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Abstract
Background: The problem of approximate string matching is important in many different areas
such as computational biology, text processing and pattern recognition. A great effort has been
made to design efficient algorithms addressing several variants of the problem, including
comparison of two strings, approximate pattern identification in a string or calculation of the
longest common subsequence that two strings share.

Results: We designed an output sensitive algorithm solving the edit distance problem between
two strings of lengths n and m respectively in time O((s - |n - m|)·min(m, n, s) + m + n) and linear
space, where s is the edit distance between the two strings. This worst-case time bound sets the
quadratic factor of the algorithm independent of the longest string length and improves existing
theoretical bounds for this problem. The implementation of our algorithm also excels in practice,
especially in cases where the two strings compared differ significantly in length.

Conclusion: We have provided the design, analysis and implementation of a new algorithm for
calculating the edit distance of two strings with both theoretical and practical implications. Source
code of our algorithm is available online.

Background
Approximate string matching is a fundamental, challeng-
ing problem in Computer Science, often requiring a large
amount of computational resources. It finds applications
in different areas such as computational biology, text
processing, pattern recognition and signal processing. For
these reasons, fast practical algorithms for approximate
string matching are in high demand. There are several var-
iants of the approximate string matching problem, includ-
ing the problem of finding a pattern in a text allowing a

limited number of errors and the problem of finding the
number of edit operations that can transform one string
to another. We are interested in the latter form in this
paper.

The edit distance D(A, B) between two strings A and B is
defined in general as the minimum cost of any sequence
of edit operations that edits A into B or vice versa. In this
work we will focus on the Levenshtein edit distance [1],
where the allowed edit operations are insertion, deletion
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or substitution of a single character, with each operation
carrying a cost of 1. The distance measure which uses this
type of operation is often called the unit-cost edit distance
and is considered the most common form. The weighted
edit distance allows the same operations as the Levensht-
ein edit distance, but each operation may have an arbi-
trary cost.

In the literature there exist a number of algorithms dealing
with the calculation of the edit distance between two
strings. The basic dynamic programming algorithm that
solves the problem in O(mn) time and linear space has
been invented and analyzed several times in different con-
texts [2-7], published between 1968 and 1975. Early on
there was an algorithm by Masek and Paterson [8], build-
ing on a technique called the "Four-Russian paradigm"
[9], which computes the edit distance of two strings over
a finite alphabet in time O(mn/log2 n). This algorithm is
not applicable in practice, since it can outperform the
basic algorithm only then the input size is exceeding 40
GB. All these algorithms can also be used to calculate the
alignment of two strings, in addition to their edit distance.
A modification of the basic algorithm by Hirschberg [10]
allows the alignment calculation to be performed using
linear space as well.

A few years later in 1985, Ukkonen arrived at an
O(s·min(m, n)) time algorithm, using space O(min(m, n,
s)) [11], where s is the edit distance of the two strings com-
pared, creating a very efficient output sensitive algorithm
for this problem. The following year, Myers published an
algorithm for the Longest Common Substring (LCS)
problem, which is similar to the edit distance problem,
which has O(s2 + (m + n) log(m + n)) time and linear space
complexity [12]. In achieving this result, a generalized suf-
fix tree of the input strings, supplemented by Lowest Com-
mon Ancestor (LCA) information, has to be used, which
renders the solution impractical and only of theoretical
value. The practical version of that algorithm needs O(s(m
+ n)) time. On the other hand, a variation of Ukkonen's
algorithm using O(s·min(s, m, n)) space leads to an effi-
cient, straightforward implementation, using recursion.
Lastly, the basic algorithm, although theoretically inferior,
is the most commonly used, owing to its adaptability, ease
of implementation, instruction value, and speed, the lat-
ter being a result of small constant factors.

