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Abstract
Background: Automated microscopy technologies have led to a rapid growth in imaging data on
a scale comparable to that of the genomic revolution. High throughput screens are now being
performed to determine the localisation of all of proteins in a proteome. Closer to the bench, large
image sets of proteins in treated and untreated cells are being captured on a daily basis to
determine function and interactions. Hence there is a need for new methodologies and protocols
to test for difference in subcellular imaging both to remove bias and enable throughput. Here we
introduce a novel method of statistical testing, and supporting software, to give a rigorous test for
difference in imaging. We also outline the key questions and steps in establishing an analysis
pipeline.

Results: The methodology is tested on a high throughput set of images of 10 subcellular
localisations, and it is shown that the localisations may be distinguished to a statistically significant
degree with as few as 12 images of each. Further, subtle changes in a protein's distribution between
nocodazole treated and control experiments are shown to be detectable. The effect of outlier
images is also examined and it is shown that while the significance of the test may be reduced by
outliers this may be compensated for by utilising more images. Finally, the test is compared to
previous work and shown to be more sensitive in detecting difference. The methodology has been
implemented within the iCluster system for visualising and clustering bio-image sets.

Conclusion: The aim here is to establish a methodology and protocol for testing for difference in
subcellular imaging, and to provide tools to do so. While iCluster is applicable to moderate (<1000)
size image sets, the statistical test is simple to implement and will readily be adapted to high
throughput pipelines to provide more sensitive discrimination of difference.

Background
With applications such as drug discovery [1], the ability
and the desire to experimentally determine protein local-
ization and trafficking is leading to a rapid growth in cell
image data sets in need of analysis on a scale comparable

to that of the genomic revolution [2,3]. A key problem in
location proteomics is that the analysis and comparison
of localizations is largely performed by the slow, coarse-
grained and biased process of manual inspection. Just as
algorithms such as BLAST have been developed to search,
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compare, cluster and draw conclusions from the sequence
information of the genome revolution, it is critical that a
similar suite of tools be developed for the flood of bio-
imaging to maximise its benefit.

Towards this goal, image statistics have proved invaluable
in the analysis of fluorescent subcellular imaging. Meas-
ures of features such as texture and morphology (for
instance, the length of the perimeter of the object of inter-
est) in combination with machine learning methods such
as neural networks and support vector machines have
proved highly successful at classifying subcellular images
of the major organelles of a cell, and have achieved near

perfect accuracy [4-6]. However, a difficulty with such sys-
tems is that organelle structure can vary widely between
each cell type, and thus automated classification systems
usually require that they be re-trained for each cell type,
though research is ongoing in removing this limitation
[7]. Another difficulty is that subcellular localisation
classes and representative training images for each need to
be chosen prior to training. Hence automated classifica-
tion is to some extent fitting an image into a pre-defined
box which may not necessarily reflect the true diversity of
protein expression within the cell. Despite these limita-
tions, the question of "where is the protein in the cell?"
can readily be answered using automated classification,

The 500 images of 10 fluorescently imaged protein subcellular localisations of Image Set A visualised in iClusterFigure 1
The 500 images of 10 fluorescently imaged protein subcellular localisations of Image Set A visualised in iClus-
ter. Each border color represents a different sub-cellular localization. The images are automatically spatially placed in 2D or 
3D such that the statistically similar images are close to one another. The spatial placement algorithm only uses the statistics, 
and is not aware of the subcellular localization categories, these are only used for border coloring. Note the strong clustering 
of each subcellular localization class, showing that the statistics and algorithm can readily distinguish the localization images. 
The user may browse, navigate and interact with the image set, show/hide images, show representative images for each class, 
select subsets of images, detect outliers, reclassify images, and perform tests to give p-values for whether two images classes 
are different (for instance comparing treated/untreated cells).
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iCluster workflow to test for difference in imagingFigure 2
iCluster workflow to test for difference in imaging. (1) Treated/untreated sets of images are captured using identical 
microscope settings. (2) Images are stored in a directory together with a simple text format file describing which experiment 
each image belongs to. (3) The image description file together with the images is loaded into iCluster via a file selector. If 
(optional) image statistics have not been supplied by the user in the description file, TAS are generated automatically. Initially 
images are randomly placed in 3D. (4) The user initiates spatial layout by statistical similarity by clicking on 'Sammon Map'. (5) 
Once layout has finished, outlier images are found, viewed in detail, reclassified as 'Outliers', and removed from view. (6) Rep-
resentative images for each experiment are automatically found and viewed in detail. (7) p-values are then calculated for the 
null hypothesis: no shift in localisation has occurred. For experiments where a large number of treatments are imaged, an initial 
test run on one or more treatments might be used to determine a minimum number of images required to detect difference. 
See also Supplementary Movie.
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and these techniques have been applied to the whole yeast
proteome imaging [8] and demonstrated that automated
classification can produce high confidence classifications
on real world high throughput imaging [9].

