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Abstract

Background: Genome scale data on protein interactions are generally represented as large networks, or
graphs, where hundreds or thousands of proteins are linked to one another. Since proteins tend to
function in groups, or complexes, an important goal has been to reliably identify protein complexes from
these graphs. This task is commonly executed using clustering procedures, which aim at detecting densely
connected regions within the interaction graphs. There exists a wealth of clustering algorithms, some of
which have been applied to this problem. One of the most successful clustering procedures in this context
has been the Markov Cluster algorithm (MCL), which was recently shown to outperform a number of
other procedures, some of which were specifically designed for partitioning protein interactions graphs.
A novel promising clustering procedure termed Affinity Propagation (AP) was recently shown to be
particularly effective, and much faster than other methods for a variety of problems, but has not yet been
applied to partition protein interaction graphs.

Results: In this work we compare the performance of the Affinity Propagation (AP) and Markov
Clustering (MCL) procedures. To this end we derive an unweighted network of protein-protein
interactions from a set of 408 protein complexes from S. cervisiae hand curated in-house, and evaluate the
performance of the two clustering algorithms in recalling the annotated complexes. In doing so the
parameter space of each algorithm is sampled in order to select optimal values for these parameters, and
the robustness of the algorithms is assessed by quantifying the level of complex recall as interactions are
randomly added or removed to the network to simulate noise. To evaluate the performance on a weighted
protein interaction graph, we also apply the two algorithms to the consolidated protein interaction
network of S. cerevisiae, derived from genome scale purification experiments and to versions of this
network in which varying proportions of the links have been randomly shuffled.

Conclusion: Our analysis shows that the MCL procedure is significantly more tolerant to noise and
behaves more robustly than the AP algorithm. The advantage of MCL over AP is dramatic for unweighted
protein interaction graphs, as AP displays severe convergence problems on the majority of the unweighted
graph versions that we tested, whereas MCL continues to identify meaningful clusters, albeit fewer of
them, as the level of noise in the graph increases. MCL thus remains the method of choice for identifying
protein complexes from binary interaction networks.
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Background

Protein-protein interactions play a key role in cellular
processes and significant efforts are being devoted world
wide to characterizing such interactions on the scale of
whole genomes (for review see [1,2]). Genome scale data
on protein interactions are typically obtained using exper-
imental methods for detecting binary interactions[3,4], or
by affinity purifications of tagged proteins coupled to ana-
lytical methods for identifying the co-purified partners [5-
7]. These data are in general represented as large networks,
or graphs where hundreds or thousands of proteins are
linked to one another [8-10]. For a recent review of net-
work analysis techniques as applied to protein interaction
networks, see [11].

It is well known however that proteins tend to function in
groups, or complexes, which in the yeast S. cerevisiae con-
tain on average 4.7 different types of subunits [12,13]. An
important goal has therefore been to reliably identify pro-
tein complexes from the protein interaction graphs. This
task is commonly carried out using graph clustering pro-
cedures, which aim at detecting densely connected regions
within the interaction graphs.

Clustering is an unsupervised learning method that tack-
les the task of producing an intrinsic grouping of data ele-
ments on the basis of some metric (a 'distance' or
similarity measure between elements). It requires solving
an optimization problem, which is usually achieved with
the help of heuristic algorithms whose ability to approxi-
mate the best solution (global minimum) may vary
widely[14]. Their application in the context of protein
interaction networks encounters the additional problem
of dealing with the significant level of background noise
in these networks[15] (e.g. spurious interactions that have
no biological meaning). Dealing with a high level of noise
is a major challenge for clustering procedures, as this
requires mitigating the effect of noise by various means -
for example by taking into account the topology proper-
ties of the network, either during the clustering process or
by modifying the distance metric to incorporate such
properties prior to clustering.

There exists a wealth of clustering algorithms of which
hierarchical clustering (for review see [16,17]) and K-
means|[18,19] are classical examples. More recently a vari-
ety of other algorithms have been proposed|[20], and
some of these have been applied to the identification of
highly connected nodes in protein interaction
graphs[7,21].

So far, one of the most successful clustering procedures
used in deriving complexes from protein interaction net-
works seems to be the Markov Cluster algorithm
(MCL)[22]. Unlike most hierarchical clustering proce-
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dures, this algorithm considers the connectivity properties
of the underlying network. It has been used to derive com-
plexes from protein interaction data in two recent com-
prehensive analyses of the yeast interactome [7,21].
Furthermore, in a recent benchmark carried out by Brohée
et al[15], MCL was shown to be especially effective for
clustering protein interactions in that it possesses a high
degree of noise-tolerance in comparison to other algo-
rithms such as the Molecular Complex Detection
(MCODE)[23] and Super Paramagnetic Clustering
(SPC)[24].

