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Abstract
Background: Sequence mutations represent a driving force of adaptive evolution in bacterial
pathogens. It is especially evident in reductive genome evolution where bacteria underwent
lifestyles shifting from a free-living to a strictly intracellular or host-depending life. It resulted in loss-
of-function mutations and/or the acquisition of virulence gene clusters. Bacillus anthracis shares a
common soil bacterial ancestor with its closely related bacillus species but is the only obligate,
causative agent of inhalation anthrax within the genus Bacillus. The anthrax-causing Bacillus anthracis
experienced the similar lifestyle changes. We thus hypothesized that the bacterial pathogen would
follow a compatible evolution path.

Results: In this study, a cluster-based evolution scheme was devised to analyze genes that are
gained by or lost from B. anthracis. The study detected gene losses/gains at two separate
evolutionary stages. The stage I is when B. anthracis and its sister species within the Bacillus cereus
group diverged from other species in genus Bacillus. The stage II is when B. anthracis differentiated
from its two closest relatives: B. cereus and B. thuringiensis. Many genes gained at these stages are
homologues of known pathogenic factors such those for internalin, B. anthracis-specific toxins and
large groups of surface proteins and lipoproteins.

Conclusion: The analysis presented here allowed us to portray a progressive evolutionary
process during the lifestyle shift of B. anthracis, thus providing new insights into how B. anthracis had
evolved and bore a promise of finding drug and vaccine targets for this strategically important
pathogen.

Background
Genome reduction and gene acquisition in adaptive 
bacterial evolution: Two sides of coins
Sequence mutations represent a driving force of adaptive
evolution in bacterial pathogens. They allow the patho-

gens to survive and prosper within the host immune sys-
tems and to develop unique host specificity [1-4]. It is
especially evident in reductive genome evolution where
bacteria underwent dramatic lifestyles shifting from a free-
living to a strictly intracellular or host-associated life [5-7].
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It results in loss or modification-of-function mutations
[8]. The results are a loss of many of the genes and the
reduction of bacterial genome size [8,9]. The acquisition
of virulence gene clusters is another effective strategy in
the adaptive evolution of bacterial pathogens from non-
pathogenic ancestors [10,11].

The anthrax-causing bacillus species experienced the sim-
ilar lifestyle changes and likely followed compatible evo-
lution paths. B. anthracis shares a common soil bacterial
ancestor with B. cereus, B. thuringiensis and other closely
related bacillus species but it is the only obligate, causative
agent of inhalation anthrax within the genus Bacillus
[12,13]. The bacteria exists in the environment as weath-
erproof, dormant spores [14] that germinate only after
being picked up by macrophages. From there, the B.
anthracis spores are carried through lung tissue to the
regional lymph nodes. During this process, the spores sur-
vive and germinate into vegetative bacilli [15,16]. The veg-
etative bacteria then multiply and penetrate into the
blood circulation by disrupting the macrophages, leading
to massive septicemia [17]. The dramatic lifestyle change
from a soil bacterium to an obligate pathogen would put
B. anthracis and its genome under a strong selective pres-
sure. This study addressed questions on what occurred in
gene content during the adaptive evolution and how they
impacted on the pathogenesis of B. anthracis.

Comparative analyses of completely sequenced genomes
of the closely related Bacillus organisms have offered a
unique opportunity to answer these questions. With such
comparison, Read et al, 2003 were able to show that B.
anthracis had a reduced capacity for sugar utilization and
an expanded array of iron-acquisition genes when com-
pared with B. subtilis [18]. Otherwise, almost all putative
chromosomal virulence and surface proteins of B. anthra-
cis were shown to have homologues in B. cereus. Rasko et
al, 2004 showed that B. cereus ATCC 10987, a non-lethal
dairy isolate in the same genetic subgroup as Bacillus
anthracis, contained a single large plasmid [19]. Interest-
ingly, it has similar gene content and genome structure to
B. anthracis pXO1 but lacks the pathogenicity-associated,
anthrax lethal and edema toxin complex genes. Recently,
Han et al, 2006 revealed more systematic differences
between B. anthracis and its closest relatives: B. cereus and
B. thuringiensis [20]. This genome has complete gene sets
that are necessary to encode tripartite lethal toxin and pol-
yglutamic acid capsule; moreover, its flagellar genes are
the most fragmental and functional PlcRs are absent. The
analyses thus provided a basic understanding of molecu-
lar mechanisms of evolution and pathogenesis.