Here we describe a methodology, protocol and software
for testing for differencein protein subcellular fluorescent
imaging. It draws together a number of components into
a single framework, called iCluster, for the visual and sta-
tistical differentiation of bio-imaging. The first compo-
nent is threshold adjacency statistics (TAS), a type of
image statistic specifically designed to distinguish subcel-
lular imaging to a high degree while being fast to calculate
[5]. TAS are then utilised for statistical testing and visuali-
sation. In the visualisation component, TAS are Sammon
mapped [10] into 2 or 3 dimensions in such a way as to
preserve the distance relationships between image statis-
tics vectors, and the images are visualized at the coordi-

nates so determined in 2 or 3 dimensions. An error term
gives feedback on how well the distances have been pre-
served by the mapping and is defined in detail in [11]. The
effect is that those images that are statistically similar are
spatially close, thus enabling patterns of difference and
similarity to be readily recognized in large image sets. The
user can also navigate through an image set, visualize dif-
ferent classes of images for comparison, show or hide
classes of images, select and reclassify images, show a rep-
resentative image [12,13] for each class of images, and
export data or create images of the results. This enables the
distinct patterns of protein localisation or distribution
across the image set to be readily seen, while also allowing
images to be viewed at high resolution. In this manner
outlier images may be found and either removed from fur-
ther analysis, or reviewed in detail if it appears that they
form a subclass of protein expression in their own right.
Further, when comparing treated and untreated experi-

Outlier imagesFigure 3
Outlier images. Images that are statistical outliers may be caused by a protein localisation that is distinct from the majority of 
cells imaged; artefacts in imaging; or an artefact in the generation of the statistics. (a) shows an imaging artefact, perhaps caused 
contamination of the slide. (b) shows the same image (upper right) in the context of the 3D placement by iCluster of other 
images of the same class. (c) shows another outlier image found using iCluster. In this case a non-uniform background has 
caused the automatically generated region of interest selection mask (d) to select non-cellular regions, thus skewing the statis-
tics calculation.
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mental imaging, changes in localisation may be observed
as the treated/untreated images forming distinct clusters.
Figure 1 shows a snapshot image taken of visualization in
iCluster [see Additional file 1 for a movie demonstration].
An early prototype of iCluster showing the core principle
of spatial layout by statistical similarity was described in
[11].

The aims of the current work are three-fold. Firstly, we
introduce a novel method of statistical testing, the centroid
distance test, for comparing image sets and returning p-val-
ues for the null hypothesis, that is, there is no change.
Comparison to previous tests shows the centroid distance
test to be significantly more sensitive in detecting differ-
ence in subcellular imaging. While the work we describe
here has been implemented in iCluster, the statistical test
is simple to implement and hence could readily be
applied within other image analysis pipelines. Secondly,
by examining the core issues in establishing an image
analysis pipeline such as "How many images are
needed?", "Do cells need to be selected from the images?",
"What is the effect of outliers?" and "How subtle an effect
can be detected", the aim is to outline a protocol for cre-
ating a workflow. Finally, by releasing the iCluster soft-
ware the hope is that there will be a much wider uptake of
quantitative methods within the bio-imaging community
to truly enable the many benefits that the new high
throughput microscope technologies offer.

iCluster is being released with this publication and is
available for download under the GNU General Public
Licence from http://icluster.imb.uq.edu.au/. It is available
for Windows, GNU Linux and MacOSX and includes
source code. A java applet demonstration is also available
on the same site.