Over a year ago, a novel promising clustering procedure
termed Affinity Propagation (AP) was proposed [25].
Affinity propagation identifies representative examples
(exemplars) within the dataset by exchanging real-valued
messages between all data points. Points are then grouped
with their most representative exemplar to give the final
set of clusters. AP was applied to a variety of problems
including face recognition, and gene identification from
putative exons using microarray data, and was shown to
be faster and more accurate than the K-Centers[18] clus-
tering algorithm. A subsequent note suggested however,
that AP was similar to the earlier vertex substitution heu-
ristic (VSH), and that it did not perform any better[26].
This prompted the AP authors to provide evidence that AP
outperforms VSH on large problems - where it runs much
faster, and was more accurate than several clustering algo-
rithms tested[27].

In view of the interest in applying efficient clustering pro-
cedures to biological networks in order to identify and
characterize functional modules, this paper expands the
analysis of Brohée et al[15] to the comparison of the AP
and MCL algorithms. Such comparison has not been pre-
viously reported.

Following Brohée et al, we first derive an unweighted net-
work of protein-protein interactions from a set of up-to-
date hand curated protein complexes from S. cervisiae[28]
and evaluate the performance of the two clustering algo-
rithms in recalling the annotated complexes. In doing so
the parameter space of each algorithm is sampled in order
to select optimal values for these parameters, and the
robustness of the algorithms is assessed by quantifying the
level of complex recall as interactions are randomly added
or removed to the network to simulate noise.

To test performance on a more realistic weighted protein
interaction graph, we also apply the two algorithms to the
high confidence consolidated protein interaction network
of S. cerevisiae recently derived by Collins et al[29], and to
versions of this network in which varying proportions of
the links have been randomly shuffled. The computed
clusters are compared to the same set of curated S. cerevi-
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siae complexes in order to assess the robustness of the two
algorithms.

The comparative analysis on the unweighted networks
proposed here has the advantage of representing a self-
consistent approach, in which information on a prede-
fined number of cliques is used to build the network, and
hence the expected result from partitioning this network
is well defined. The choice of the weighted high confi-
dence consolidated network of S. cerevisiae recently
derived from purification data also enables to quantify the
performance of the clustering procedures by comparing
computed clusters to the annotated complexes. Such
quantification is difficult with S. cerevisiae protein interac-
tion networks built using yeast two hybrid data, because
these interactions differ significantly from co-complex
interactions[30]. Partitioning this network using any
method is hence unlikely to yield clusters comparable to
complexes. The much larger human protein interaction
networks compiled from different sources and stored in
databases such as HPRD (~50,000 interactions), would
not serve our purpose either, given the still limited
number of fully annotated human protein complexes
against which the clustering results can be compared.

The clustering algorithms

The Markov clustering algorithm (MCL) simulates ran-
dom walks on the underlying interaction network, by
alternating two operations: expansion, and inflation.
First, loops are added to the input graph - by default, the
loop weight for each node is assigned as the maximum
weight of all edges connected to the node - and this graph
is then translated into a stochastic "Markov" matrix. This
matrix represents the transition probabilities between all
pairs of nodes, and the probability of a random walk of
length n between any two nodes can be calculated by rais-
ing this matrix to the exponent n - a process referred to as
expansion. As higher length paths are more common
between nodes in the same cluster than nodes within dif-
ferent clusters, the probabilities between nodes in the
same complex will typically be higher in expanded matri-
ces. MCL further exaggerates this effect by taking entry
wise exponents of the expanded matrix, and then rescal-
ing each column so that it remains stochastic - a process
called inflation. Clusters are identified by alternating
expansion and inflation until the graph is partitioned into
subsets so that there are no longer paths between these
subsets.

Affinity Propagation (AP) identifies cluster centers, or
exemplars, from the graph, which in some sense are a rep-
resentative member of the cluster. Initially, all nodes are
considered as exemplars, though each node is manually
assigned a "preference" that it should be chosen as an
exemplar. If no prior knowledge is available on which
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nodes should be favored as exemplars, then all nodes can
be assigned the same preference value - where the magni-
tude can be used to control cluster granularity. For each
node i and each candidate exemplar k, AP computes the
"responsibility" r(i, k), which indicates how well suited k
is as an exemplar for i, and the "availability" a(i, k) reflect-
ing the evidence that i should choose k as an exemplar.

(i, k) < s(i, k) — kr{}g:yiz{{u(i, k') +s(i, k") }

a(i, k) < min ] 0, r(k, k) + Z max{0, r(i’, k)}
iti'e{ik}

Where the matrix s(i, k) denotes the similarity (eg. edge
weight) between the two nodes i and k, and the diagonal
of this matrix contains the preferences for each node. The
above two equations are iterated until a good set of exem-
plars emerges. Each node i can then be assigned to the
exemplar k which maximizes the sum a(i, k) + r(i, k), and
ifi =k, then i is an exemplar. A damping factor between 0
and 1 is used to control for numerical oscillations.