In this paper we will present an O((s - |n - m|)·min(m, n,
s) + m + n) time and linear space algorithm to calculate the
edit distance of two strings, which improves on all previ-
ous results, the implementation of which is practical and
competitive to the fastest algorithms available. The quad-
ratic factor in the time complexity now becomes inde-
pendent of the longest string, with the algorithm

performing its best when the two strings compared differ
significantly in size.

Methods
Definitions
In this section we closely follow the notation and defini-
tions in [11]. Let A = a1a2...an and B = b1b2...bm be two
strings of lengths n and m respectively, over a finite alpha-
bet Σ. Without loss of generality, let n = m.

The edit operations defined in the previous section can be
generalized to have non-negative costs, but for the sake of
simplicity in the analysis of our algorithm we will concern
ourselves only with the Levenshtein edit distance. We also
assume that there is always an editing sequence with cost
D(A, B) converting A into B such that if a cell is deleted,
inserted or changed, it is not modified again. Under these
assumptions the edit distance is symmetric and it holds 0
≤ s ≤ max(n, m). Since n ≥ m and there is a minimum
number of n - m insertions that need to be applied in
transforming A into B, the last equation becomes n - m ≤
s ≤ n. The insertion and deletion operations are symmet-
ric, since an insertion, when transforming A to B, is equiv-
alent to a deletion in the opposite transformation, and
vice versa. Both operations will be referred to as indels.

The basic dynamic programming algorithm employed to
solve the edit distance problem, invented in a number of
different contexts [2-7], makes use of the edit graph, an (n
+ 1) × (m + 1) matrix (dij) that is computed from the
recurrence:

This matrix can be evaluated starting from d00 and pro-
ceeding row-by-row or column-by-column. This process
takes time and space O(mn) and produces the edit dis-
tance of the strings in position dmn. The cells of the matrix
(nodes of the graph) have dependencies based on this
recurrence, forming the dependency or edit graph, a directed
acyclic graph that is shown in Fig. 1. All edit graph nodes
will be referred to as cells and all graph edges (edit opera-
tions) will be referred to as transitions.

To refer to the diagonals of (dij) we number them with
integers -m, -m + 1, ..., 0, 1, ..., n such that the diagonal
denoted by k consists of those dij cells for which j - i = k.
The diagonal n - m, where the final value dmn resides, is
special for our purposes and we will call it main diagonal.
The matrix cells between diagonals 0 and n - m (inclusive)
consist the center of the edit graph/matrix, the lower left
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triangle between diagonals -1 to -m will be called the left
corner of the graph and upper right triangle between diag-
onals n - m + 1 and n will be called the right corner of the
graph.

A path in the edit graph is a series of transitions connecting
cells, similar to a path in a directed graph. Whenever we
generally refer to a path, we will assume that the final cell
it reaches is dmn. The optimal path will be a path originat-
ing at d00, and for which the sum of the costs of its transi-
tions is minimal among all paths from d00.

The concept
The basic dynamic programming algorithm evaluates
unnecessary values of (dij). This fact led Ukkonen [11]
design an algorithm that is diagonal-based and computes
cell values only between the diagonals - s and n - m + s. He
also observed that di + 1, j+1 ∈ {di, j, di.j + 1} and therefore
the values along a diagonal are non-decreasing.

Both Ukkonen [11], for calculating the edit distance, and
Myers [12], for calculating the length of the Longest Com-
mon Substring of two strings, designed their algorithms
with a common feature: The iterations in evaluating the
edit graph cells were score based, as opposed to column or
row based in the basic algorithm. In each step they would

increase the edit distance D by 1, starting at 0, and evalu-
ate all cells with values dij ≤ D, meaning cells reachable
with edit distance D, often omitting cells not contributing
to the next iteration, by considering transitions between
cells where the values are incremented.

The algorithm we present here builds on all previous
observations and the main iteration is score based as well.
But we also make use of the following facts:

1. n - m indels are unavoidable.