In this study, a cluster-based evolution scheme was
devised to analyze genes that are gained by or lost from B.
anthracis. The section of methods and materials has a

detailed description about the scheme. Briefly, a reference
genome (RG) was chosen and compared via Blast analysis
to all other Bacillus genomes, named target genomes
(TG). Genes that are present at RG but absent at TG were
identified. This led to a gene absence/presence matrix with
genes as rows and TGs as columns, which is then sub-
jected to clustering analysis to identify lineage-specific
gene losses or gains. In this study, B. anthracis Ames Ances-
tor 0581 was chosen as the RG to identify genes that were
gained by B. anthracis, B. cereus ATCC 10987 and B.
licheniformis ATCC 14580 as RG for those that were lost. B.
cereus ATCC 10987, another species in the Bacillus cereus
group, is one of the closest species to B. anthracis while B.
licheniformis ATCC 14580, belonging to Bacillus subtilis
group, is more remotely related. The gene losses defined
from the two organism, we hypothesized, would repre-
sent two different stages critical for the evolution of B.
anthracis. This paper presented the analysis. Overall, the
analysis illustrated a progressive evolution behind B.
anthracis: genes were lost and gained selectively, which, we
hypothesized, could be one of the main evolutionary
forces that have driven B. anthracis to become an effective
anthrax pathogen.

Materials and methods
Genome sequences
Reference sequences of 12 bacillus genomes were down-
loaded from the National Center for Biotechnology Infor-
mation (NCBI) in June 2006 [21]. Among these are three
for B. anthracis (B. anthracis Ames, B. anthracis Ames
Ancestor 0581, and B. anthracis str. Sterne), three for B.
cereus (B. cereus ATCC 10987, B. cereus ATCC 14579, and
B. cereus E33L), two for B. licheniformis (B. licheniformis
ATCC 14580 and B. licheniformis DSM_13 ATCC 14580),
and one for each species of B. subtilis (B. subtilis subsp.
Subtilis str. 168), B. thuringiensis (B. thuringiensis konku-
kian str. 97-27), B. halodurans (B. halodurans C-125) and
B. clausii (B. clausii KSM-K16).

Analysis of genes losses/gains
The analysis came with a three-step procedure. First, a ref-
erence genome (RG) was selected, which were then com-
pared with a set of target genomes (TGs) through BLAST
analysis. Under the default E-value of 1e-4, any RG genes
with no TG homologues were defined as ab (absence)
genes. The distribution of ab genes of all RG-TGs pairs was
then summarized as an m-by-n matrix where m is the
number of ab genes (rows) and n is the number of TGs
(columns). Values of the matrix are either "0" or "1"
where "1" indicates that genes present in RG but absent in
TG for given TG-RG pairs and "0" indicates the genes that
are present in both TG and RG. Second, clustering analy-
ses were performed on the data matrix using Cluster (ver-
sion 3.0), an open source clustering software
implemented for gene expression data analysis [22]. Fol-
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lowing parameters were chosen in the analysis to give best
possible results: Hierarchical, cluster on rows (gene) and
columns (genomes); Spearman Rank Correlation; and
Single linkage. The last step is to visualize trees from the
clustering analysis with Java TreeView [23] to identify lin-
eage-specific gene losses/gains. In this analysis, we chose
B. anthracis Ames Ancestor 0581 as a RG for the lineage-
specific genes gained by B. anthracis, B. licheniformis ATCC
14580 and B. cereus ATCC 10987 as the RG for the line-
age-specific genes losses.

Function classifications
For a better illustration, species-specific genes lost/gained
were further characterized based on COG assignments
inherited from NCBI genome annotations.