Results and discussion

Performance on unweighted protein interaction graphs
Both algorithms are first applied to partition unweighted
protein interaction graphs. The original version of these
graphs was built from a set of 408 S. cerevisiae protein
complexes hand curated in-house[28] (see Additional File
1). In this graph, nodes represent individual proteins from
these complexes, and any two proteins belonging to the
same complex are linked by an edge. Figure 1a illustrates
this graph as rendered by the Cytoscape[31] network vis-
ualization and analysis software. This rather disjoint
graph is comprised of 11,249 interactions and 1,628 pro-
teins, where the majority of the proteins are linked only to
members of the same complex, forming distinct cliques,
and only a small fraction are linked to members of differ-
ent complexes. This graph is clearly a less challenging test
for clustering procedures than protein interaction net-
works built from experimental data, since those networks
include an appreciable level of spurious links (False Posi-
tive links). Networks built from experimental data typi-
cally feature more links between proteins in different
complexes and not all members of a given complex are
always linked to one another. To better mimic these more
realistic networks we randomly add or remove links to
this original network in various proportions, as done by
Brohée et al. [15] thereby generating different versions of
the original network which include varying levels of noise,
representing different proportions of False Positives (FP)
and False Negatives (FN) (links deleted from the graph,
but present in the original network).
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Original unweighted protein interaction graph and graphs of curated complexes linked through their shared
components. (a)Unweighted protein interaction graph comprising 1628 proteins (nodes) and | | 249 interactions (edges)
generated from the 408 hand curated complexes of S. cerevisiae[28]. (b, c)two copies of a portion of the graph in (a), where
complexes (nodes) are linked to one another whenever they share at least 2 components, and the node size is proportional to
the number of unique proteins each complex contains. (b)and (c)have the AP and MCL clusters respectively mapped onto the
curated complexes, so that pie charts show proportions of complex components that are annotated to the same AP or MCL
cluster. The mapped clusters are computed from versions of the original unweighted network shown in (a) in which 20% of the
edges were randomly added and 20% randomly removed. Complexes whose components distribute among many clusters
appear as multi-colored pie graphs, whereas those that are annotated to the same cluster appear solid-colored. The bright red
color indicates the proportion of components that were assigned to singleton clusters by the AP or MCL algorithm. All the
comparisons were performed with partitions obtained by optimizing the MCL and AP parameters respectively (see Methods).
The pie graphs were generated using the GenePro plugin[32] for Cytoscape[31].

The MCL and AP clustering procedures were each applied
to the different versions of the networks and the corre-
spondence between the computed clusters and the origi-
nal 408 curated complexes was evaluated for each
network version. The correspondence was quantified
using the Geometric Accuracy (Acc) and Geometric Sepa-
ration (Sep) criteria as previously defined|[15]. Acc is com-
puted as the geometric mean of the Positive Predictive
Value and Sensitivity with which the clusters recall the
original complexes. The Sep parameter is defined as the
geometric mean of two quantities that measure how clus-

ter components are on average distributed amongst com-
plexes and how complex components are distributed
among clusters, respectively (see Methods for further
details).

To enable as fair a comparison as possible, values of the
adjustable parameters in each clustering algorithm were
selected so as to maximize the sum of the Acc and Sep val-
ues for the clusters computed from each network (see
Methods).
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Figures 1b and 1c present a visual overview of the results
obtained from an unweighted network, derived from the
original network by adding 20% of the edges, and ren-
dered using the GenePro[32] plugin for Cytoscape. They
show that the AP clusters are more fragmented than those
obtained with MCL, as components annotated to the
same curated complex are often distributed among several
AP clusters, whereas the MCL clusters tend to map more
fully into the curated complexes. This result is summa-
rized by the Acc and Sep parameters listed in the Addi-
tional File 2. To further understand how each algorithm
handles noise, simulated here by random addition and
subtraction of graph edges, we focus on the effects of
either adding (Figure 2) or removing (Figure 3) edges.
While AP and MCL yield solutions with virtually identical
Acc and Sep values for the original network (zero noise
level), the AP algorithm did not converge for most of the
noisier networks. The one with 20% random edge addi-
tion was among the few for which it did converge, but the
Acc and Sep values of the resulting clusters were much
lower than those obtained with MCL on the same net-
work. AP also did not converge for the majority of net-
works with simultaneous random edge addition and
removal (Additional File 2). In contrast, MCL generated
clustering solutions with relatively high Acc and Sep at all
noise levels. Interestingly however, for networks contain-
ing high noise levels, the MCL clusters group only a frac-
tion of the proteins comprising the interaction network,
leaving the remaining proteins ungrouped (singletons)
(Additional File 2).

We also tested AP on an unweighted network of 15 982
human protein-protein interactions comprising 5850
unique proteins, annotated as experimentally character-
ized using affinity capture or reconstituted complexes in
version 2.0.50 of the BioGRiD database[33]. Similar to
the results obtained for unweighted networks to which
artificial noise was added, AP did not converge for this
more realistic network derived from inherently noisy
experimental data. MCL produced clusterings containing
between 663 and 1566 clusters, depending on the infla-
tion value. A detailed analysis of these clusters is outside
the scope of this report, but the size distributions of the
clusters in the MCL partitions produced at various infla-
tion values (Additional File 3) indicate that they are not
all trivial singleton or extremely large clusters.

