the outcome with the most
predictions is the individual's predicted outcome. This
Random Forest method also produces for each variable a
measure of importance that quantifies the relative contri-
bution of that variable to the prediction accuracy. The
importance score is calculated by randomly permuting the
variable's values among the OOB observations for each
tree and measuring the prediction error (PE) increase
resulting from it and averaging over the total number of
trees. This shuffling increases PE if the variable is of high
importance and is not affected otherwise. We use this
score to prioritize the variables by ranking them.

For any analysis procedure, the more highly correlated the
variables are, the more they can serve as surrogates for
each other, weakening the evidence for association for any

single correlated variable to the outcome if all are
included in the same model. Strobl et al. (2008) [7]
showed that when analyzing gene expression data, per-
mutation importance overestimates the importance of
correlated predictor variables that are unassociated with
the outcome. Nicodemus and Shugart (2007) [8] used
simulated genetic data of a null model to show that the
permutation importance measures are not biased. How-
ever, it is unknown how and to what extent LD between
non-causal SNPs and true risk SNPs affects the ability of
Random Forests (RF) to identify the true risk SNPs. Argu-
ably, the correlation would lead to diminished variable
importance for each risk SNP that has non-causal SNPs
correlated with it. If this is the case, the LD among SNPs
will affect our ability to identify which specific polymor-
phisms are responsible for increased disease risk, and may
even hinder our ability to determine that any genetic fac-
tors influence the disease. If there were too many SNPs in
LD, we might miss the genetic effect of the risk SNPs. In
order not to miss indirect evidence, in some of the analy-
ses we performed, we consider any of the SNPs in LD with
the causal SNP as equivalent to risk SNPs. There are mul-
tiple ways to accommodate SNPs in LD within a RF anal-
ysis. Here, we explore two alternative approaches to
address this problem. One way to deal with the problem
presented by SNPs in LD is to build each tree in an RF only
using SNPs in LE, and then to create a new importance
measure for variables to account for the revised tree-build-
ing method. A second approach is to use haplotypes
instead of SNPs to build a RF. We first present a simula-
tion study exploring the power of the revised tree building
method and compare it with the original RF method
when the risk SNPs are in LD with non-causal SNPs. We
then present a simulation study of the haplotype-based
method and compare it with the SNP-based method when
there is LD between risk SNPs. Finally, we present an
example based on a genome wide study of association of
SNPs with Alzheimer disease.

Results
We simulated two scenarios under complex diseases mod-
els: (1) the risk SNPs are in LD with non-causal SNPs, and
(2) the risk haplotypes are "responsible" for the risk
instead of individual risk SNPs. For the first scenario, to
demonstrate the effect of LD on SNPs using the original
RF and the revised RF, we simulated a wide spectrum of
complex genetics models (Table 1). For the second sce-
nario, we simulated an H4M4 model, which includes a set
of 16 risk haplotypes (rHAPs) in linkage equilibrium,
interacting in independent quartets to increase disease
risk.

A Random Forest in which individual trees are built only 
with SNPs in linkage equilibrium
We compared the performance of the original RF and our
proposed revised RF, using the original IM defined by Bre-
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iman and Culter [1,9] and revised IM. Under all disease
models (Table 1), the original IM for functional risk SNPs
decreased as the number of SNPs in LD with risk SNPs
increased (Figure 1). The differences between the original
IM combined with the original RF and the original IM
combined with the revised RF are very small for fixed
numbers of SNPs in LD with risk SNPs, indicating that
using the original IM combined with either the original RF
or the revised RF produces similar results when there are
non-causal SNPs in LD with risk SNPs. The revised IM
combined with original RF does not show a consistent
pattern across the different genetic models as the number
of SNPs in LD with risk SNPs increases. Under all genetic
models, the revised IM combined with the original RF
produces more stable IMs as the number of SNPs in LD
with risk SNPs increases than does the revised IM com-
bined with the revised RF. The revised IM combined with
the revised RF tends to produce inflated IM as the number
of SNPs in LD with risk SNPs increases. Thus, the revised
IM combined with the original RF has the most stable per-
formance when there is LD (Figure 1).

Proportion of replicates where all rSNPs and LD.rSNPs
have higher IMs than noise SNPs showed a different
trend. The revised RF combined with the original IM had
the most stable performance as the number of LD.rSNPs
increased (Figure 2). This result suggests rSNPs and
LD.rSNPs exist in the same tree, and thus hurt the impor-
tance measure using original RF.

For all models and all four combinations of original and
revised RF and IM, the proportion of replicates for which
each rSNP or at least one of its corresponding LD.rSNPs is
among the top-ranking X SNPs is smaller when there is
one or more LD.rSNP than the proportion when there are

no LD.rSNPs when X is small (8~20) (Figure 3). However,
as X increases to 20 or greater, the proportion for data sets
with at least one LD.rSNP becomes larger than the propor-
tion for data sets with no LD.rSNPs. We show this trend
using the original IM and the revised IM with the original
RF algorithm in Figure 3 (top panels). When we compare
datasets with different number of LD.rSNPs, the propor-
tion of replicates for which each rSNP or at least one cor-
responding LD.rSNP was among the top-ranking X SNPs
was higher than the proportion considering only rSNPs in
some situations. We see this in Figure 3 (middle panels)
when X ≥ 8 and there is 1 LD.rSNP), and for X ≥ 20 when
there are 4 LD.rSNPs. Thus, when considering the identi-
fication of LD.rSNPs equal to the identification of rSNPs,
including the LD.rSNPs in the analysis is more powerful
than using rSNPs alone under some conditions. In Figure
3, bottom panels, we compare the four combinations of
original and revised RF and original and revised IM for 1
and 4 LD.rSNPs. For a fixed number of LD.rSNPs, the orig-
inal RF had better performance than the revised RF, and
the original and revised IM had nearly identical perform-
ance within each RF method.