Results and discussion
A key requirement of many imaging experiments is to
determine whether there has been a change such as a shift
from one subcellular localisation to another or a re-distri-
bution within the cell of the organelle containing the pro-
tein. Typical experiments would be to image a protein
with and without co-expression of another protein in
order to understand how they interact [14], or to image a
protein under a range of drug treatments to screen for
active compounds [1]. In such cases it is not so important
what the actual localisation of the protein is so much as
whether it has been perturbed by an introduced interac-
tion. In the following, the core issues in establishing a
workflow for testing for difference are considered with
examples given for image sets A and B (described in Meth-
ods). A summary of the workflow is given in Figure 2. The
aim is to test the limits of the centroid distance test (see
Methods) and establish a protocol for application to other
image sets.

To crop or not to crop
Depending on the application it may be beneficial to cal-
culate image statistics for individually selected cells. For a
screen in which cells are relatively uniform across the pop-
ulation, selection might not be required, while for trans-
fection experiments in which cell populations may be
more heterogeneous selection may be recommended.
Avoiding cell selection can be advantageous in that auto-
mated selection methods can give variable results, espe-
cially when cells are confluent on the slide. Selection will
typically involve experimenting with a variety of softwares
to find the one that best suits the assay.

One of the advantages of threshold adjacency statistics
(TAS) (see Methods) is that they may be calculated either

Table 2: Average p-values comparing images of plasma membrane and actin cytoskeleton images

n (# images) 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Average p-val .083 .072 .088 .054 .042 .025 .033 .015 .003 .011 .015 .006 .010 .004 .003 .001

Average p-val (no outliers) .094 .116 .032 .032 .017 .017 .014 .004 .005 .008 .002 .002 .002 .001 .001 .001

For a given number n of images, random subsets of n plasma membrane and n actin cytoskeleton images were selected and a p-value calculated. For 
a given n, the average of 10 repeats is shown for the cases of removing or not removing outliers prior to selection.

Table 1: Worst case p-values for subsets of Image set A

n (# images) 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Worst p-value .665 .541 .428 .611 .293 .249 .144 .245 .128 .103 .077 .045 .034 .055 .047 .017

Worst p-value (no outliers) .337 .267 .134 .076 .117 .045 .080 .043 .029 .023 .012 .008 .007 .006 .005 .002

For each pair of the 10 classes of Image Set A, a subset of n images was randomly selected from each, and a p-value calculated for the null 
hypothesis of no difference. This was repeated 20 times for each pair. For a given n, the highest p-value over all pairs and their 20 repeats is shown 
in the table. P-values are shown for the cases of removing or not removing outlier images before random selection.
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for images containing multiple cells or for images in
which individual cells have been selected. In [5] it was
noted that classification accuracies using support vector
machines with TAS on multiple cells per image or selected
cells were comparable. Hence images may be pre-proc-
essed before input to iCluster using dedicated cell selec-
tion software to give individual cells, or raw images
containing multiple cells may be directly utilised.

To avoid confounding results by variability in the success
of cell selection, here we test on images for which no pre-
processing for selection or cropping has occurred.

Detecting outlier images
For each of the 10 classes of image from set A, outliers
were detected by viewing that class of images within iClus-
ter and observing which images did not cluster with the
main group. Other approaches to outlier detection
include removing those images at greater than 3 standard
deviations distant from the mean [15]. A total of 17

images that were spatially distant from other members of
their class were found, with between 0 and 3 outlier
images per class. Closer examination of the outliers
showed each to be the result of either an imaging artefact
or a poor selection of cellular regions (Figure 3). In the fol-
lowing, analyses will be performed on Image Set A both
with and without outliers in order to gauge their effect on
the statistical analyses.