2. Additional indels are unavoidable when the optimal
path strays away from the main diagonal.

3. Certain cells do not contribute to the optimal path or
their contribution is redundant.

Points 1 and 2 follow from the fact that an indel is
required to move to the next diagonal. At least n - m indels
are required on any path that first reaches the main diag-
onal, and every time the path strays from the main diago-
nal, it must return to it.

In order to address the third fact, we will introduce the
concept of dominance. We will say that cell dij dominates

Dependency graphFigure 1
Dependency graph. 
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cell dkl if no path through dkl defines a better edit distance
than the optimal path through dij. This implies that dij has
an equal or better potential to belong to the optimal path
(which defines s) than dkl, and thus the latter and its paths
do not need to be considered further.

Some dominance relations between cells can be spotted
easily. Let us consider all possible paths starting from d00.
If a match exists between characters a1 and b1 (a1 = b1),
then we do not need to consider indel transitions from d00
to d10 and d01. In that case actually, all cells d0k for 1 ≤ k ≤
n and dk0 for 1 ≤ k ≤ m are dominated by d11. Since a1
matches b1, cell d11 obtains the value of 0. Then all cells
d1k, 2 ≤ k ≤ n can obtain a value of k - 1 through a path
traversing d11. Any path through d01 cannot result in a
smaller value for cells d1k, 2 ≤ k ≤ n, since cells d0,k-1 have
the same value. In a similar manner, cells in the second
column starting at the third line are dominated by d11.
These arguments apply not only to d00 but to all dij in gen-
eral, proving the following:

Lemma 1. A cell dij is dominated by di+1,j+1 if aj = bi.

Let us now consider what happens when a1 ≠ b1. In this
case we can still find dominated cells in the second row
and column, depending on the first matching character
position in each. Let us assume that the first character in A
matching b1 is al, 2 ≤ l ≤ n. All cells d1k, 2 ≤ k ≤ l - 1 are dom-
inated by d11, for the same reasons that were described
earlier. And a similar domination relation exists in the col-
umns. Before we generalize the dominance relation with
a theorem, we will introduce a new scoring scheme to take
advantage of the indel unavoidability, which will create
another optimization criterion, monotonicity in the rows
and columns of certain parts in our graph. For the new
scoring scheme and for the rest of the description of our
algorithm, we will divide our matrix into two parts, sepa-
rated by the main diagonal. The first part includes the
center and the left corner of the matrix, where the second
part includes the right corner of the matrix, together with
the main diagonal (which is shared by both parts). The
scoring scheme and the algorithm described further on
will be analyzed on the part of the matrix left of the main
diagonal, although all theory works symmetrically on the
part right of the main diagonal, by substituting the rows
with columns and vice versa.

The new scoring scheme, for the left part of the matrix, is
implemented as follows: Every vertical transition (indel)
incurs a cost of 2, since it strays away from the main diag-
onal and creates the need of another horizontal indel to
compensate. All horizontal transitions do not carry any
cost. The match and substitution costs remain 0 and 1
respectively. To obtain the edit distance s, we add n - m to

the value of cell dmn. The transformation is illustrated
through an example in Fig. 2.

To guarantee the correctness of an algorithm based on
that scoring scheme, we will now prove the following
lemma:

Lemma 2. Under the new scoring scheme, the edit distance of
A and B remains unchanged.

Proof. It has already been shown that the edit distance is
defined by an optimal path of the fewest possible edit
operations carrying a cost, resulting in the minimum score
at dmn. We will prove the following two statements:

1. The score obtained from the optimal path remains
unchanged and

2. No other path can lead to a sequence of fewer edit oper-
ations and thus a smaller score/edit distance.

To prove the first statement, we note the following: The
number of match and substitution transitions in the opti-
mal path does not alter the edit distance in the new scor-
ing scheme, since the costs of these operations have not
changed. With the optimal path starting at diagonal 0 and
ending at diagonal n - m, there are n - m indels which can
be omitted from our calculation, since with the new scor-
ing scheme we add these at the end. The only remaining
edit operations to examine are vertical indels left of the
main diagonal and horizontal indels right of the main
diagonal, which must be accompanied by compensatory
horizontal and vertical indels in the respective parts, or
the optimal path cannot end up in the main diagonal.
Since these indels come in pairs, with half of them carry-
ing the cost of 2 and half the cost of 0 in the new scoring
scheme, the final edit distance remains unchanged.