Using haplotypes instead of SNPs as predictor variables
Another way of dealing with LD is to build an RF using
haplotypes instead of SNPs, but not change the imple-
mentation of the original RF.

Under the H4M4 model described in Table 1 with the
K4S4N100 design, the IM for risk SNPs increased with
increasing LD between the risk SNPs. The mean IM for risk
haplotypes and predicted risk haplotypes was relatively
stable as the LD between the risk SNPs increased. The
results displayed in Figure 4 show that in general, the
mean IM of the risk haplotype was higher than that of the

Table 1: Genetic models for simulating risk SNPs for case control data.

Allele Marginal GRR Penetrance Factors K λs # Kept

Model Number Frequency Het Hom 0 1 2

H1M1 1 0.03 ∞ ∞ 0 0.9 0.9 0.05 9 K1S1

H2M3 6 0.125 5.22 5.22 0 0.9 0.9 0.02 9 K3S3

H3M3 9 0.106 3.47 3.47 0 0.9 0.9 0.02 9 K3S3

H3M4 12 0.176 2.54 2.54 0 0.9 0.9 0.02 6 K4S4

H9M2 18 0.031 3.02 3.02 0 0.9 0.9 0.03 9 K2S2

H4M4 16 0.282 1.63 1.79 1.20E-08 0.79 1 0.10 2 K4S4/K4S2

H8M4 32 0.214 1.34 1.4 2.80E-03 0.86 1 0.10 2 K4S4
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predicted risk haplotype, which was higher than the mean
IM of the risk SNPs that make up the haplotype used as
independent predictors. The difference in IM among the
three analysis options decreased as the strength of the LD
between the risk SNPs in the risk haplotype increased (Fig-
ure 4). The proportion of replicates for which the IMs of
all of the risk SNPs (for the SNP analysis) or risk haplo-
types (for the haplotype methods) exceeded the maxi-
mum IM of the noise SNPs also increased as LD between
the risk SNPs in the risk haplotype increased (Figure 5).
The proportions of replicates for which all risk variables
(risk SNPs or risk haplotype, depending on analysis
method) were among the top-ranking X variables showed
a similar trend (Figure 6). Since the two risk SNPs in the
risk haplotype are correlated, identification of one should
bring attention to the region. Therefore, we also examined
the performance when the best risk SNP in the risk haplo-
type is considered. Importantly, the proportion of repli-

cates for which at least one of the risk SNPs in each risk
haplotype was among the top-ranking X variables was
greater than the proportion of replicates where both risk
SNPs in risk haplotype were among the top variables, and
was also better than or close to the proportion for the risk
haplotype or predicted haplotype as predictors. Due to the
computational burden of calculating predicted haplo-
types, the analyses using predicted haplotypes were per-
formed only for the H4M4 model and K4S4N100 design,
with 1000 trees for each random forest.

Application in Alzheimer Disease GWAS data
We applied the random forest methods to a dataset from
a recently published genome wide association study in
Alzheimer Disease (AD) [10], which has been made pub-
licly available (Translational Genomics Research Institute;
TGEN, data downloaded from http://www.tgen.org/neu
rogenomics/data). The widely acknowledged risk gene for

Mean IM of rSNP when there are SNPs in LD with rSNPsFigure 1
Mean IM of rSNP when there are SNPs in LD with rSNPs. The data were simulated using model H4M4 with K4S4 anal-
ysis design. Four importance measures are illustrated in the figure using original random forest (RF0) and revised random for-
est (RF1) respectively. Solid color stands for original importance measure (IM0), i.e. the importance measures were averaged 
over all trees in a Forest. Shaded color stands for the revised importance measure (IM1), i.e. the importance measures were 
averaged over trees containing the variable.

0 1 2 3 4

number of SNPs in LD

0.
0

0.
5

1.
0

1.
5

2.
0

RF0:in LD with nSNPs
RF0:in LD with rSNPs
RF1:in LD with nSNPs
RF1:in LD with rSNPs

IM0
IM1
Page 4 of 17
(page number not for citation purposes)

http://www.tgen.org/neurogenomics/data
http://www.tgen.org/neurogenomics/data


BMC Bioinformatics 2009, 10:78 http://www.biomedcentral.com/1471-2105/10/78
AD is apolipoprotein E precursor APOE on chromosome
19. The TGEN dataset included 861 AD cases and 550
controls. The best proxy SNP for the APOE e 4 variant
known to increase AD risk is rs4420638 [10]. Because no
other SNPs in LD with the APOE e 4 variant were present
in the dataset, we increased the genomic coverage in
regions surrounding APOE by imputing the genotypes for
17,790 additional HapMap SNPs (Hapmap 2, CEU sam-
ples) within ~10 kb of rs4420638 using PLINK [11],
resulting in a total set of 19,010 SNPs. Then, we randomly
selected 250 cases and 250 controls, and selected 103
SNPs in the neighborhood of rs4420638, including three
imputed SNPs (Table 2) in LD with rs4420638 (r2 > 0.2).
A second dataset was created excluding the three SNPs in
LD with rs4420638 for comparison. We applied both
original RF and the revised RF to the two datasets, calcu-
lating original IM and revised IM for each analysis.