Image number
A key question in automated image analysis is how many
images are required to achieve statistical significance in
detecting difference. Towards this, p-values for the null
hypothesis for all pairs of the 10 image classes were gen-
erated as follows. For a given pair and an integer n, a ran-
dom subset of n images of each was selected, and the p-
value for the null hypothesis calculated. This was repeated
20 times for that pair (with different random subsets) and
integer n. Hence for each pair of classes and integer n, 20
p-values were recorded. For each n, the worst (highest) p-

Distinguishing untreated/treated protein localisationFigure 4
Distinguishing untreated/treated protein localisation. Two sets of images are visualised in iCluster: one for which the 
protein SNX1 has been fluorescently tagged and imaged (white borders); and one for which SNX1 has similarly been imaged in 
cells treated with nocodazole (red borders). For each image, TAS are generated and mapped into 3 dimensions. The visual dif-
ference between nocodazole treated and control images is quite subtle with the control images exhibiting slightly more peri-
nuclear clustering than the nocodazole treated case. However, the above result of statistic generation and mapping clearly 
shows that the treated and control images have been distinguished. Each image is shown connected to its nearest neighbour in 
the 3D space. The top right corner shows the current mouse selected image in more detail.
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value over all the pairs and the 20 repeats then gives an
indication of how well a set of n images of two distinct
localisations may be distinguished. The results of this
process are given in Table 1 for Image Set A, both with and
without outlier images.

It can be seen that the inclusion of outlier images signifi-
cantly increases the p-value for a given image set size,
hence reducing the confidence with which the null
hypothesis may be rejected. To achieve a 95% confidence
level (p-value < 0.05) requires 19 images with outliers
included, while only 12 images are needed when outliers
have been removed. Hence outlier removal while not
essential if their number is relatively small, greatly
improves confidence.

Two classes of image from Image Set A that are visually
and statistically similar are plasma membrane (EGFR)
and actin cytoskeleton (phalloidin). To gain an under-
standing of how well these might be distinguished for dif-
ferent numbers of images, a similar process to the above
was tested on just this pair. Random subsets of n images
were generated, and p-values calculated. For each n this

was repeated 10 times and the average p-value over those
10 was recorded, the results of which are given in Table 2.

Again, it can be seen that outliers degrade confidence in
rejecting the null hypothesis, though once 9 or more
images are used both cases (on average) achieve 95% con-
fidence. Overall the results of Tables 1 and 2 suggest that
outlier removal is to be recommended and that a reason-
able number of images to collect to differentiate image
sets of these types would be 20, allowing that outlier
removal might leave 15.

Detectability
Two issues may arise in using image statistics to detect dif-
ference in imaging. The first potential problem is in
whether the statistics are able to detect relatively subtle
but discernable differences. The second is whether the sta-
tistics are overly discriminating, that is difference is
detected when there is none or little, perhaps due to
changes in imaging conditions rather than due to a redis-
tribution of a protein within the cells. When testing for
changes in a protein's subcellular localisation under treat-
ment, over-sensitivity may be controlled by ensuring that
microscope settings such as exposure time and imaging
conditions are identical for all image sets compared.

To test the ability of the methodology to detect small changes
in imaging, two image sets were created: the endosomal pro-
tein SNX1 was fluorescently labelled using SNX1-specific anti-
bodies and imaged in cells treated with nocodazole (16
images) or the carrier control (17 images). See Image Set B in
Methods for experimental details. SNX1 is an endosomal pro-
tein (19), and nocodazole disrupts the microtubule network
that is involved in endosomal transport and subcellular distri-
bution (20). Hence untreated cells present a more clustered
concentration in the peri-nuclear region, while nocodazole
treated cells exhibit a more even distribution of endosomes
throughout the cell. Testing the SNX1 imaging against
SNX1+nocodazole, gave a p-value for the null hypothesis of
0.000, and hence the relatively subtle difference in images was
readily detected (Figure 4). Hence the statistical testing regime
outlined shows a high degree of discrimination.