Calculation of selective gene losses/gains
To determine selective gene gains/losses during the adap-
tive evolution, the following formula was used to evaluate
the occurrences of gene lost/gained among COG function
groups:

LGpntCOGi = lgCOGi/LGCOG * 100;

While LGpntCOGi is the percentage of COG occurrences in
genes lost/gained, lgCOGi is the number of genes lost/
gained from the ith COG and LGCOG is the total number of
genes lost/gained that have COG assignments in given
genomes. At the same time, a similar formula was used to
calculate the distribution of the COG occurrences in genes
over the entire genomes:

pntCOGj = xCOGj/XCOG * 100;

While pntCOGj is the percentage of COG occurrences,
xCOGjis the number of genes in the jth COG and XCOG is the
total number of genes that have COG assignments. The
selective gene losses/gains were determined by comparing
the LGpntCOGi with pntCOGj. Genes were considered to be
selectively lost or gained if LGpntCOGi is greater than pnt-

COGj at least two fold where i = j.

Verifications of B. anthracis-specific sequence variants
Additional nine Bacillus genomes were downloaded to
investigate whether the conclusions about the B. anthracis-
specific gene changes can be extrapolated to Bacillus
organisms beyond the initial genome sets. The new
genomes include B. weihenstephanensis KBAB4, B. cereus
subsp. cytotoxis NVH 391–98, B. thuringiensis str. Al
Hakam, which are available only recently at the NCBI
genome site [21]. Also included are six other B. anthracis
genomes from the Comprehensive Microbial Resource
(CMR) [24]: B. anthracis A0039, B. anthracis A0402, B.
anthracis str. Kruger B, B. anthracis Vollum, B. anthracis
A0071 Western North America, and B. anthracis strain

A2012. All genomes downloaded from NCBI are com-
pletely sequenced and fully annotated but those from
CMR vary in status in terms of sequencing and annota-
tions. For example, the sequence of B. anthracis A0039 is
listed as unfinished in sequencing with 5634 annotated
genes/proteins. In contrast, the sequence of B. anthracis
strain A2012 is listed as complete in sequencing but with
only 330 annotated genes/proteins.

Results and discussion
Gene gains at stages
The study chose the B. anthracis Ames Ancestor 0581 as
reference genomes (RGs) and then compared with other
11 bacillus genomes (TG). With an E-value of 1e-4, the
comparisons of TG-RG resulted in a gene absence/pres-
ence matrix. Clustering analysis on the matrix obtained a
phylogenetic (species) tree that reflects evolutionary rela-
tionships of these Bacillus species [25]. Genomes of B.
anthracis, B. cereus, and B. thuringiensis (the Bacillus cereus
group), genomes of B. subtilis and B. licheniformis (the
Bacillus subtilis group), and those of B. halodurans, and B.
clausii were clustered in three separate phylogenetic clades
(Fig. 1.I). Under this evolutionary frame, we discovered
varieties of gene clusters, which may represent genes
gained at two main evolutionary stages. The stage I is
when B. anthracis and its sister species within the first phy-
logenetic clade diverged from bacillus species in the other
two phylogenetic clades (Fig. 1.II). The stage II is when B.
anthracis differentiated from B. cereus and B. thuringiensis,
its closely related, non-anthrax species within the B.
anthracis, B. cereus, and B. thuringiensis clade (Fig. 1.III
&1.IV). In following sections, we illustrated genes gained
at each stage and highlighted those that might have poten-
tial impacts on the pathogenesis of B. anthracis.