For any combination of RF and IM, rs4420638 has rela-
tively high importance and was ranked within the top 11

SNPs (Table 3). The original IM of rs4420638 combined
with original RF decreases when there are SNPs in LD with
it (0.28 vs. 0.1512 for dataset 2 and dataset 1). The revised
IM combined with original RF performs a little better than
original IM with original RF and original IM with revised
RF performs a little worse. However, revised IM combined
with revised RF yields the highest IM among the four, and
is also the most similar to the value of original IM when
we include no SNPs in LD. The trend for the four IMs
ranks is similar. Then we examined whether additional
SNPs are included in the top 11 ranked SNPs using the
revised RF and/or revised IM applied in dataset 1 as com-
pared to using original RF applied in dataset 2 (Table 4).
The revised IM combined with original RF calculated from
dataset 1 identified two additional SNPs, including one
SNP (rs10119) in LD with rs4420638; revised IM com-
bined with revised RF from dataset 1 identified three addi-
tional SNPs. Out of these 17 SNPs identified as top 11
ranked SNPs for each of the four combinations of RF and
IM, 7 SNPs would have been missed using single SNP

Proportion of replicates where IM(rSNP and LD.rSNP) > maxIM(nSNP)Figure 2
Proportion of replicates where IM(rSNP and LD.rSNP) > maxIM(nSNP). The data were simulated using model 
H4M4 with K4S4 analysis design. The proportion of replicates where IMs of all rSNPs and LD.rSNPs – IM(rSNP and LD.rSNP) 
– exceeded the maximum IM of the noise SNPs – maxIM(nSNP).
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Proportion of replicates for which all rSNPs and/or LD.rSNPs are among the top-ranking X SNPsFigure 3
Proportion of replicates for which all rSNPs and/or LD.rSNPs are among the top-ranking X SNPs. The data 
were simulated using model H4M4 with K4S4 analysis design. (A) Top panels: the proportion of replicates for which each rSNP 
or one of its corresponding LD.rSNPs is among the top X SNPs ("rSNPs/LD.rSNPs"). Left panel: RF0:IM0; right panel: RF0:IM1. 
(B) Middle panels: using RF0:IM1, we compare the proportion of replicates for which each rSNP or at least one corresponding 
LD.rSNP was among the top-ranking X SNPs, the proportion considering only rSNPs ("rSNPs with LD.rSNPs"), and the pro-
portion where there are no rSNPs in the dataset ("rSNPs, no LD.rSNPs"), with example of 1 SNP and 4 SNPs in LD with each 
rSNP. (C) Bottom panels: we compare the four combinations of original and revised RF and original and revised IM, with exam-
ples for 1 and 4 LD.rSNPs.
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analysis approach (nominal p > 0.05 for both genotypic
association and allelic association).

Discussion
We compared the performance of the original and the
revised RF, combined with the original and revised IM
when there are SNPs in LD with the functional risk SNPs
under various genetic models, in terms of mean impor-
tance measure, the proportion of replicates where IMs of
all risk SNPs and SNPs in LD with the risk SNP exceeded
the maximum IM of noise SNPs, and the proportion of
replicates for which all risk SNPs are among the top-rank-
ing X SNPs. The simulations indicate that the stronger the
genetic effect, the stronger the effect LD has on the RF per-
formance. For most of the genetic models we simulated,
the revised IM demonstrated better performance than the
original IM when used with either the revised Random
Forest method or the original Random Forest method.
The revised IM with original RF showed the most stable
performance overall. However, for the proportion of rep-
licates where IMs of all risk SNPs and SNPs in LD with the
risk SNP exceeded the maximum IM of noise SNPs, and
revised IM with revised RF showed the best performance,

and improved performance with increasing numbers of
SNPs in LD with risk SNPs. Although we do not know a
priori which SNPs are risk SNPs, we have found that SNPs
in LD with noise SNPs have little effect on the perform-
ance (data not shown), suggesting the advantages of
including all SNPs in analyses.

In terms of assigning higher ranks to all risk SNPs than to
noise SNPs, the simulations showed that the performance
of the RF method decreased when there are SNPs in LD
with the risk SNPs. However, if risk SNPs and SNPs in LD
with the risk SNPs are considered equally valid "hits"
when trying to identify an association, inclusion of these
correlated SNPs increased the probability that all "hits"
(risk SNPs or SNPs in LD with risk SNPs) were among the
top-ranking X SNPs as compared to risk SNPs only. This
finding suggests that the RF method may be a good alter-
native to other methods such as multivariable logistic
regression to detect association when there is correlation
among SNPs. We have shown that for some genetics mod-
els, the original RF had reasonably good performance
when there were SNPs in LD with risk SNPs. A plausible
reason lies in the nature of the tree building method of

Mean of IM(rSNP), IM(rHAP) and IM(PRED.rHAP)Figure 4
Mean of IM(rSNP), IM(rHAP) and IM(PRED.rHAP). The data were simulated using model H4M4 with K4S4N100 anal-
ysis design. The importance measures are the original importance measures (IM0) combined with the original RF.
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random forest, where if an important variable SNP1 is
selected near the root, the variable SNP2 that is highly cor-
related with SNP1 will be very unlikely to be the "best"
variable to split on if it is among the few randomly
selected variables chosen for one of the child nodes. Thus,
SNP2 will likely to be closer to a leaf node if selected at all.
Similarly, if SNP2 is selected first, SNP1 will be near a leaf
node. We used an example for the comparison of the IMs
using the original RF and the revised RF. In the original
RF, in some trees, SNP1 is near the root and SNP2 is close
to the leaf; in some trees, SNP2 is near the root and SNP1
is close to the leaf. The permutation of the SNP1 value will
greatly increase the prediction error of that tree when it is
near the root; however, the permutation of the SNP1
value will not increase the prediction error of the tree
when it is near the leaf node, largely because SNP2 can act
as surrogate for SNP1. However, it might still increase the
prediction error slightly. Therefore, SNP1 in this tree
might contribute positively to the average IM over all

trees. In the procedure of the revised RF method, the first
selection of SNP2 excludes the possibility of the selection
of SNP1 in the same tree and visa versa. Therefore, there is
no positive contribution of SNP1 to the average original
IM from this tree as in the original tree. Overall, with a for-
est of trees, the average original IM of SNP1 over all trees
might decrease due to this intervention. However, the
revised IM is averaged over only trees that contain this var-
iable; therefore the final IM will not be affected in the
same manner. Our reasoning is reconfirmed by an inter-
action test of the original random forest method [9]. Var-
iables A and B are said to interact if a split on one variable,
say A, in a tree makes a split on B either systematically less
probable or more probable. The interaction test on the
data with SNPs in LD produces a large value for the inter-
action test between the SNPs in LD, implying a split on
one SNP inhibits a split on the other and vise versa. The
stronger the genetic effect of this SNP, the less likely SNPs
in LD will be in the same tree. In fact, the number of trees