To test if the methodology might be sensitive to detecting
random variability, repeat experiments were performed.
Using the procedure outlined in Methods for Image Set C,
cells expressing fluorescently labelled LAMP1 were pre-
pared. One set of cells was imaged on one day, and
another on the consecutive day. The cells were divided
into three separate populations corresponding to wells:
two wells from day 1 and one well from day two. The
images from the 3 wells were then compared pair-wise by
randomly selecting 12 images of each well and generating
a p-value for the null hypothesis of no change. Repeating
the random selection 100 times then gave an average p-
value for each pair of wells. The wells imaged on the same

Table 3: Comparing centroid distance and 3-neighbour tests

n Average
p-value

% with p > 0.05

Distance 3-nbrs Distance 3-nbrs

5 0.0882 0.1969 62 73

6 0.0683 0.0115 47 54

7 0.0431 0.0988 30 45

8 0.0274 0.0502 21 34

9 0.0204 0.0311 10 22

10 0.0126 0.0179 4 7

11 0.0121 0.0157 5 8

12 0.0060 0.0079 2 4

13 0.0050 0.0027 0 0

14 0.0038 0.0018 0 0

15 0.0026 0,0010 0 1

For a given number n of images, random subsets of n plasma 
membrane and n actin cytoskeleton images were selected and a p-
value calculated for the centroid distance statistic and the 3-
neighbours statistic. For a given n, the average of 100 p-values is 
shown. For each n, the percentage of the 100 tests that reported p > 
0.05 for the null hypothesis is also shown.
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day gave an average p-value of 0.392, while comparing
wells imaged on distinct days gave p-values of 0.316 and
0.300. While the p-values are lower when comparing
wells from distinct days, they would not give cause to
reject the null hypothesis. Hence, with careful control of
experimental conditions the chance of detecting change
where there is none is reduced.

It should be strongly emphasised that as image statistics
become more sensitive there is a real danger of detecting
differences in the imaging conditions or the hardware
setup rather than real changes in localisation. Hence the
ideal experiment is to compare image sets for which the
classes to be compared are imaged at the same time on a
single plate in distinct wells with identical technical spec-
ifications.

Rejection of the null hypothesis
One potential problem with randomised permutation
methods is rejection of the null hypothesis may occur at
too high a rate [16]. To test the null hypothesis rejection
rate, randomly chosen subsets of 15 images of the endo-
plasmic reticulum from image set A were selected. For two

such (disjoint) sets, a p-value for the null hypothesis was
calculated. This was repeated 10,000 times, to give 10,000
p-values. Of the 10,000 p-values, the null hypothesis was
rejected (p > 0.95) 510 times, which is close to the
expected number of 500. Further, binning the p-values
into intervals of length 0.05, each bin contained 500 +/-
44, showing that the distribution of p-values is relatively
flat. Hence it can be concluded that rejection of the null
hypothesis is occurring at approximately the correct rate.

Comparison to previous tests
As described in Methods, in [17] several statistical tests for
difference were compared, and it was shown the most sen-
sitive for subcellular image statistics was the 3-neighbour
test [18]. It was shown that using around 40 images of
individual cells of each subcellular localisation and apply-
ing this test, the null hypothesis could be rejected at a rate
of 90%.

Here we compare the centroid distance test and the 3-
neighbour test using TAS calculated for subsets of the
plasma membrane and actin cytoskeleton image sets.
Random subsets of n images of each class, n from 5 to 15,