Stage I is corresponding to a cluster of 717 genes that are
present only in the genomes of the B. anthracis, B. cereus,
and B. thuringiensis clade. Compared with pathogenic spe-
cies in this clade, bacillus species in other two are non-
pathogenic. B. licheniformis and B. subtilis belong to the
Bacillus subtilis group and are commonly found soil bacte-
ria. B. halodurans and B. clausii are widely distributed
alkali-tolerant bacillus species. Analysis of the 717-gene
cluster indicated that the divergence of the B. anthracis, B.
cereus, and B. thuringiensis clade from other non-patho-
genic clades appeared to be a critical point in the adaptive
evolution of B. anthracis. Many genes gained in this stage
have homologues of pathogenic importance. Among
them, genes in Amino acid transport and metabolism [E]
is the most dominant gene group gained at this stage (Fig.
2). It includes 10 genes that encode oligopeptide ABC
transporter, oligopeptide-binding proteins, a gene group
that are required for bacterial growth at low temperature
and involved in intracellular survival [26].
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Cell wall/membrane/envelope biogenesis [M] is the sec-
ond one. It covers, among others, genes for two internalin
proteins, invasion protein iagB domain protein, and S-
layer protein. The acquisitions of internalin proteins con-
fers the pathogen ability to cross significant host barriers
for entering, reside in, and multiply in phagocytic and
non-phagocytic cells [27-30]. The Invasion protein iagB
domain protein has homologues that are involved in
invasion of HeLa cells by Salmonella enterica subsp. enter-

ica ser. Typhi [31]. The S-layer protein, together with 13
other S-layer proteins that were classified into the
unknown COG group, is one of the largest gene groups
gained at this stage. The S-layer proteins are generally
known to be self-assembled into a supramolecular struc-
ture enclosing the bacterial cells. The structure strategi-
cally positions to interact with the tissues and body fluids
of the host and contributes to the outcome of a host-par-
asite interaction. In the fish-pathogenic bacterium Aerom-

The clustering analysis of genes gained by B. anthracisFigure 1
The clustering analysis of genes gained by B. anthracis. The clustering analysis of B. anthracis-specific genes that were 
gained by B. anthracis. Genes included are those with obvious function annotations. Colour scheme: red stands for the absence 
of the genes and black for the presence. Note that genomes in the tree are labelled by their abbreviations: BAMES stands for B. 
anthracis Ames, BANSTR for B. anthracis Ames Ancestor 0581, BASTERNE for B. anthracis str. Sterne, BC10987 for B. cereus 
ATCC 10987, BC14579 for B. cereus ATCC 14579, BCE33L for B. cereus E33L, BT97-27 for B. thuringiensis konkukian str. 97-
27, BL14580 for B. licheniformis ATCC 14580, BLDSM_13 for B. licheniformis DSM_13 ATCC 14580, BSUB for B. subtilis subsp. 
Subtilis str. 168, BHAL for B. halodurans C-125 and BCLK16 for B. clausii KSM-K16
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onas salmonicida, the array of the surface proteins, for
example, dramatically enhances the virulence of the bac-
terium [32]. In the pathogenic strains of Aeromonas
hydrophila and Aeromonas veronii biotype sobria, the sur-
face-exposed and non-surface-exposed epitopes of the S-
layer protein provide antigenic diversity [33].

The cluster furthermore includes homologues of genes
known to encode the enhancin family protein [COG
unsigned], two non-haemolytic enterotoxins [COG
unsigned], an immune inhibitor A metalloprotease pro-
tein [S], two microbial collagenase proteins [R], up to 27
lipoprotein-coding genes [COG unassigned]. All the genes
are related to pathogenesis of infectious agents if not
directly to the bacterial pathogen. The enhancin, found in
baculoviruses, is a metalloprotease that can boost viral

infectivity by degrading the mucin layer surrounding
insect guts [34]. The immune inhibitor A metalloprotease
enhances virulence in insects through the cleavage of bac-
teriocidal lectins [35]. The homologues of non-haemo-
lytic enterotoxins are known to be involved in B. cereus
and B. thuringiensis pathogenesis [18]. The lipoprotein,
the largest gene group gained at this stage, is a diverse
group of proteins with covalent lipid modifications by
fatty acids and other lipid moieties. The lipid-modified
proteins often play diverse roles from surface adhesion to
the translocation of virulence factors into the host cyto-
plasm. MxiM, a lipoprotein of the type III secretory path-
way in Shigella flexneri, for example, is important for
translocation of invasions [36], and MAA1 of Mycoplasma
arthritidis, a surface-exposed lipoprotein, is required for
adherence to joint tissues early in the infectious process