The second statement follows from the previous argu-
ments, since any path under the new scoring scheme car-
ries the same cost as before, so a new path with a better
score than the previous optimal path score contradicts the
optimality of the latter under the original scoring scheme.

Since with the new scoring scheme horizontal transitions
do not carry a cost, the values of cells in every row in the
left part of the matrix are monotonically decreasing. The
same holds for the columns in the right part of the matrix,
which leads to the following:

Corollary 1. Under the new scoring scheme, the values of cells
in rows left of the main diagonal and in columns right of the
main diagonal are monotonically decreasing as the indices of
the corresponding cells increase.
Page 4 of 11
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Let us now consider all cells in a specific row x, left of the
main diagonal. Values on this row are monotonically
decreasing and we only need to keep the information of
the first cells from the right where the values are changing
(the leftmost cells of a series of cells with the same value),
since the rest of the cells are dominated (can be reached
with 0 cost from the aforementioned cells). Now, if we
have two consecutive dominant cells dxy and dxz on row x,
with y < z and dxy = dxz + 1, then the value of dxy can be
propagated through a transition to row x + 1 only if a
match exists between bx and ak, with y < k ≤ z. In order to
be able to locate such matches in constant time, we will
create lookahead tables for each letter of the alphabet Σ,
which can point to the next matching character from
strings A and B. Basically these lookahead tables will be
able to answer the question: Given a character c ∈ Σ and a
position 1 ≤ k ≤ n, what is the smallest index l ≥ k such that
al = c? And the same for string B. Such a lookahead table
can be easily constructed in time and space O((n + m)|Σ|),
which for a fixed alphabet of constant size is linear, by tra-
versing both strings in reverse order, once for each charac-
ter of the alphabet.

One can easily verify that lemma 1 still holds, based on
the same arguments used to prove it, under the new scor-
ing scheme. In addition, the following corollary holds:

Corollary 2. A cell dij with value D dominates all cells di-k, j-k,
0 ≤ k ≤ max(i, j) with values ≥ D.

Proof. It is easy to see, with a simple inductive argument,
that a cell dij dominates all parental cells on the same diag-
onal with the same score. Since any cell dominates itself

with a higher score (because every path from that cell will
have a higher score equal to the diffierence of the two
scores), the corollary follows. �

The algorithm
The algorithm works separately on the two parts of the
matrix left and right of the main diagonal. The description
of the algorithm considers only the part of the matrix
lying left of the main diagonal, with the assumption that
all operations are symmetric on the right part of the
matrix. An exception occurs when we describe the inter-
face between the two parts.

Our edit distance algorithm is score based. On each itera-
tion the edit distance score is incremented by 1 and the
part of the edit graph that can be reached with the current
score is determined. The initial score is 0, although we
should keep in mind that, since at the end we add n - m to
the score – adjusting for the unavoidable indels that we
get for free on horizontal transitions – it can be considered
as if the score is initialized with the value n - m.

During each iteration, we store the values and positions of
the cells we work with in a double linked list, which will
be referred to simply as list. To store the position of a cell
we actually need only the column index where the cell
resides, for reasons that will be explained later. The initial-
ization phase starts with the determination of the cells
which can be reached with a score of 0. Since all horizon-
tal and match diagonal transitions (diagonal transitions
corresponding to matching characters) have a cost of 0, we
follow horizontal transitions until we locate a match, then
advance to the next line and repeat. The process ends