The Acc and Sep were also evaluated for the 408 curated
complexes directly. As expected, Acc, which quantifies the
maximum extent of overlap between complexes and clus-
ters — and vice versa - is 1 for these complexes (Figures 2a,
3a). Lower Acc values are obtained for the partitions
derived by both clustering algorithms - largely due to
shared components in the original complexes, which can
obscure their detection, especially for smaller clusters. In
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contrast, shared components lower the Sep values of the
original complexes, and hence as the clustering algo-
rithms partition the graphs they can achieve higher Sep
values at low noise levels (Figures 2b, 3b).

These results depart sharply from those expected for ran-
dom partitions, as also illustrated in Figures 2a, b, 3a, and
3b. Random partitions were generated by randomly per-
muting the assignments of the proteins to clusters within
the MCL and AP predictions.

Performance on a weighted biological protein interaction

graph

A second series of tests was performed using interaction
graphs built from the consolidated network of Collins et
al[29], where each protein-protein link has an associated
confidence score ranging in values from 0 to 1. As in pre-
vious studies[21,29], only the high confidence portion of
the network was considered, comprising links whose
scores are above a confidence threshold of 0.38[21]. The
resulting network comprised 12,035 interactions and
1,921 proteins. Since this network represents predicted
associations from data derived in two recent high-
throughput experimental studies[6,7], some noise will
naturally be present. We did however generate noisier ver-
sions of this network by randomly shuffling increasing
fractions of edges, and re-evaluating the results for each of
these versions. As for the performance tests on the
unweighted graphs, the parameters of each algorithm are
adjusted so as to optimize the correspondence with the
curated complexes, by maximizing the sum of the Acc and
Sep values as done above for the comparative analysis on
the unweighted graphs.

On this more realistic network, both AP and MCL were
able to predict clusters at all the tested noise levels. The
results illustrated in Figure 4, show that, as expected, the
Acc value tends to decrease with added noise for both
algorithms, and that the Acc of MCL is higher than AP at
all noise levels. The shaded areas in Figure 4 indicate the
ranges in the Acc and Sep values covered by solutions
obtained by varying the parameters of the AP and MCL
algorithms, respectively. It can be seen from this figure
that our parameter selection procedure was successful in
identifying parameter values that approximately maxi-
mize the Acc and Sep measures independently at all noise
levels.

We also see that at high levels of noise, the results are no
longer meaningful as the clusters predicted by either algo-
rithm consist almost entirely of singletons. Both algo-
rithms have a slowly decreasing Sep as progressively more
edges are shuffled. When no artificial noise is introduced,
both algorithms are roughly comparable in terms of Acc,
although the AP solution has slightly lower Sep and incor-
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Effect of random addition of edges to the original unweighted protein interaction graph on the performance of
the MCL and AP algorithms. Performance is evaluated by plotting two parameters, the Geometric Accuracy (Acc) (a), and
Separation (Sep) (b). The random addition of varying proportions of edges mimics noise created due to varying proportions of
False Positive interactions (spurious interactions). For AP, only those points where the algorithm converged are plotted. Defi-
nitions of Acc and Sep are given in Methods. The open circle marks the Acc and Sep values achieved by the curated complexes
used to generate the original protein interaction graph, as measured against themselves — note that separation is < | due to

shared components between complexes. Dashed lines indicate the values obtained from random graphs used as controls (see
Methods). The solid horizontal line shows the Acc (a) or Sep (b) values achieved by not grouping any proteins (i.e. a "clustering”

that consists entirely of singletons).
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Figure 3

Effect of random removal of edges from the original unweighted protein interaction graph on the perform-
ance of the MCL and AP algorithms. Performance is evaluated by plotting two parameters, the Geometric Accuracy (Acc)
(2), and Separation (Sep) (b). The solid horizontal line, dashed lines, and the open circle are as described in the figure 2 caption.

porates 61 fewer proteins than MCL (see Figure 5), which
are classified as singletons. Examples of complexes recov-
ered by MCL, but not AP are given in Figure S3 of the
Additional File 4. As the level of artificial noise increases
to 10%, both algorithms maintain approximately the
same number of clusters and proteins. At 20%-30%
noise, the optimal MCL solution in terms of Acc+Sep hap-
pens to correspond to a much coarser clustering than that
obtained with AP (smaller number of clusters in Figure 5).
However, using different Inflation values can generate
solutions featuring finer granularities with only a minor
decrease in Acc+Sep (Additional File 5). Overall, at around
60-70% noise predictions from both algorithms begin
degenerating into singletons. The relative performance of
MCL and AP does not depend on the objective function
Acc+Sep. We verified indeed that at any preference value

used for AP, clustering solutions produced by MCL have
higher Acc and equivalent or higher Sep values at all infla-
tion values tested (Figure S1 in Additional File 4).