Proportion of replicates where IM (rSNP) or IM(rHAP) or IM(PRED.rHAP) > maxIM(nSNP)Figure 5
Proportion of replicates where IM (rSNP) or IM(rHAP) or IM(PRED.rHAP) > maxIM(nSNP). The data were sim-
ulated using model H4M4 with K4S4 analysis design, and analyzed using the original RF. The proportion of replicates where the 
IMs of all rSNPs, or all risk haplotypes (rHAP), or all predicted haplotypes (PRED.rHAP) all exceeded the maximum IM of the 
noise SNPs – maxIM(nSNP).
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Proportion of replicates for which all rSNPs or best rSNP in haplotype, and HAPs are among the top-ranking X SNP/HAPsFigure 6
Proportion of replicates for which all rSNPs or best rSNP in haplotype, and HAPs are among the top-ranking 
X SNP/HAPs. (A) Top panels. Individual SNPs are used in the RF as the predictors. Left: The proportion of replicates for 
which both SNPs making up the haplotype are among the top X predictors. Right: The proportion of replicates where at least 
one of the two SNPs in the risk haplotype are among the top X predictors. (B) Middle panels: Left: true haplotypes are used in 
the RF as the predictors. The proportion of replicates where the true haplotype is among the top X predictors. Right: the hap-
lotype phases are not known, and are resolved statistically. The predicted haplotypes are used in the RF as the predictors. (C) 
Bottom panels (left, right) show the four analyses for haplotypes consisting of two SNPs with r2 = 0 and r2 = 0.9.
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that contain the variable when there is a correlated varia-
ble is smaller than the number of trees that contain the
variable when there is no correlated variable, i.e. the two
correlated variables compete for trees. This further sup-
ports our reasoning above.

In summary, under genetic models with strong marginal
effects, the original IM is sensitive to the number of SNPs
in LD with risk SNPs; however, it is relatively robust to the
problem of correlation among SNPs under genetic models
with weak genetic effects. The revised IM combined with
the original RF is relatively robust to LD among SNPs; the
revised IM in the revised RF can be inflated. Therefore the
combination of revised IM and original RF is a better
choice when the genetic model and the number of SNPs
in LD with risk SNPs are unknown.

Under the scenario where risk haplotypes are responsible
for the risk instead of individual risk SNPs, we simulated
noise SNPs independent of disease status. The findings of
these analyses suggest that when a haplotype is responsi-
ble for increased disease risk, using the haplo-genotypes
as predictors is in general more powerful than using the
genotypes of the individual SNPs comprising the haplo-
genotype as predictors. The differences decreased with
increasing LD between the risk SNPs in the risk haplo-
types. The performance of predicted haplo-genotypes as
input was between that of the risk SNPs and that of the

risk haplotypes, but was more similar to that of the risk
haplotypes. The difference in performance between the
predicted haplo-genotype and true haplo-genotype analy-
ses was greatest when the risk SNPs in risk haplotype were
not in LD.

The decrease of performance of the risk SNPs comprising
the risk haplotype as predictors as compared to using the
risk haplotype greatly depended on the level of LD
between the SNPs in the risk haplotype. We observed the
greatest decrease in performance for individual SNPs com-
pared to haplotypes when there was no LD (r2 = 0)
between the two risk SNPs making up the risk haplotype.
This trend was expected given the nature of the correla-
tion. In practice, however, when there is low LD, we usu-
ally would not infer haplotypes. In other words, if we only
infer haplotypes when there is substantial LD, the gain in
performance compared to individual SNPs is limited.
Moreover, in the context of thousands (n) of SNPs, the
computation time required for resolving haplotypes of all
pairs of SNPs is O(n*n), and that for resolving haplotypes
of m SNPs increases exponentially (O(nm)) and probably
outweighs the benefit of using haplotypes instead of SNPs
as predictor variables. However, in the same context, this
computational burden is a problem for other analysis
methods as well, and not a particular disadvantage of the
RF method. When there was strong LD between risk SNPs
comprising an risk haplotype (r2 > 0.8), the decrease in
performance for using individual SNPs instead of haplo-
types was trivial; using risk SNPs as the predictors per-
formed reasonably well compared to using the true risk
haplo-genotypes. This is because the 2-locus genotype is
an increasingly better surrogate for the haplo-genotype as
the LD increases. This is understandable because the hap-
lotypes carry information from 2 SNPs, when there is no
LD between the 2 SNPs, each single SNP carries half of the
total information, i.e. 50% of the information of the hap-
lotype. When there is complete LD between 2 SNPs, each
SNP carries the same information as the total information
of the haplotype, i.e. 100% of the information of the hap-
lotype.

We applied the random forest methods in a recently pub-
lished GWAS data from TGEN. Using random forest
methods, we have successfully identified the known AD
risk gene APOE, and also identified new candidate loci
that are independent of APOE e 4 variant, which would
have been missed using a single SNP approach.

Our results suggest that the RF method provides robust
performance in the two scenarios discussed above without
filtering the SNPs to remove those in LD or preprocessing
to create haplotypes, making it a viable tool for use in con-
text of thousands of SNPs. Genome wide association stud-
ies (GWAS) include several hundred thousand or more

Table 2: Correlation of three SNPs with rs4420638 in TGEN 
data.

Chr SNP r2

19 rs6859 0.23

19 rs6857 0.55

19 rs10119 0.68

19 rs4420638 1.00

Table 3: Results of RF analysis on TGEN data: IM and rank of 
rs4420638.