Edit graphs under different scoring schemesFigure 2
Edit graphs under different scoring schemes. Edit graph cell values and optimal paths under different scoring schemes.
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when we reach the main diagonal. We do not need to keep
information on all cells with 0 value, the first cell with a
value of 0 on each line suffices, since all further cells are
dominated. These dominant leftmost cells can be located
in constant time for each line, by using the lookahead
tables. When we encounter a series of matches on the
same diagonal, we only need to keep the value of the last
(bottom-right) cell, since all other cells are dominated.
The indices of cells accessed through this process increase
monotonically, as we advance forward through rows, col-
umns and diagonals. The initialization finishes when the
main diagonal is reached. Thus at the end of the initializa-
tion step we have a list of cells with 0 value, each of which
resides on a different row, column and diagonal of the
matrix. An example of the initialization phase can be
found in Fig. 3a.

On each subsequent iteration of the algorithm and with
each increasing value of the score, the linked list is
updated with new cells that can be reached from members
of the list. The algorithm at iteration D, with D also being
the current score, starts from the top of the list and proc-
esses one cell at a time. For each list cell examined having
a value of D - 1 or D - 2, as will be proved in lemma 3, we
either follow a substitution transition, if the cell's value is
D - 1 or a vertical indel transition if the cell's value is D -
2. Let's assume we are examining list cell dij = D - 1. We
know that di+1, j+1 = D, since if di+1, j+1 < D it would already
be included in the list, unless dominated by another cell
in the list, which is impossible since then dij would in turn
be dominated by di+1, j+1 and would not be in the list dur-
ing the current iteration. We now find the largest k for
which bi+k = aj+k, k ≥ 1 and insert cell di+k, j+k in the list. That
is the last cell in a series of match transitions, starting at
di+1, j+1, if any exist. Next, we examine the cells following
dij in the list and remove the ones that are dominated by
di+k, j+k. At this step, list cells dop in rows o <i + k and on
diagonals o - p such that i - j <o - p ≤n - m are removed, all
being dominated as proved later in theorem 1. Starting
now at cell di + k, j + k, we repeat the process performed in
the initialization, with the difference that for each new cell
inserted in the list, all subsequent cells in the list that are
dominated by the new member are removed. This process
will stop once the next identified match in the lookahead
table falls inside the dominated area. Precisely, if dop is the
last cell with value D that was inserted in the list, the next
match from the lookahead tables resides at diagonal q and
the next cell in the list resides at a diagonal p ≤ q and row
r ≥ o, then the process of inserting new cells derived from
dij is terminated and we proceed to the next cell in the list.

Each iteration finishes once we reach the main diagonal.
The reader can follow the procedure, through the five iter-
ations in calculating the edit distance of strings A =
'GATCGCGACC' and B = 'ACTTCTA', in Fig. 3.

One special case that was not covered in the above
description is the handling of a cell insertion following a
vertical indel transition, when another dominated cell on
the same diagonal exists in the list. In this case, the only
position the dominated cell can occupy is previous to the
current cell examined, from which the transition ema-
nated. This results in the removal of the dominated cell.
This special case only requires a constant number of oper-
ations and does not alter the complexity of the algorithm.
As already mentioned, the part of the matrix right of the
main diagonal is processed in a symmetric way. At the end
of each iteration, the cells of the main diagonal, which
belongs to both parts, have to be updated. These cells
reside at the end of the lists for both parts and the update
is performed in constant time as well.

We will now proceed to prove the following theorem:

Theorem 1. Cell dij on diagonal i - j with value D dominates
all cells dkl in the list with k < i, i - j < k - l ≤ n - m and values
<D, meaning all list cells in rows above it and columns with
larger indices.