To gain insight into how the MCL and AP clustering solu-
tions change as edges are randomly shuffled, we plotted
the mass fraction and area fraction (Figures 6a, b) for the
optimal clustering at each noise level as found above. The
mass fraction of a clustering solution for a weighted graph
is simply the fraction of the total edge weight that is
entirely contained within clusters. The area fraction
assumes that each identified cluster is a clique, and meas-
ures the number of these clique edges relative to the total
number of edges in a clique of all nodes (see Methods).
We see that for both algorithms, the mass fraction
decreased as edges are shuffled — which is expected given
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(a) Geometric accuracy (Acc) and (b) Separation (Sep) as varying numbers of edges are shuffled within the
weighted network. Shaded regions indicate the range of Acc (a) or Sep (b) values achieved by each clustering algorithm as
their parameter values were varied. The open circle marks the Acc and Sep values achieved by the curated complexes used to
generate the unweighted networks. The solid horizontal line and dashed lines are as described in the caption of Figure 2.

that formerly intra-complex edges are being reassigned as
inter-complex edges during the shuffling. The area frac-
tions also decreased for both algorithms, suggesting more
granular clusterings.

Overall we find that MCL tends to generate a more granu-
lar clustering in the presence of noise (Figures 7a, b) -
although at very low noise levels AP produces more sin-
gletons and 2-members clusters than MCL. We also find
that the higher Acc obtained with MCL in the presence of
noise is maintained across the entire range of complex
sizes (Figure S2b in Additional File 4), so that MCL's abil-
ity to recapitulate the curated complexes even at high

noise levels (40% artificial noise) is better than AP for
complexes of all sizes. In contrast, AP generally produces
coarser clusterings as noise is increased, although the
number of very large (16 or more components) clusters
does decrease, reducing the overall area fraction.

These results, together with the superior Acc and Sep val-
ues obtained with MCL at high noise levels suggest that
this algorithm is a better choice for weighted protein inter-
action networks.
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Number of clusters and proteins included in these clusters obtained by each algorithm on the weighted net-
work at different noise levels, after removing singletons. At higher noise levels, the optimal AP solution in terms of
Acc+Sep consists almost entirely of singletons, though coarser solutions also exist (see text, and Additional File 5).

Conclusion

In summary, our analysis has shown that the MCL proce-
dure is significantly more tolerant to noise and behaves
more robustly than the AP algorithm. The advantage of
MCL over AP is dramatic for unweighted protein interac-
tion graphs, as AP displays severe convergence problems
on the majority of the unweighted graph versions that we
tested, whereas MCL continues to identify meaningful
clusters, albeit fewer of them, as the level of noise in the
graph increases. It is possible that AP as it stands, is not
suitable for unweighted networks (as discussed below),
although this is not specified in the instructions for using
the program or in the original publication[25].

On weighted graphs constructed using data from high
throughput experiments believed to be incomplete and
usually quite noisy, the difference in performance is also
notable. MCL achieves higher Acc and equivalent or better

Sep at all significant noise levels. Furthermore, at low to
moderate noise levels, these solutions include more pro-
teins than AP. Parameters for either algorithm can be
adjusted to affect the final granularity of the cluster, but
either the Acc or the Sep will be lower.

Thus for physical interaction networks, we find that MCL
outperforms AP in terms of its ability to generate mean-
ingful partitions. The other cited advantages of the AP
algorithm, namely its speed and ability to tackle very large
networks, play only a minor role in the present applica-
tion. Indeed both MCL and AP run very fast (< 10 sec-
onds) on the weighted consolidated network of 12,035
interactions and 1,921 proteins. As noise is added to this
network, AP can also fail converge at certain preference
values (Figure S1 in Additional File 4 and Additional File
5), and it can be difficult to determine which parameters
will lead to convergence. For example, AP didn't converge

Page 9 of 14

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:99

http://www.biomedcentral.com/1471-2105/10/99

AP ——
MCL —%¢—
0.8} 1
C
S
-+ 4
(9}
o
[
a ]
©
=
)_
: .
70 80 90

!

!

!

10 20 30

40

50 60

% Shuffled Edges

Figure 6

Mass and Area Fractions of the AP and MCL solutions at varying noise levels. These values assess the intrinsic effi-
ciency of a clustering in terms of the amount of edge mass captured, with higher values indicating improved efficiency (see
Methods for detail). The Mass fraction summarizes how much of the total edge weight is captured within clusters. The Area
fraction is a measure of cluster granularity, such that higher area fractions correspond to coarser clusterings (See text).

at any of the Preference values tested for unweighted net-
works with edges randomly removed. On weighted net-
works with 30% noise, the algorithm converged at
Preference values 0.65 and 0.9 only (Additional File 4).
Thus for this application, one difficulty in using AP is to
determine an appropriate interval and level of granularity
for searching Preference values. The AP authors provide
tools to assist in choosing sensible Preference intervals,
but not for choosing granularity. In situations where AP
does not converge, the authors recommend increasing the
Damping factor, the maximum number of iterations, and
the number of iterations required for convergence -
although increasing these parameters can increase the
runtime of the algorithm.