Representative images for the 10 subcellular localisations of Image Set AFigure 5
Representative images for the 10 subcellular localisations of Image Set A. A natural choice for a representative 
image of an image set is to choose the image that has statistics closest, in the Euclidean sense, to the centroid of the image sta-
tistics for that set [12,13]. The above shows representative images found and visualised in iCluster using threshold adjacency 
statistics in this way. Subcellular localisations shown are (A) Mitochondria (B) Late endosome/lysosome (C) Lysosome (D) Per-
oxisome (E) Actin (F) Microtubules (G) Endoplasmic reticulum (H) Plasma membrane (I) Early endosome (J) Endosome.
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were selected and a p-value for both tests calculated. For
each n, 100 tests were completed, and the averages are
shown in Table 3. It can be seen that the p-values for the
centroid distance test are up to a factor of 2 lower than the
p-values for the 3-neighbour test, though for larger n both
tests give small p-values for the null hypothesis. For each
n, the table also shows how many of the 100 tests reported
a p-value greater than 0.05, ie a relatively large p-value for
the null hypothesis. For all cases the centroid distance test
gave a lower number of relatively high p-values for the
null hypothesis. Hence we conclude that the centroid dis-
tance test is more sensitive for detecting difference in sub-
cellular imaging.

Computational expense
To load the 500 images of Image Set A into iCluster and
calculate TAS took 70 seconds. To calculate the spatial lay-
out of the images (Sammon map) took approximately 5
minutes. It should be noted that while the calculation of
TAS is essentially linear in the number of images, the cal-
culation of the Sammon map it not. Hence calculation of
spatial layout for 100 images may only take 2–5 seconds.
Calculation of p-values (1000 repeats) for moderate size
image pairs set (50 images each) is essentially instantane-
ous from the user's point of view. Hence for moderate size
(less than 100) image sets, the images can be loaded, sta-
tistics and layout calculated, and p-values found in a few
10's of seconds.

Testing was conducted on an Intel Core Duo 2 T5600
notebook with nVidia GeForce Go 7900 GS graphic card
under the Fedora Core 8 Linux operating system.

Conclusion
The intention here has been to provide a new statistical
test and a protocol for detecting difference in subcellar flu-
orescent microscopy imaging. It has been shown that the
major subcellular localisations may readily be distin-
guished with as few as 12 images from high throughput
microscopes, and that subtle shifts in localisation such as
endosomal redistribution can be automatically detected.
It has also been shown that outlier images may easily be
detected from large image sets by visual inspection, and
that their removal can significantly improve confidence in
null hypothesis testing. In some experiments it may be the
outliers that are the most interesting images in that an
unusually high number of cells are not expressing the pro-
tein in the expected manner. Further, the statistical testing
framework utilising permutation testing has been rigor-
ously evaluated to show that the p-values generated reject
the null hypothesis at the expected rate and that the sensi-
tivity is higher than previous approaches.

A significant advantage of the methodology outlined is in
speed of computation. Previous comparison of comput-
ing time for TAS and the commonly used Haralick meas-

ure showed TAS to be 30 times faster to calculate [5]. Few
image statistics are as computationally simple as TAS.
Hence for high throughput screening applications, an
implementation of TAS with the centroid difference test
could detect those experiments in which treatment has
changed protein localisation in days rather than months
of computational time. It is also worth noting that as a
simple, fast and sensitive test, the centroid distance test
could readily be implemented in high throughput screen-
ing pipelines without utilising iCluster. Indeed, we plan to
apply TAS and the centroid difference test for screening
applications in the near future. Another advantage over
previous approaches is that it can operate with or without
cell selection, hence reducing computational expense and
variability of results due to differing levels of success in the
selection procedure.

It should be emphasised that care was taken to avoid
human intervention in the preparation of the image sets,
and to use microscopes and microscope settings com-
monly used for high throughput imaging. As far as we are
aware this is the first study on testing for difference in sub-
cellular imaging that utilises high throughput images that
have not been selected by human intervention in any way.
This gives strong confidence that the results obtained will
be applicable and reproducible in "real" applications.

A feature of iCluster is that it may equally well operate
with user supplied statistics. A simple text file format out-
lined in the user manual may be used to describe each
image and a set of statistics associated with it. iCluster will
then calculate spatial layout and do statistical testing just
as has been shown here for TAS. Similarly, iCluster can
operate with user supplied statistics but without images
being supplied, in which case each data points is repre-
sented as a simple sphere. Hence the methodology is not
limited to subcellular localisation imaging and could be
applied to any data or image set for which the researcher
has generated some form of statistics.