Proof. Since horizontal transitions carry a cost of 0, all cells
in row i and column l with j < l ≤n - m have a score of at
most D. All cells dkl in the list, residing in diagonals k - l
with i - j < k - l ≤n - m and in rows k with k < i lead diagonal
transitions to cells dk + 1, l +1 with score at most D, since al ≠
bk (or dkl would not belong to the list, dominated by dk+1,

l+1). This implies that no diagonal transition from these
cells can produce a value smaller than D in any cell on row
i and column > j via a path passing through these cells,
since values in the paths are monotonically increasing
(because all edit operations have non-negative costs). If
we now examine the vertical transitions emanating the dkl
cells under consideration, they also result in paths propa-
gating scores at least D, which again cannot result in a bet-
ter score on the cells on row i and column > j. All cells on
diagonals <i - j do not need to be considered, since they
cannot be reached from the claimed dominated cells of
this theorem, unless a path reaches them through a cell in
diagonal i - j. But in corollary 2 we showed that cells on
this diagonal with scores ≥ D are already dominated by dij.
Thus all dkl cells are dominated by dij. �

The next corollary follows from the domination theorem
1:

Corollary 3. No two cells in the list reside on the same column.

Proof. Before a new candidate cell dij is inserted in the list,
any list cell on the same column will be removed, since it
is dominated by the newly inserted cell, based on the pre-
vious theorem. �
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Edit distance algorithm iterationsFigure 3
Edit distance algorithm iterations. Edit distance algorithm iterations. The main diagonal is depicted in blue, iteration tran-
sitions are drawn in red and green alternatively. Cells whose values are presented have been inserted in the list at the end of 
each iteration, where cells that their values are circled have been removed from the list, dominated by the cells they connect 
with arcs.
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Now we have the necessary tools to prove the following
lemma:

Lemma 3. When iteration D starts, with 1 ≤ D ≤ s - (m - n),
all cells in the linked list have either a score of D - 1 or D - 2.

Proof. Initially, after the initialization, the list holds cells
with value 0, so the lemma holds. Every time a cell is
inserted in the list it will remain until it is dominated by
another cell or the algorithm terminates. Unless a cell
with score D in the list is dominated and removed before
its transitions are examined, when the algorithm reaches
that cell the diagonal transition emanated from the cell
will produce the next candidate, with score D + 1, to be
inserted in the list. The second time this cell is visited, the
vertical transition from it will be examined. In that case,
the next candidate with score D + 2 will dominate the cur-
rent cell, according to the previous theorem. Thus, even if
a cell is not dominated by another inserted cell, it will be
dominated by its siblings. �

A direct consequence of the previous lemma is the
following:

Corollary 4. At most two cells in the list can reside in the same
diagonal, and their values differ by 1. This holds for same row
list cells as well.

A pseudo-code description of the algorithm is presented
below. The description excludes special cases requiring
substitutions of the currently examined cells of the list and
only presents the operations of the algorithm in the part
of the matrix left of the main diagonal. The procedure
interfacing the left and right linked lists is omitted as well.
The algorithm can be studied in more detail from the
available code.

Initialize lookahead arrays X

Initialize linked list L

score D := 0

line l := 0

column c := 0

while Not reached main diagonal do

insert dlx := X[al][c] into L

c := x

l + +

end while

while Not reached cell dmn do

D + +

Current Cell dij := L → head

repeat

if dij = D - 1 then

dij := process_next_candidate(di+1, j+1)

else

dij := process_next_candidate(di+1, j)

end if

until dij = L → head

end while

Function process_left_candidate(dkl)

while al = bk do

k + +

l + +

end while

Insert dkl in list L

Remove dominated dij → next by dkl from L

while not reached diagonal of dij → next do

process_left_candidate(X[ak+1][l + 1])

end while

return dij → next

Algorithm complexity
The algorithm described in the previous section is score
based and as such the main loop executes an equal
number of times with the value recorded at cell dmn of the
edit graph. Since we add the value n - m to that score in
order to obtain the edit distance of strings A and B, the
total number of iterations is equal to s - |n - m|.
Page 8 of 11
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At all times during the execution of the algorithm the
linked list contains at most m cells, which is a direct con-
sequence of corollary 3. Also, due to corollary 4, there can
be at most 2s cells in the list at any given time, since the
maximum number of diagonals on which the algorithm
processes cells is s, consisting of the center of the matrix
and diagonal bands of size (s - |n - m|)/2 from each side
of the center, accessed while the algorithm iterates. Basi-
cally, for every two iterations of the algorithm, one further
diagonal from each side of the center of the matrix is
accessed.