The MCL algorithm effectively considers both edge weight
and graph topology (connectivity) information. AP, on
the other hand, can fail in situations where high weight

edges connect two clusters. Consider the artificial situa-
tion where two cliques, A and B, are connected by a single,
relatively high weight edge. If one of the nodes compris-
ing this edge is an exemplar in clique A, the adjacent node
in clique B may be incorrectly assigned to A by AP, despite
being highly connected to members of B. This suggests
that MCL achieves its robust performance by always con-
sidering network topology, whereas AP relies in part on
the 'distance metric' (edge weight) to capture this infor-
mation. To overcome this limitation one could define a
modified distance metric that simultaneously captures
both the propensity of two proteins to interact and the
graph topology, and re-run AP on the modified graph. To
some extent, the PE score is such a metric as higher scores
are assigned to proteins that repeatedly co-purify together
in affinity capture experiments, and lower scores are
assigned to non-specific interactions that occur between
promiscuous proteins. Indeed, on the PE weighted net-
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work of Collins et al, the performance of AP is much
closer to that of MCL when the network is unperturbed, as
randomly shuffling edges distorts the topology informa-
tion contained in the edge weights. In the unweighted net-
work, where no topological information is captured by
the distance metric, AP is only able to successfully cluster
unperturbed networks with very few inter-complex edges
(shared components).

As noted in [27], the relative accuracy and performance of
clustering algorithms can vary greatly for different data-
sets, and this report makes no attempt to address the

breadth of problems for which one algorithm outper-
forms the other.

Methods

Building the protein interaction graphs

The unweighted interaction graph was defined by consid-
ering all possible pairs of proteins that were annotated to
the same complex within a gold-standard set of yeast pro-
tein complexes[28] (Additional File 1). Each edge was
assigned a weight of 1. The resulting network comprised
11,238 interactions (edges) and 1624 proteins (nodes).
For AP, the input pairwise 'similarities' were defined twice
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for every pair of proteins i, j as S(i, j) = S(j, i) = 1 if protein
i and j were annotated to the same gold standard complex.

The weighted interaction network is that derived by Col-
lins et al[29]. The weight of each edge represents the con-
fidence score of each putative interaction, as defined in
ref[29]. These confidence scores range from 0.38 to 1. For
AP, the input 'similarities' were again defined twice for
every pair of interacting proteins i, j as S(i, j) = S(j, i) = ¢,
where c is the confidence assigned to the interaction.

Performance assessment

The ability of each clustering algorithm to recapitulate the
known complexes from the weighted or unweighted inter-
action graph was measured using the Geometric Accuracy
(Acc) and Geometric Separation (Sep), which are derived
from a Confusion Table T, where each entry T, ; gives the
number of proteins in common between complex i and
cluster j[15]:

n
Si= max;'L(Tij /ZTij)
j=1
n
p; = maxi(Tij/zTij)
i=1
m m n
CoH; = Z(Tij /zTij') : (Tij /ZTi’j)
j=1 j'=1 i'=1
n m n
CZH]' = E(Tij/zTij’) : (Tij/zTi’j)
i=1 j'=1 i'=1

n m m n
2 (X TySi X (X TPy
Acc = =1 j=1 « J=1 i=1
n m n m
X X Ty X X T
i=1j=1 i=1j=1

Sep = \/avg(CoH) * avg(CIH)

The Acc indicates the tradeoff between the Sensitivity and
the Positive Predictive Value (PPV), and is calculated by
taking the geometric mean of these two quantities. Sensi-
tivity is defined as the weighted average complex-wise sen-
sitivities, S;, and cluster-wise positive predictive values P;.
S, measures the best overlap of complex i with the pre-
dicted clusters, and Pj measures the best overlap of cluster
j with the gold standard complexes, relative to the number
of components in cluster j that are contained in the origi-
nal set of complexes. The Acc alone may not give an accu-
rate evaluation of a clustering - for example, if the
clustering consists of very large and very small clus-
ters[15]. In this case both the complex-wise Sensitivity
and cluster-wise PPV will be high.

http://www.biomedcentral.com/1471-2105/10/99

A second measure, the Sep, is therefore calculated to meas-
ure the one-to-one correspondence between predicted
clusters and complexes. It is defined as the geometric
mean of the average complex-wise and average cluster-
wise separation, which are each derived from confusion
tables modified, respectively, to indicate the fraction of
overlap of each complex with every cluster, or each cluster
with every complex. Unlike Brohée et al, all calculations
done here consider only those components that exist in
both datasets.

Graph Properties

The mass and area fractions were computed for each
unweighted graph using the cIlminfo tool provided with
the MCL implementation. The mass fraction measures the
total weight of all edges (interactions) that occur between
proteins within the same cluster, relative to the total
weight of all edges. For an interaction network of edges, E,
and the subset of these edges contained entirely within
clusters E* < E, the mass fraction is given by:

X w(e)
Mass Fraction = €€E*
2 w(e)
ecE
where w(e) denotes the weight of edge e.