As such we foresee many applications of iCluster to visual
data exploration. As an example, in collaboration with other
members of the Institute for Molecular Bioscience, iCluster
has been used to explore data from tri-localisation experi-
ments in cells (B. Woodcroft, L. Hammond, J. Stow, N. Ham-
ilton: Automated organelle-based colocalisation in whole
cell imaging, submitted). Each data point corresponded to
an endosome from a cell, with 7 numbers describing the
degree of overlap of each of 3 fluorescent markers on that
endosome. With some 875 endosomes in one data set,
iCluster was utilised to map the set of 7 dimensional vectors
associated with the endosomes into 2 dimensions. In this
representation the data naturally fell into a triangle, with
each vertex of the triangle corresponding to one of the three
markers used in the experiment, and points within the trian-
gle corresponding to varying degrees of colocalisation of the
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proteins. In this way it was then possible to view and make
sense of the whole data set and the diversity of the (co)local-
isations of the proteins marked on each of the endosomes in
a way that was not possible by viewing a spreadsheet of the
data. As bio-data sets become increasingly larger there is an
urgent need for tools to explore and make sense of them, and
we believe that iCluster will be invaluable in visual data
exploration.

Methods
Image data sets
Image Set A
An image set comprising of 10 subcellular localizations was
obtained, representing 10 distinct subcellular organelles.
Each organelle image set consists of 512 localization images,
equating to a total of 5120 localization images overall. From
these images, 50 images per localisation were randomly cho-
sen for the purposes of this paper. HeLa (cervical cancer) cells
were seeded onto a 96 well plate, fixed, and then labelled
using fluorescent antibodies against endogenous proteins or
structures. Labels were chosen as known markers of the sub-
cellular localisations: peroxisome (catalase), microtubules
(DMA1, alpha-tubulin), early endosome (EEA1), plasma
membrane (EGFR), late endosome/lysosome (LAMP1), lys-
osome (lysotracker), mitochondria (mitotracker), endoplas-
mic reticulum (PDI), actin cytoskeleton (phalloidin), and
endosome (SNX1). The image capture process was auto-
mated in a high-throughput manner, utilizing a 40× dry lens
objective, autofocused with a fixed exposure time on the BD
Pathway 855 to image the cells without human intervention.
Note that image capture was fully automated and care was
taken not to adjust microscope settings or select the images
in any way. The images are 8-bit greyscale, 672 × 512 pixels,
each containing up to 20 cells. Automatically selected repre-
sentative images for each class are shown in Figure 5.

Image Set B
A nocodazole treated versus control image collection was
generated by imaging endogenous sorting nexin 1 (SNX1)
in A-431 (human epithelial carcinoma) cells treated with
10 μM nocodazole (Sigma Aldrich) or equivalent concen-
trations of the carrier (dimethyl sulfoxide) for 30 min
(nocodazole treatement disrupts the microtubule net-
work of the cell (20)). Endogenous SNX1 was detected
with a monoclonal antibody raised against the first 108
amino acids of human SNX1 (BD Biosciences). Confocal
Z-stacks (0.7 μm) of the entire volume of the monolayers
were captured on a Zeiss LSM 510 confocal scanning
microscope using a 63× oil objective. Maximum projec-
tions were generated using the LSM software (Zeiss). In
total there were 17 treated and 16 untreated images cap-
tured at 512 × 512 resolution.

Image Set C
Repeat experiments of the LAMP1 marker were performed
in the manner described for Image Set A. Imaging

occurred on two distinct days. The image set consists of 64
images each from two distinct wells imaged on day 1, and
a further 64 images from a single well captured on day 2.

Image sets are available for download from the LOCATE
database home page [19].