All cells in the list are accessed in order and without back-
tracking during each iteration. Each cell undergoes
through a constant number of structural accesses, once
when it is inserted in the list, once when it is removed and
two times when the diagonal and vertical transitions from
this cell are examined, if there is a chance before it is dom-
inated. During each iteration there are other cells
accessed, the candidates for insertion in the list. While
processing these cells we are advancing both the indices of
columns and rows without backtracking, which proves, as
with list cells, that there are at most m or s candidate cells
examined during each iteration.

A candidate cell may be accessed several times while com-
pared to a list cell, in order to determine a dominance
relation. A list cell can also be accessed several times dur-
ing the same process, to check whether it is dominated.
However, the amortized cost for each cell is constant.
Every time a candidate cell is re-examined, a cell from the
list has been removed. And every time a list cell is re-exam-
ined, in the previous step it was not dominated by a can-
didate cell, the latter then having being inserted in the list
and not being examined again on that iteration. Since
each time we advance through either a candidate or a list
cell, and since both sets have O(min(m, s)) cells (under
the assumption that m ≤ n), the total number of constant
time operations during an iteration is O(min(m, n, s)).

This analysis demonstrates that the total running time of
our algorithm is O((s - |n - m|)·min(m, n, s) + m + n),
where the last linear m + n component represents the time
necessary to initialize the lookahead tables. It can be eas-
ily verified using simple algebra that s - |m - n| ≤ min(m,
n), which provides another less tight upper bound of the
worst case time behavior of the algorithm, O(min(m, n,
s)2 + m + n). We can therefore observe that the quadratic
factor in the time complexity is independent of the long-
est string being compared. The space usage of this algo-
rithm is O(m + n), dominated by the size of the lookahead
tables kept in memory. This completes the proof of the
next theorem:

Theorem 2. The edit distance s of two strings A and B with
lengths n and m respectively can be computed in time O((s - |n
- m|)·min(m, n, s) + m + n) and in space O(m + n).

Results and Discussion
We have implemented our new algorithm to test its per-
formance in practice. For comparison purposes, we imple-
mented the basic O(mn) algorithm, also known as
Needleman-Wunsch [3], as well as the Ukkonen
O(s·min(m, n)) algorithm [11]. All algorithms were
implemented in perl, using the same input/output proce-
dures and no optimizations. Benchmarking was per-
formed with the benchmark perl module for the
experiments averaging a large number of random runs,
and the time unix command for individual experiments,
the same method always used across algorithms. All tests
were performed on an 8 GB RAM 2.93 GHz Intel proces-
sor IBM compatible desktop machine, running ubuntu
linux. In all test cases the data completely fit in the main
memory.

Since perl does not support pointer structures efficiently,
we implemented the double linked list with arrays, using
the fact that no two cells in the list can reside on the same
column. This way we access list cells using their column
index. As such, the list occupies more space than the min-
imum possible, where the implementation may have
been more efficient in another programming language
supporting these structures.

Ukkonen's algorithm implementation was based on the
outline found in [11] and the more detailed description
found in [13]. The version used is particularly simple by
making use of recursion, but has larger than linear space
demands, specifically O(s·max(m, n)). The basic algo-
rithm was implemented using linear space and row-by-
row iterations.

The first two experiments were run on random sequences
over alphabets of 4 and 20 characters respectively, similar
to random DNA/RNA and amino acid sequences. The
length of the first sequence from the two compared was
set at 1000 characters, where the length of the second
sequence varied between 1000 and 3000 characters. We
examined a total of nine length ratios n/m values between
1 and 3 (1 ≤ n/m ≤ 3). For each length ratio, 100 different
comparisons were run, with the execution time and edit
distance values averaged among these. The results are
depicted in Fig. 4.