The area fraction is calculated by translating a clustering
into an interaction graph by considering each cluster as a
clique, and then dividing the number of clique edges by
the number of edges within a full clique. For a graph with
N nodes and a clustering of the graph containing C clus-
ters, where the number of components in the i cluster is
given by n;:

C

2 nj(ni-1)
Area Fraction ==L

N(N-1)

Parameter Optimization
Each clustering was performed with parameters that max-
imized the Geometric Accuracy and Separation. For MCL
this involved sampling Inflation parameter values of 1.5 -
4 in steps of 0.1. For the AP algorithm we sampled the
Preference parameters from 0.1-1 in steps of 0.05. The
damping factor was set to 0.99, the maximum number of
iterations to 15,000, and the number of iterations
required for convergence to 1500. For AP, all proteins
were assigned the same preference.
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Additional material

Additional File 1

Curated Complexes. Curated complexes[28] used to generate the
unweighted networks, and taken as the reference set for computing the
Geometric Accuracy (Acc) and Separation (Sep) values (see main text for
detail).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-99-S1.xls]

Additional File 2

Clustering Results, Unweighted Network. AP and MCL results for all
parameters tested, at all noise levels for the unweighted network. Columns
descriptions are listed in the 'col_descriptions' worksheet tab of this spread-
sheet. See also reference [15] and main text for descriptions of PPV, Sen-
sitivity, Acc, SepCl, SepCo, and Sep.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-99-S2 xls]

Additional File 3

MCL Human PPI Size Distribution. Size distributions of clusters in par-
titions computed by MCL on a human PPI network (15 982 interactions
and 5850 proteins) extracted from version 2.0.50 of the Biogrid data-
base[33]. AP did not converge for this network, precluding any compari-
son.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-99-S3 xls]

Additional File 4

Supplementary Figures. Supplementary figures referred to in the main
text.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-99-S4.doc]

Additional File 5

Clustering Results, Weighted Network. AP and MCL results for all
parameters tested, at all noise levels for the weighted network. Column
descriptions are given in the 'col_descriptions' worksheet tab of this
spreadsheet. See also reference [15] and main text for descriptions of PPV,
Sensitivity, Acc, SepCl, SepCo, and Sep.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-99-85.xls]

Acknowledgements

We are grateful to Delbert Dueck and Brendan Frey for guidance in using
the Affinity Propagation algorithm. Miguel Santos, and the systems support
team of the Centre for Computational Biology at the Hospital for Sick Chil-
dren are thanked for help with the computer systems. S.J.W. is Tier | Can-
ada Research Chair in Computational Biology and Bioinformatics and
acknowledges support from the Canada Institute for Health Research, the
Hospital for Sick Children and the Sickkids Foundation, Toronto, Canada.

http://www.biomedcentral.com/1471-2105/10/99

References

21.

22.
23.

24.
25.
26.

Charbonnier S, Gallego O, Gavin AC: The social network of a cell:
Recent advances in interactome mapping. Biotechnology annual
review 2008, 14:1-28.

Cusick ME, Klitgord N, Vidal M, Hill DE: Interactome: gateway
into systems biology. Human molecular genetics 2005, 14(Spec
No. 2):R171-181.

Fields S, Song O: A novel genetic system to detect protein-pro-
tein interactions. Nature 1989, 340(6230):245-246.

Johnsson N, Varshavsky A: Split ubiquitin as a sensor of protein
interactions in vivo. Proceedings of the National Academy of Sciences
of the United States of America 1994, 91(22):10340-10344.

Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A,
Schultz J, Rick JM, Michon AM, Cruciat CM, et al.: Functional organ-
ization of the yeast proteome by systematic analysis of pro-
tein complexes. Nature 2002, 415(6868):141-147.

Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau
C, Jensen LJ, Bastuck S, Dumpelfeld B, et al.: Proteome survey
reveals modularity of the yeast cell machinery. Nature 2006,
440(7084):631-636.

Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li ], Pu
S, Datta N, Tikuisis AP, et al.: Global landscape of protein com-
plexes in the yeast Saccharomyces cerevisiae. Nature 2006,
440(7084):637-643.

Yook SH, Oltvai ZN, Barabasi AL: Functional and topological
characterization of protein interaction networks. Proteomics
2004, 4(4):928-942.

Ideker TE: Network genomics. Ernst Schering Research Foundation
workshop 2007:89-1 5.

Bader S, Kuhner S, Gavin AC: Interaction networks for systems
biology. FEBS letters 2008, 582(8):1220-1224.

Pieroni E, de la Fuente van Bentem S, Mancosu G, Capobianco E, Hirt
H, de la Fuente A: Protein networking: insights into global func-
tional organization of proteomes. Proteomics 2008,
8(4):799-816.

Alberts B: The cell as a collection of protein machines: prepar-
ing the next generation of molecular biologists. Cell 1998,
92(3):291-294.