Image Statistics
A wide variety of classes of image statistics have been
tested for their capacity to distinguish images of sub-cellu-
lar localization, primarily for use in image classification.
Conrad et al. [4] tested 448 different image features and
applied a variety of feature reduction and machine learn-
ing methods. Of those tested, Haralick texture measures
[20], sometimes known as co-occurrence measures, were
found to give the best performance. Subsequently, our
group introduced threshold adjacency statistics (TAS),
and found that these statistics in combination with
machine learning methods could provide comparable
classification accuracy (up to 95%) to the Haralick meas-
ures while being at least an order of magnitude faster to
calculate [5]. Further, TAS may be used with or without
selecting individual cells from an image and do not
require a separate image to identify the nuclear region.
Hence for reasons of speed and simplicity, TAS are utilised
here for visual and statistical testing of difference. Each
image is then associated with a vector of 27 real numbers
calculated from TAS.

Briefly, TAS are generated by first applying an adaptive
threshold range to the image to create a binary image.
Nine statistics are then calculated from the binary image.
For each white pixel, the number of adjacent white pixels
is counted. The first threshold statistic is then the number
of white pixels with no white neighbours; the second is
the number with one white neighbour, and so forth up to
the maximum of eight. The nine statistics are normalised
by dividing each by the total number of white pixels in the
threshold image. Two other sets of threshold adjacency
statistics are also calculated as above, using two other
threshold ranges, giving in total 27 statistics. Note that in
order that each statistic be given equal weighting in the
subsequent calculations, each is normalised by subtract-
ing the mean for that statistic for an image set and divid-
ing by the standard deviation. Details may be found in
[5].

Statistical testing for difference
The Hotelling T2 test [21], a multivariate form of the stu-
dent t-test, has previously been applied to the problem of
statistical differentiation of subcellular imaging [22].
However, there are a number of difficulties with this
approach. The test assumes that each of the statistics has a
normal distribution, which is often not the case for statis-
tics generated from subcellular imaging. Further, the test
requires there to be more images in each class being tested
Page 10 of 12
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than the number of statistics generated for each image.
With anywhere from 27 [5] to 57 [7] statistics generated
for subcellular imaging, this can severely limit the applica-
tion of the test. In [17], it was shown that using around 40
images of cells each of the major subcellular localisations
could be differentiated using the Friedman-Rafsky test
that utilises minimal spanning trees, or by k-nearest
neighbour testing. Briefly, in the k nearest neighbour test,
the nearest neighbors of each of the data points are exam-
ined, the nearest neighbors of a data point being those
data points that are closest to the point as measured by the
Euclidean distance. For a given data point, the number of
the k closest points (k nearest neighbors) to that point
that are of the same class as the point is recorded. The test
statistic is then the total number of k nearest neighbors of
elements of a set that are also in that set [18].

Both approaches use statistics on the classes of the neigh-
bours of each image, and whether those neighbours are of
the same class. Hence these tests are to some degree meas-
uring the disjointness of the statistics of the image sets
being compared.

Towards detecting shifts in the statistical centres of image
sets rather than the discreteness of clusters, the approach
taken here is via a centroid distance test employing per-
mutation testing [16]. To test for difference between two
image sets I1 and I2, 27 TAS are generated for each image

in the sets. The mean statistics vectors μ(I1) and μ(I2) are

then calculated for each, together with the Euclidean dis-

tance d(μ(I1), μ(I2)). The null hypothesis is that the image

statistics of I1 and I2 are drawn from the same distribution,

more specifically that the population means are the same

: μI1 = μI2. To test this, the observations of I1 and I2 are

randomly permuted to give sets R1 and R2 which have the

same sizes as I1 and I2, respectively, but may have statistics

vectors from either. The distance d(μ(R1), μ(R2)) is then

calculated. Repeating 1000 times, the fraction of the

repeats for which d(μ(R1), μ(R2)) > d(μ(I1), μ(I2)) then

gives a p-value for the null hypothesis. For image sets for
which there is a detectable difference, it would be
expected that the mean vectors would be more separated,
on average, than the randomisations, hence giving a small

number of repeats for which d(μ(R1), μ(R2)) > d(μ(I1),

μ(I2)).
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