In these simulations it is worth noticing significant per-
formance improvement of the new algorithm with
increasing length ratio of the random strings, although
the total length of the strings is increasing. This is not sur-
prising, since the number of iterations s - |m - n| is decreas-
Page 9 of 11
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ing, caused by a slower increase in edit distance than
difference between the lengths of the two strings.

Ukkonen's algorithm performs poorly when comparing
random strings over a large alphabet, because of the large
expected edit distance value in these cases. This algorithm
is designed for comparing similar strings, which is the case
most often encountered in practice. In contrast, the basic
algorithm, owing to its simplicity, performs uniformly
and surpasses the other algorithms when the edit distance
is large compared to string length, unless when the s - |n -
m| value becomes small enough, where our algorithm
takes the lead.

Next, we designed computational experiments perform-
ing comparisons most often encountered in practice,
drawn from the computational biology domain. In all
examples the sequence pairs examined have comparable
lengths, not differing more than 5%. The results are pre-
sented in Table 1. The first simulation involved 1000 ran-
dom sequence pair comparisons from a pool of
approximately 6800 vetted 16S ribosomal RNA
sequences, provided by the Ribosomal Database Project
(RDP). [14] These sequences average about 1350 charac-
ters in size, drawn from an alphabet of size 4. A random
pair of 16S rRNA sequences from the same genus and
another from the same class but different order are com-

pared in the next two lines, followed by a comparison of
two viral genomes and two virion proteins. As these
results demonstrate, the performance of our algorithm
compares favorably to Ukkonen's algorithm, which is
asymptotically slower but has smaller constants, while the
basic algorithm is outperformed in almost every case,
except when matches are sparse. Performance comes with
some cost though and it is interesting to note that the size
of the program implementations of the three algorithms,
the basic, Ukkonen's and ours, is 80, 160 and 700 lines of
code respectively.

The perl implementations of all three algorithms used in
this paper for performance comparisons can be down-
loaded online. [15]

Conclusion
In this paper we have provided the design, analysis and
implementation of a new algorithm for calculating the
edit distance of two strings. This algorithm is shown to
have improved asymptotic time behavior, while it is also
demonstrated to perform very well in practice, especially
when the lengths of the strings compared differ signifi-
cantly. The performance of our algorithm in this case,
which is encountered less often in instances of the edit
distance problem, could find application in the related

Performance on random stringsFigure 4
Performance on random strings. Edit distance calculations on random strings with different length ratios, comparing the 
performance of ours, Ukkonen's and the basic algorithms.
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Longest Common Subsequence (LCS) and other similar
problems solved with dynamic programming techniques.

Future directions for this algorithm include the investiga-
tion of further practical applications of the techniques
described to other similar problems, as well as generaliz-
ing the results to cover additional edit operations such as
swaps.
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Table 1: Algorithm performance comparing biologically related sequences of similar length

Sequence A Sequence B Alphabet size (Average)
length

Our algorithm
(sec)

Ukkonen's algorithm
(sec)

Basic algorithm
(sec)

(Average)
edit distance

Random 16S
rRNA sequence

Random 16S
rRNA sequence

4 1350 0.679 0.811 2.554 421.3

Hyphomonas 16S
rRNA (AF082798)

Hyphomonas 16S
rRNA (AF082795)

4 1330 0.25 0.18 2.14 46

Alphaproteobacteria 16S
rRNA (AJ238567)

Betaproteobacteria 16S
rRNA (AJ239278)

4 1320 0.42 0.46 2.07 318

Cucumber necrosis
virus genome

Lisianthus necrosis
virus genome

4 4790 6.70 6.32 28.27 1154

Human poliovirus 1
virion protein

Human Rhinovirus A
virion protein

20 870 1.02 1.05 0.88 472
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