Comparative display of the COG occurrences of genes gained at stage I over those in the entire genome of B. anthracis Ames Ancestor 0581Figure 2
Comparative display of the COG occurrences of genes gained at stage I over those in the entire genome of B. 
anthracis Ames Ancestor 0581. Comparative display of the COG occurrences of genes gained at stage I (blue bars) over 
those in the entire genome of B. anthracis Ames Ancestor 0581 (red bars). The Y-coordinate represents the percentage of the 
gene occurrences in given COGs. Purple arrows represent those with the selective gene gains.
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[37]. From that, we were reasoning that gene gains at this
stage would build crucial genetic foundations that
allowed B. anthracis to evolve later as an anthrax pathogen
that can enter, survive and replicate within the hash host
cell systems.

Stage II includes two clusters with 83 (Fig. 1.III) and 93
genes (Fig. 1.IV) respectively. Since the clusters represent
the difference between B. anthracis and its closely related,
non-anthrax Bacillus species: B. cereus and B. thuringiensis,
the acquisition of these genes by B. anthracis likely repre-
sents a recent event in the bacillus evolution. Between two
clusters in this stage, genes in 83-gene cluster are present
in all genomes of B. anthracis, thus specific to B. anthracis.
The majority of them have no functional annotations
except for those encoding two lipoproteins, one gly-
oxalase domain protein, one ribonuclease domain pro-
tein and several prophage lambdaba04 proteins. The
genes in the 93-gene cluster are all plasmid genes (pX01
and pX02) and, among them are anthrax-factors such as
lethal factor, protective antigen-related protein, protective
antigen and calmodulin-seneitive adenylate cyclase.
Although they are present only in B. anthracis Ames Ances-
tor 0581, we still considered them as B. anthracis-specific
or anthrax-causing Bacillus pathogen-specific. The reason
is that the pX01 and pX02 are considered an integrated
part of the anthrax-causing Bacillus pathogen and B.
anthracis Ames Ancestor 0581 is the only one that has the
two plasmids and is pathogenic. While the above three
clusters follow the evolution relationships in their gene
occurrences, the cluster that contains the capsule biosyn-
thesis protein capC and capB does not (Fig. 1.V). These
two virulent factors exist only in B. Subtilis subsp. Subtilis
str. 168, B. licheniformis DSM_13 ATCC 14580, B. licheni-
formis ATCC 14580 and B. anthracis Ames Ancestor 0581.
While the capsule proteins are encoded by plasmid
(pX02) in B. anthracis Ames Ancestor 0581, their homo-
logues in the other three genomes are chromosomal, sug-
gesting a usual mode of gene transmission: from
chromosome to plasmids or vise verse.

Analysis of gene losses
We chose B. licheniformis ATCC 14580 as the reference
genome to study the lineage-specific gene losses at stage I
when B. anthracis and its sister species within the B.
anthracis clade were diverged from Bacillus species in the
other two phylogenetic clades. The analysis found a total
of 103 genes that are absent in the genomes within the B.
anthracis, B. cereus and B. thuringiensis clade but present in
all the genomes from other two non-pathogenic clades.
Among them, carbohydrate transport and metabolism
(G) is the most predominant functional group, including
genes encoding two pectate lyases, polysaccharide lyase
family 1 proteins, five glycoside hydrolase family proteins
and two L-arabinose isomerase proteins. Cell motility (N)

is the second, including multiple genes for flagellar com-
ponents such as flagellar protein FliS, flagellar hook-basal
body protein and CheD chemotaxis protein.

The study further selected B. cereus ATCC 10987 as the ref-
erence genome to study the lineage-specific gene losses at
stage II when B. anthracis was differentiated from its two
closest relatives. The genome was selected for its close kin-
ship with B. anthracis and its characteristic plasmid [38].
The plasmid shares a basic skeleton with pX01, one of the
virulent factor-associated plasmids in the anthrax-causing
pathogen. The analysis found 184 genes lost from B.
anthracis. Among them, 23 are present in all genomes of
B. cereus and B. thuringiensis, but not in those of B. anthra-
cis. Those include two two-gene groups of IS3-family
transposase-coding genes, one regucalcin family protein-
coding gene, and three lipoprotein-coding genes. The rest
of the 184 genes vary in their presence in the genomes of
B. cereus or B. thuringiensis but are consistently absent
from those of B. anthracis. For example, genes that code
three DNA recombinases, three spore coat proteins, and
one transcriptional regulator, MarR family protein are
present in the genomes of B. cereus only; genes that code
two type I restriction-modification system, M subunits
and acid-soluble spore protein P are present in B. cereus
ATCC 14579 and B. cereus ATCC 10987 only. The detec-
tion of the selective gene losses suggested possible roles in
the Bacillus evolution and further experiments are neces-
sary for their validations.