Formosa T, Barry J, Alberts BM, Greenblatt J: Using protein affinity
chromatography to probe structure of protein machines.
Methods Enzymol 1991, 208:24-45.

Jain AK, Dubes RC: Algorithms for clustering data. Upper Saddle
River: Prentice-Hall Advanced Reference Series archive 1988.

Brohee S, van Helden J: Evaluation of clustering algorithms for
protein-protein interaction networks. BMC bioinformatics 2006,
7:488.

Chipman H, Hastie T, Tibshirani R: Statistical Analysis of Gene
Expression Microarray Data. Boca Raton, FL: Chapman and Hall;
2003:159-199.

Hastie T, Tibshirani R, Friedman J: The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. New York:
Springer; 2001.

MacQueen |: Some methods for classification and analysis of
multivariate observations. Procedings of the Fifth Berkeley Sympo-
sium on Math, Statistics, and Probability 1967, 1:281-297.

Lloyd S: Least squares quantization in PCM. |EEE Transactions on
Information Theory 1982, 28:128-137.

Sharan R, Ulitsky I, Shamir R: Network-based prediction of pro-
tein function. Mol Syst Biol 2007, 3:88.

Pu S, Vlasblom J, Emili A, Greenblatt ], Wodak §J: Identifying func-
tional modules in the physical interactome of Saccharomy-
ces cerevisiae. Proteomics 2007, 7(6):944-960.

van Dongen S: Graph Clustering by Flow Simulation. In PhD
Thesis University of Utrecht; 2000.

Bader GD, Hogue CW: An automated method for finding
molecular complexes in large protein interaction networks.
BMC bioinformatics 2003, 4:2.

Blatt M, Wiseman S, Domany E: Superparamagnetic clustering
of data. Physical review letters 1996, 76(18):3251-3254.

Frey BJ, Dueck D: Clustering by passing messages between
data points. Science (New York, NY) 2007, 315(5814):972-976.
Brusco M), Kohn HF: Comment on "Clustering by passing mes-
sages between data points”. Science (New York, NY) 2008,
319(5864):726. author reply 726.

Page 13 of 14

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2105-10-99-S1.xls
http://www.biomedcentral.com/content/supplementary/1471-2105-10-99-S2.xls
http://www.biomedcentral.com/content/supplementary/1471-2105-10-99-S3.xls
http://www.biomedcentral.com/content/supplementary/1471-2105-10-99-S4.doc
http://www.biomedcentral.com/content/supplementary/1471-2105-10-99-S5.xls
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18606358
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18606358
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16162640
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16162640
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2547163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2547163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7937952
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7937952
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16429126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16429126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16554755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16554755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15048975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15048975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17249498
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18282471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18282471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18297653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18297653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9476889
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9476889
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1779837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1779837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17087821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17087821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17353930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17353930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17370254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17370254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17370254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12525261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12525261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10060920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10060920

BMC Bioinformatics 2009, 10:99 http://www.biomedcentral.com/1471-2105/10/99

27. Frey BJ, Dueck D: Response to Comment on "Clustering by
Passing Messages Between Data Points". Science. 2008,
319(5864):726d.

28. Pu S, Wong ], Turner B, Cho E, Wodak §): Up-to-date catalogues
of yeast protein complexes. Nucleic acids research 2009,
37(3):825-831.

29. Collins SR, Kemmeren P, Zhao XC, Greenblatt JF, Spencer F, Hol-
stege FC, Weissman JS, Krogan NJ: Toward a comprehensive
atlas of the physical interactome of Saccharomyces cerevi-
siae. Mol Cell Proteomics 2007, 6(3):439-450.

30. YuH,Braun P, Yildirim MA, Lemmens |, Venkatesan K, Sahalie J, Hiro-
zane-Kishikawa T, Gebreab F, Li N, Simonis N, et al.: High-quality
binary protein interaction map of the yeast interactome net-
work. Science. 2008, 322(5898):104-110.

31. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin
N, Schwikowski B, Ideker T: Cytoscape: a software environment
for integrated models of biomolecular interaction networks.
Genome Res 2003, 13(11):2498-2504.

32. Vlasblom J, Wu S, Pu S, Superina M, Liu G, Orsi C, Wodak S): Gene-
Pro: a cytoscape plug-in for advanced visualization and anal-
ysis of interaction networks. Bioinformatics (Oxford, England) 2006,
22(17):2178-2179.

33. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M:
BioGRID: a general repository for interaction datasets.
Nucleic acids research 2006:D535-539.

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 14 of 14

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19095691
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19095691
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17200106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17200106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17200106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18719252
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18719252
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18719252
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14597658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14597658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16921162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16921162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16921162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381927
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	The clustering algorithms

	Results and discussion
	Performance on unweighted protein interaction graphs
	Performance on a weighted biological protein interaction graph

	Conclusion
	Methods
	Building the protein interaction graphs
	Performance assessment
	Graph Properties
	Parameter Optimization

	Authors' contributions
	Additional material
	Acknowledgements
	References