Dataset 1: 103 SNPs Dataset 2: 100 SNPs

IM Rank IM Rank

RF0:IM0 0.1512 9 0.28 3

RF0:IM1 0.1519 9 0.2803 6

RF1:IM0 0.1436 7 0.3123 4

RF1:IM1 0.3191 11 0.3123 10
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Table 4: Results of RF analysis on TGEN data: Top 11 ranked SNPs, and single SNP association analysis.

Dataset 1

RF0:IM0 RF0:IM1 RF1:IM0 RF1:IM1 GENO ALLELIC

rs2927477 50005555 + - - - 0.4483 0.4122

rs4803759 50019299 + + + + 0.0833 0.0242

rs4605275 50030333 + + + + 0.0962 0.0291

rs8104483 50064194 + + + + 0.6459 0.4007

rs4803767 50064799 + + + + 0.6459 0.4007

rs10119 50098513 + + - - 0.0028 0.0055

rs4420638 50114786 + + + + 2.651E-12 7.73E-12

rs5158 50139018 + + + - 0.3015 0.8121

rs3760627 50149020 - - - - 0.6852 0.5458

rs16979595 50169221 - - - - 0.9526 0.8689

rs7257916 50174724 - - - - 0.6859 0.5471

rs10424046 50227876 + + + + 0.0106 0.0038

rs1560725 50235627 + + + + 0.0507 0.0466

rs11083758 50238901 - - + + 0.0474 0.0134

rs3786507 50240095 + + + + 0.0374 0.0396

rs2889490 50242247 - - - + 0.0252 0.0094

rs10416445 50248502 - - + + 0.0187 0.0065

Dataset 2

RF0:IM0 RF0:IM1 RF1:IM0 RF1:IM1 GENO ALLELIC

rs2927477 50005555 + - - - 0.4483 0.4122

rs4803759 50019299 + + + + 0.0833 0.0242

rs4605275 50030333 + + + + 0.0962 0.0291

rs8104483 50064194 + + + + 0.6459 0.4007

rs4803767 50064799 + + + + 0.6459 0.4007

rs10119 50098513 NA NA NA NA 0.0028 0.0055

rs4420638 50114786 + + + + 2.651E-12 7.73E-12

rs5158 50139018 + + + - 0.3015 0.8121
Page 11 of 17
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:78 http://www.biomedcentral.com/1471-2105/10/78
SNPs; the version of RF that we use does not handle
GWAS data because of the memory requirements. We per-
formed our analyses on a Linux cluster – an IBM e1350
solution configured with a head node, a storage node w/
scsi RAID storage enclosure, and 134 dual Intel Xeon 2.8
GHz cpus blade servers. 110 nodes have 1 GB RAM and 24
nodes have 2 GB RAM. With 1500 individuals and 10 K
SNPs, we are only able to grow 17,500 trees in the forest
using the Fortran version; the R version can grow about
15000 trees. With a smaller sample size (500), more trees
can be grown, and more variables can be handled. How-
ever, analyzing 500 K SNPs at once will be challenging. At
the 2008 International Genetic Epidemiology Society
meeting, a new RF algorithm ("random jungle" http://
www.randomjungle.org) was proposed that may be
appropriate for full genome wide SNP analysis with 500 k
SNPs or more. Often in practice, only the top markers
(i.e., several hundred or thousands) of SNPs are used for
further data-mining. It is likely that many SNPs are in LD,
and it is possible that haplotypes are either true risk fac-
tors, or better surrogates for a non-genotyped functional
SNP than individual SNPs that are genotyped. While
many fewer SNPs are considered in candidate gene stud-
ies, the extent of LD among SNPs in these studies is likely
to be high as well.

Another practical issue relating to the use of random for-
ests to identify important SNPs is determining an appro-
priate threshold for the IM score without knowing the
number of SNPs involved in the disease. There are several
ways to make the decision, depending on the goal of the
analysis. If the goal is merely to rank the SNPs and select
the top variables, this can be achieved using various meth-
ods, for example, by the IM distribution curve [12] or by
the iterative random forest procedure [13,14]. If the goal
is to know whether the IM is higher than expected by

chance, this can be achieved by evaluating the significance
level of IM by randomly permuting sample outcome phe-
notypes. In any case, because the IM measure is not stable,
one should build multiple random forests using different
seeds to determine how much IM of the variables vary.

Methods
A Random Forest in which individual trees are built only 
with SNPs in linkage equilibrium
Revised RF tree building algorithm
When risk SNPs are in LD with non-causal SNPs, it can be
predicted that the correlation would lead to diminished
variable importance for each correlated risk SNP. Assum-
ing that the risk SNP and the non-causal SNP in LD are in
the same tree of the random forest, when the genotypes of
the risk SNP (a node in a tree) are permuted randomly
among samples, the non-causal SNP (another node in the
same tree) will serve as its surrogate and the tree will still
accurately predict case status. Over all trees in a forest, pre-
diction error is not likely to increase much if the risk SNP
is permuted because the surrogate SNP will take its place
in predicting the phenotype. Hence, the importance meas-
ure (IM) of the SNP will not be high. If we build a forest
such that within any tree, only one of the two SNPs in LD
are present, the SNPs cannot act as surrogates for each
other and the IM of the risk SNP should not be dimin-
ished. We implemented this strategy by building each tree
in the RF only with SNPs in linkage equilibrium using For-
tran source code of random forests (version 5.1) by Brei-
man and Cutler [15]. The <<buildtree>> function was
revised by keeping track of variables selected at each node,
and excluding from the selection pool of variables for the
remaining nodes in the tree all SNPs with a pairwise gen-
otypic correlation (r2) greater than a pre-specified value R
with any SNP already used in the tree. Thus, variables with

rs3760627 50149020 - + - - 0.6852 0.5458

rs16979595 50169221 + - - - 0.9526 0.8689

rs7257916 50174724 - + - - 0.6859 0.5471

rs10424046 50227876 + + + + 0.0106 0.0038

rs1560725 50235627 + + + + 0.0507 0.0466

rs11083758 50238901 - - + + 0.0474 0.0134

rs3786507 50240095 + + + + 0.0374 0.0396

rs2889490 50242247 - - - + 0.0252 0.0094

rs10416445 50248502 - - + + 0.0187 0.0065

Table 4: Results of RF analysis on TGEN data: Top 11 ranked SNPs, and single SNP association analysis. (Continued)
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r2 > R never appear in the same tree. We call this strategy
"RF1".