Verification of the gene gains and losses
With a set of nine additional bacillus genomes, we exam-
ined gene gains and losses at both stages. The results indi-
cated that the inclusion of these genomes did not upset
the occurrence patterns of the lineage-specific gene losses
and gains except a 119-gene set that were gained at stage I
(Fig. 3). These genes are absent in the genome of B. cereus
subsp. cytotoxis NVH 391–98 but present all other bacil-
lus genomes within the Bacillus cereus group. Among
them are those that encode two internalins, cytolysin
immunity Cyli domain protein, beta-lactamase II, beta-
lactam antibiotic acylase family protein, trifolitoxin
immunity domain protein, 11 putative lipoproteins, and
nine acetyltransferases. The B. cereus strain, isolated in
1998 from an outbreak that caused fatal enteritis, is genet-
ically remote from other B. cereus group strains and
highly pathogenic [39,40]. It will be interesting to know
how the losses impact on this Bacillus strain and its cyto-
toxicity.

At the end of this section, we felt that we need to make
some clarifications on our newly devised evolution-based
scheme and some frequent terms used in the paper. First,
we used Blast with a predetermined cutoff to determine
gene losses and gains. The results indicated that this is a
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Display of genes that are absent in the genome of B. cereus subsp. cytotoxis NVH 391–98 but present in all other bacillus genomes within the Bacillus cereus groupFigure 3
Display of genes that are absent in the genome of B. cereus subsp. cytotoxis NVH 391–98 but present in all 
other bacillus genomes within the Bacillus cereus group. Displays of genes that are absent in the genome of B. cereus 
subsp. cytotoxis NVH 391–98 (highlighted by Blue arrow) but present in all other bacillus genomes within the Bacillus cereus 
group. Purple arrows represent two internalin and other pathogenesis-related genes. The name abbreviations for newly added 
B. anthracis genomes are as followings: BA0039 for B. anthracis A0039, BA0402 for B. anthracis A0402, BAKROGER for B. 
anthracis str. Kruger B, BAVOLLUM for B. anthracis Vollum, and BA0071 for B. anthracis A0071 Western North America.
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simplified but valid approach as illustrated above where
unique and pathogenically important genes were revealed
from this analysis. The drawback is that the results can be
compromised if homologous genes exist within the target
genomes. One solution is to adjust the threshold. A minor
problem is that sequence similarities between orthologs
can vary from gene to gene. Alternatively, orthologs can be
defined and used in the clustering analysis [41]. Second,
we used "gained" to describe genes unique to B. anthracis
but had no intension to distinguish whether they were
actually "acquired" by B. anthracis or "pseudogenized"
from its compared genomes.

Conclusion
The analysis presented here allowed us to portray a pro-
gressive evolutionary process during the lifestyle shift of B.
anthracis from a free soil bacterium to an obligate patho-
gen. Selective gene losses and gains appeared to be one of
the main driving forces underlying the adaptive evolution
of B. anthracis. First, novel genes including those of path-
ogenic importance were lost/gained when B. anthracis, B.
cereus and B. thuringiensis, the genomes within the Bacillus
cereus group, were differentiated from B. licheniformis and
other Bacillus genomes outside the Bacillus cereus group
(stage I). Gene losses/gains further occurred in B. anthracis
when this species diverged from its two closest relatives.
Overall, our analysis provided new insights into how B.
anthracis had evolved and bore a promise of finding drug
and vaccine targets for this strategically important patho-
gen.
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