Modified Variable Importance
A random forest uses all available covariates to predict
response. Here, we use measures of variable importance to
determine which covariates (SNPs, in our case) or sets of
covariates are important in the prediction. Two impor-
tance measures are available in the Breiman and Cutler
[15] RF implementation: permutation importance and
Gini importance. The Gini importance is based on the
Gini impurity criterion. However, it has been shown to be
biased in a number of conditions [8,16]. Therefore, we
use the permutation importance defined by Breiman [1].
This importance measure quantifies the importance of a
predictor variable by disrupting the dependence between
the variable and the response and measuring the change
in the tree votes compared to the original observations. In
practice, this is achieved by permuting the variable values
among all observations in the out-of-bag sample of each
tree. If the variable is predictive of the response, it will be
present in a large proportion of trees and be near the root
of those trees. Observations with a changed variable value
may be directed to the wrong side of the tree, leading to
vote changes from the right to the wrong class. Con-
versely, if the variable is not related to the response, it will
be present in few trees and, when present, it will be near a
terminal node, so that few tree votes will be changed. In
Random Forests (version 5.1) [15] Breiman and Cutler
define the importance index as follows. For individual i,
let Xi represent the vector of predictor variable values, yi its
true class, Vj(Xi) the vote of tree j and tij an indicator taking
value 1 when individual i is out-of-bag for tree j and 0 oth-
erwise. Let X(A,j) = (X1

(A,j),..., XN
(A,j)) represent the vector of

predictor variables with the value of variable A randomly
permuted among the out-of-bag observations for tree j,
and X(A) the collection of X(A,j) for all trees where N is the
total number of individuals in the sample. In the special
case of two classes, letting 1(C) denote the indicator func-
tion taking value 1 when the condition C is true and 0 oth-
erwise, the importance index averages over the trees of the
forest, and is defined as:

where Nj represents the number of out-of-bag individuals
for tree j and T is the total number of trees.

If all variables are independent, each variable will only be
present in a subset of all the trees. The proportion of trees
containing each variable is approximately the same for all
variables. Assuming the proportion is P, it is easy to see in

formula (1) that replacing T with PT generates the same
ranking list of all SNPs. However, for our proposed new
strategy RF1, the SNPs in LD cannot be in the same tree.
This reduces the number of trees in which any SNP in LD
with another SNP is present to less than PT, while SNPs
independent of all other SNPs are still expected to appear
in proportion P of all trees. Based on this observation, we
modified the importance measure for the RF1 tree build-
ing strategy by replacing T with Tv, the total number of
trees in which the variable v appears. Formula (1) then
becomes:

For each variable, we provide in the output the number of
trees in which the variable appeared together with the
original IM and revised IM.

Simulation of SNP data
Association studies for complex phenotypes consider gen-
otypes for hundreds or thousands of SNPs, either derived
from genome wide or candidate gene association studies.
In order to understand the effect of LD on the perform-
ance of random forest methods, we simulated a multipli-
cative heterogeneity model with various numbers of risk
SNPs, SNPs not associated with the disease, and SNPs in
LD with risk SNPs or non-risk SNPs. The total number of
independent SNPs (both risk SNPs and non-risk SNPs) in
our simulation is 100. The simulation is based on the
models described by Lunetta et al. [2]. This section will
briefly describe the methods. Additional details are pro-
vided in the original paper.

Genetic Models
Several complex disease models were simulated with sib-
ling recurrence risk ratio for the disease (λs) ranging from
2 to 9 and population disease prevalence (Kp) ranging
from 0.02 to 0.10. Genetic heterogeneity and multiplica-
tive interaction as defined by Risch [17] were incorporated
into the genetic models. The "multiplicative" in Risch's
definition of "multiplicative model" is different from the
one from standard statistical modeling, where, in the
absence of a genetic interaction the risk of a double-
mutant is expected to be the multiplicative product of the
individual risks of the corresponding single mutants.
Risch defines multilocus multiplicative and heterogeneity
models in terms of penetrance factors. We use a two-locus
model consisting of two allele SNPs as an example to
illustrate these models. The genotypes at the first and sec-
ond SNP are denoted by Ai, i = 0, 1, 2, and Bj, j = 0, 1, 2,
respectively, where the subscript denotes the number of
risk alleles. For a multiplicative model, we define p = (p0,
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p1, p2) and q = (q0, q1, q2) such that the penetrance of gen-
otype AiBj is wij = pi qj, then the p's and q's are referred to
as "penetrance factors" for SNPs A and B respectively. For
an additive model, the penetrance for genotype AiBj is wij
= pi+qj, and for a heterogeneity model, wij = 1 - (1 - pi) (1 -
qj). The heterogeneity model is thought to be more realis-
tic than the additive model because penetrances are
always smaller than or equal to one. For our simulations,
combined heterogeneity and multiplicative models were
denoted using the shorthand introduced by Lunetta et
al.[2] and summarized here:

HhMm:

H – number of heterogeneous systems

M – number of multiplicatively interacting SNPs within
each system

For example, 16 SNPs are responsible for models H4M4
(Table 1).

To simplify matters, for all of our simulation models we
assume that the penetrance factors for 0, 1, and 2 risk alle-
les are the same at each SNP: q = (q0, q1, q2).

Define a multi-locus genotype G = {g11, g12,..., gHM}

where the first subscript h = 1,..., H denotes the heteroge-
neous system and the second subscript m = 1,..., M
denotes the number of multiplicatively acting loci in each
system. Each ghm is equal to 0, 1, or 2, denoting the

number of risk alleles the individual caries at locus (h,m).
Then the penetrance for genotype G is calculated as:

For the purpose of testing the effect of LD in the revised
method (RF1), the H1M1, H2M3, H3M3, H3M4, H9M2,
H4M4 and H8M4 models summarized in Table 1 were
simulated to cover a large spectrum of complex disease
models. We use the H4M4 model as an example to dem-
onstrate the simulation. In this H4M4 model, sets of 16
risk SNPs were simulated such that the four groups of four
risk SNPs account for the same proportion of the genetic
risk, the four risk SNPs in each group follow a multiplica-
tive model to increase disease risk, and at the population
level, each risk SNP contributes equally to λs and Kp. Thus,
the simulated risk SNPs all have the same allele frequency
and the same observed marginal effect in the population.

Simulation of 13 LD models
In association studies, it is likely that only a subset of all
risk SNPs contributing to a trait is genotyped. Therefore,

in our simulation, we included only a subset of the total
number of risk SNPs in each dataset. Following Lunetta et
al. [2], we denoted the analysis design using the short-
hand "KkSs" where "k" is the number of risk SNPs geno-
typed in the study and "s" is the number of genotyped
SNPs within each multiplicative system. For the genetic
model H4M4, a K4S4 design means that out of the total
of 4 × 4 = 16 risk SNPs that contribute to the trait, four are
genotyped, and that all four risk SNPs come from within
one multiplicative set, and the other three heterogeneous
systems are not represented at all in the dataset. In addi-
tion to the risk SNPs, we simulated independent noise
SNPs not in LD with the risk SNP. These independent
SNPs (100 SNPs in total) can be considered similar to tag-
ging SNPs in real data. Finally, we add SNPs in LD with
the independent risk and noise SNPs to mimic real SNP
data.

We simulated SNPs in LD with the risk SNPs (SNPs 1 to 4
in the data file), and SNPs in LD with noise SNPs. We used
acronyms for the different classes of SNPs:

(1) rSNP (risk SNP): a SNP with a functional effect on the
phenotype.

(2) LD.rSNP: a SNP in LD with a risk SNP, but not having
its own functional effect on the phenotype.

(3) nSNP (noise SNP): a SNP with no independent effect
on phenotype, and not in LD with any rSNP or other
nSNP.

(4) LD.nSNP: a SNP with no effect on phenotype that is
in LD with other nSNPs

We treat the identification of SNPs in categories (1) and
(2) as equally good, since the LD.rSNP identifies the cor-
rect region of the genome as associated with the trait.
SNPs in categories (3) and (4) are "noise" SNPs that do
not contribute any information about the phenotype.

We simulated 13 LD models. We simulated all LD using r2

= 1, i.e. SNPs in LD are perfect proxies for each other. If LD
has any effect on the performance of RF for identifying
risk SNPs, we will see the most obvious effect when there
is complete LD, and less effect for incomplete LD. First, we
simulated 92 nSNPs (SNPs 5–96) in linkage equilibrium
with allele frequencies distributed equally across the range
0.01–0.99 and an additional 4 nSNPs (SNPs 97–100)
with allele frequencies of (0.3, 0.4, 0.5, 0.6), which were
used to simulate LD.nSNPs for other LD models. The
dataset containing 4 rSNPs + (92+4) nSNPs = 100 inde-
pendent SNPs is called model n0, meaning "no LD among
SNPs". For LD model n1, we simulated 1 LD.nSNP with
each of the four nSNPs (SNPs 97–100). So in LD model
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n1, there are 4 rSNPs + (92+4) nSNPs + 4 LD.nSNPs = 104
SNPs. For LD model r1, we simulated one LD.rSNP for
each rSNP. Thus, there are 4 rSNPs + (92+4) nSNPs + 4
LD.rSNPs = 104 SNPs. Similarly, we created the other 10
models as in Table 5. We generated 100 replicate data sets
for each of the 13 LD models, each with 250 cases and 250
controls. For other genetic models, we simulated 100
SNPs for LD model n0, and simulated the other 12 LD
models incrementally.

Simulation Analysis for SNPs
All analyses were performed on each of 100 replicate data
sets of 250 cases and 250 controls for each of the 13 LD
models. We treated the SNP genotypes as categorical pre-
dictors. In the original RF, a random selection of the
potential predictors was used to determine the best split at
each node. In the revised RF, each tree in a forest was
grown on a subset of the predictors that are not in LD. So,
within a tree, SNPs that are in LD would not be competing
with each other. As a consequence, if two highly corre-
lated SNPs in LD are both near the roots of different trees,
they should both produce high importance measure (IM).

In other words, the evidence for association for either of
them to the outcome is kept. Taking both prediction error
and the variable importance measures into consideration,
we used RF tuning parameters ntree (number of trees to
grow in a random forest) of 5000 and mtry (a random sub-
set of all the predictors chosen to determine the best split
at each node in a single tree) of 35 for all the analyses in
this paper. We tested a few mtry values, starting from the
square root of the number of variables, and found that it
does not affect the importance measure much, as indi-
cated by Breiman [1], Lunetta et al. [2], and Bureau et al.
[18].

We examined how the importance measures (IM) at the
risk SNPs (IM(rSNP)) behave as the number of LD.rSNPs
increases, and/or as the number of LD.nSNPs increases.
The following statistics were calculated over 100 replicates
of a model. The noise SNPs refer to nSNPs and LD.nSNPs.

(1) Mean of IM(rSNP) for all 13 LD models (Table 5);

Table 5: Simulations of 13 LD Models for H4M4 model.

Number of SNPs of each class

LD models rSNP nSNP nSNP LD.rSNP per rSNP LD.nSNP per SNP97:100 Total

SNP1:4 SNP5:96 SNP97:100

n0 4 92 4 0 0 100

n1 4 92 4 0 1 104

n2 4 92 4 0 2 108

n3 4 92 4 0 3 112

n4 4 92 4 0 4 116

r1 4 92 4 1 0 104

r2 4 92 4 2 0 108

r3 4 92 4 3 0 112

r4 4 92 4 4 0 116

r1n1 4 92 4 1 1 108

r2n2 4 92 4 2 2 116

r3n3 4 92 4 3 3 124

r4n4 4 92 4 4 4 132
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(2) Proportion of replicates where IMs of all rSNPs and
LD.rSNPs exceeded the maximum IM of the noise SNPs. It
is the proportion of replicates where all top 4 (8, 12, 16,
20) SNPs are rSNPs when there are 0 (1, 2, 3, 4)
LD.rSNP(s) for each rSNP.

(3) Proportion of replicates for which all rSNPs and/or
LD.rSNPs are among the top-ranking X SNPs. Two statis-
tics are calculated. The first is the proportion of replicates
for which all rSNPs are among the top-ranking X SNPs;
the second is the proportion of replicates for which each
rSNP or one of its corresponding LD.rSNPs is among the
top X SNPs.

Simulation of Haplotype data
We simulated a scenario where risk haplotypes (rHAPs)
are "responsible" for the risk instead of individual rSNPs.
Noise SNPs (nSNPs) were simulated, independent of dis-
ease status, with allele frequencies distributed equally
across the range 0.01–0.99. For example, if 99 nSNPs were
simulated, the allele frequencies of these 99 nSNPs are
0.01, 0.02,..., 0.98, 0.99. For simplicity, a 2-SNP haplo-
type was simulated as the risk haplotype (rHAP). We sim-
ulated the H4M4 model, where in each heterogeneous
system there are 4 interacting risk haplotypes. For the
H4M4 model described in Table 1, the allele frequency for
the risk SNP is 0.282 and we would like to set the haplo-
type frequency to be similar. However, in order to avoid
unrealistic haplotype structure, for this model, we selected
haplotype frequencies of the four possible haplotypes
using empirical haplotype frequencies [T-C (0.570), G-
T(0.287), T-T (0.113), G-C (0.030); r2 = 0.447, D' = 0.831]
of two SNPs (rs1503415, rs10790447) in SORL1 on chr11
of Hapmap CEU dataset. The haplotype frequency of G-T
is observed to be 0.287, similar to the 0.282 minor allele
frequency in the H4M4 model described earlier. In order
to evaluate the effect of LD between SNPs on the RF per-
formance, we created 11 LD models by fixing the haplo-
type frequency of G-T at 0.287, and adjusting haplotype
frequencies of the other three possible haplotypes to cre-
ate a set of 11 possible combinations of haplotype fre-
quencies, with LD (r2) between the two SNPs ranging
from 0 to 1 with increment of 0.1. We denoted the analy-
sis design using the shorthand KkSsNn. KkSs is used as
described above for simulation of SNP data, but now we
are referring to risk haplotypes (rHAPs), rather than risk
SNPs. The value "n" is the total number of rHAPs and
noise SNPs included in the dataset; for example, if n = 100
and k = 4, s = 4, then the number of noise SNPs = 100 -
4*2 = 92. We created datasets with K4S4N100 design and
K4S2N100 design for all LD models. For the K4S4 design,
within each set, 4 interacting rHAPs (i.e. 8 rSNPs) from
one heterogeneous system were kept in the dataset; for
K4S2N100 design, within each set, 4 rHAPs (i.e. 8 SNPs),
from two heterogeneous systems (2 interacting rHAPs

from each heterogeneous system) were kept in the dataset.
The 92 nSNPs were simulated in linkage equilibrium with
allele frequencies distributed equally across the range
0.01–0.99.

Simulation Analysis for Haplotypes
We examined three ways of coding the data. The first was
to consider the two SNPs making up the haplotype as var-
iables of interest, and treat the SNP genotype (rSNP) as a
categorical predictor, with a maximum of three categories
if all three possible genotypes are observed in a dataset.
The second was to consider the true haplotype of 2 SNPs
comprising the risk haplotype as the variable of interest,
and treat the haplotype pair or haplo-genotype (rHAP) as
categorical input covariates, with a maximum of 10 cate-
gories since there are 10 possible haplotype pairs for two
SNPs when four haplotypes are observed. The third was to
treat the two SNP genotypes as phase unknown, and
resolve the haplotypes using the software package
haplo.stats[19]. From the haplotype resolution routines
in haplo.stats [19], we obtained the probability of a hap-
lotype x (f(x)). Next, we assigned each individual a haplo-
type pair (i.e. phased genotype) by randomly choosing a
haplotype pair according to the probability distribution
f(x). Then we recoded the haplotype pair (haplo-geno-
type) for each individual as input to RF. We treated the
predicted haplo-genotype (PRED.rHAP) as a categorical
variable and applied RF. For each individual, we simu-
lated 100 possible haplotype pairs with probability distri-
bution f(x). For example, for each of the four risk
haplotypes (2 SNPs), we obtained the individuals with
the same ambiguous haplotype pairs and sampled 100
haplotype pairs based on posterior probability f(x). For 2-
SNP haplotypes, only double heterozygotes have ambigu-
ous haplotype (22/11 or 21/12). With this method, for
each dataset, we created 100 simulation datasets coded
using the predicted haplotype distribution
(pred.hap.dat). Then, we ran RF on the 100
"pred.hap.dat"s, with PRED.rHAP for each individual
used as the input variable. Importance measures for the
PRED.rHAP were averaged over the 100 datasets, and var-
iables were ranked by the averaged IM. All analyses were
performed on 100 replicate data sets of 250 cases and 250
controls.

Availability and requirements
Project name: Random Forests Linkage Disequilibrium
project

Project home page: http://www.broad.mit.edu/personal/
ymeng/rfld.html

Operating system(s): The program was developed on
Linux machine with g77 compiler. It was based on the
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