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Abstract
Background: MicroRNAs (miRNAs) are small and noncoding RNAs that play important roles in
various biological processes. They regulate target mRNAs post-transcriptionally through
complementary base pairing. Since the changes of miRNAs affect the expression of target genes,
the expression levels of target genes in specific biological processes could be different from those
of non-target genes. Here we demonstrate that gene expression profiles contain useful information
in separating miRNA targets from non-targets.

Results: The gene expression profiles related to various developmental processes and stresses, as
well as the sequences of miRNAs and mRNAs in Arabidopsis, were used to determine whether a
given gene is a miRNA target. It is based on the model combining the support vector machine
(SVM) classifier and the scoring method based on complementary base pairing between miRNAs
and mRNAs. The proposed model yielded low false positive rate and retrieved condition-specific
candidate targets through a genome-wide screening.

Conclusion: Our approach provides a novel framework into screening target genes by
considering the gene regulation of miRNAs. It can be broadly applied to identify condition-specific
targets computationally by embedding information of gene expression profiles.

Background
MicroRNAs (miRNAs) are small RNAs that play important
regulatory roles in animals and plants [1]. They cause
transcriptional cleavage or translational repression
through binding their target mRNAs. miRNAs affect a vari-
ety of cellular processes such as development, cell prolif-
eration, apoptosis, and stress response [2-4]. Thus

identification of mRNA targets is an essential step to
understand miRNA functions.

Currently several miRNA target prediction tools have been
developed [1,5-10]. The majority of these algorithms are
based on the sequence alignment or the minimum free
energy of the hybridization. The sequence alignment or
the binding energy of miRNA/mRNA pairs can sometimes
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hold definitive information in screening target genes.
However, a number of candidate targets could be false
positives due to the omission of gene expression informa-
tion in the screening process.

Microarray analysis allows us to observe a number of tar-
get mRNAs down-regulated by overexpressing miRNAs
[11]. Expression profiles may be useful in identifying
miRNA targets that have been missed or mis-identified by
the sequence analysis [12]. However, it is labor intensive
to generate miRNA over-expression lines and gene expres-
sion profiles in these lines. Furthermore, it is difficult to
generate gene expression profiles in diverse tissues, stages,
and environments of transgenic lines due to the high cost.
For these reasons, currently available gene expression pro-
files generated without performing the transfection exper-
iment may also be useful sources for identifying target
genes.

In this paper, we propose a novel approach for screening
miRNA targets by considering gene expression profiles.
Our approach is based on the model combining a
machine learning tool, SVM, which uses the datasets of
gene expression profiles, and a scoring method, which
uses the sequences of miRNAs and mRNAs. SVM can iden-
tify unknown targets by using a kernel function that
describes the similarity between given input examples.
SVM was developed by Vapnik for classification of data
based on statistical learning theory [13]. It has provided a
number of applications in biological data analysis,
including the classification of cancers, splice site identifi-
cation, and the classification of protein folding [14-16]. In
the present study, by employing the classifier, we first
investigate whether the expression profiles in specific bio-
logical processes contain enough information for the pre-
diction of miRNA targets. Then the properties of the
combined model are analyzed and the model is applied to
the genome-wide target screening.

Our method was analyzed with a validated target set, gene
expression profiles and gene sequences in Arabidopsis. The
validated target sets were collected from several literature
sources that describe the experimentally verified target
genes. The gene expression dataset was generated with a
total of 211 conditions including different developmental
series and stress treatments [17]. The ability of the SVM
classifier to discriminate between target and non-target
genes was analyzed using only the gene expression data-
set, and then several major conditions relevant to the clas-
sification were extracted using a feature selection method.
Finally, we performed the target prediction using the
method combining both express profiles and sequence
information. Our study suggests that gene expression pro-
file information can be combined with other miRNA tar-

get prediction algorithms to identify targets involved in
specific biological processes.

Methods
SVM classifier

A supervised machine-learning algorithm, support vector
machine (SVM), was used to classify miRNA targets from
non-targets. Recently SVM has been successfully applied
to miRNA predictions as well as miRNA target predictions
[18,19]. Given a kernel and a set of labeled training exam-
ples belonging to positives or negatives, SVM learns a lin-
ear decision boundary in the feature space defined by the
kernel function in order to discriminate between the two
classes. Then, given any unlabeled example, SVM deter-
mines whether it is positive or negative, depending on the
position of its image in the feature space relative to the lin-
ear boundary. In our case, using a training set containing
known verified targets and non-targets, SVM builds a
model for the prediction of the test set, i.e., the unknown
set. In this study we used LIBSVM, a library for support
vector machines [20]. The input features of SVM are
expression profiles. A training or test set is represented by

, xi = (xi1,..., xim) = and yi∈ {-1, 1}, where xi

is a vector of expression ratios under different conditions
from a gene i. If yi = 1, then the i-th gene represents a target

gene, otherwise it represents a non-target gene.

Dataset construction
A number of putative targets have been predicted from
sequence analysis in previous studies. However, the pre-
dicted targets should contain a small portion of false pos-
itives. Therefore, in the present study, we used only a list
of ~100 experimentally validated targets as the true posi-
tive set. Nevertheless, it is challenging to make a proper
training dataset for the construction of a SVM model
because of the imbalance issue in machine learning [21]:
the size of the validated target set is much smaller than
that of the set containing all the genes excluding the vali-
dated targets. To overcome this imbalance problem, we
increased the size of the validated target set through ran-
dom resampling. After we increased the size of the posi-
tive dataset by a predefined number, which we set to
1,000, we constructed the negative dataset of which the
size is the same as the size of the positive data through
random sampling.

Dataset of gene expression profiles
Two expression datasets were used for miRNA target pre-
diction. The first microarray dataset contains 79 different
conditions derived from several developmental series in
Arabidopsis. The second dataset contains 132 conditions
from ten different stress treatments including light, cold,
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drought, genotoxic, heat, osmotic, oxidative, salt, UV-B,
and wound. Affymetrix CEL files of the gene expression
datasets were obtained from the Nottingham Arabidopsis
Stock Centre (NASC; [22]). Both datasets were generated
using the ATH1 genome array containing ~22,800 probe
sets. The CEL files were processed and normalized at the
probe level using the GC content based robust multi-array
algorithm (GCRMA; [23]). After normalization, the aver-
age of the triplicate values was calculated for each sample.
In the development dataset, the relative expression level
of each gene was calculated by taking the log ratio
between each expression level and the mean expression
level across all the samples. The stress dataset was proc-
essed by taking the log ratio between the expression level
of treatments and that of the corresponding normal cell
types.

Binding scoring between miRNA and mRNA
The most recent collection of Arabidopsis miRNAs in miR-
Base (Release 11.0; [24]) and mRNA sequences from the
TAIR database [25] were obtained. Given a miRNA, the
sequence alignment of the miRNA against all mRNAs was
performed. The binding scoring function between miRNA
and mRNA is based on the weighted summation of the
numbers of mismatches, wobbles and indels described in
Jones-Rhoades and Bartel [26].

Combining gene expression profiles and binding 
information
Our target prediction strategy is based on the gene expres-
sion profiles and the binding scores between miRNA and
mRNA sequences. Figure 1 shows the overall procedure of
computational prediction of condition-specific miRNA
targets. The prediction system consists of two parts: the
SVM classifier and the binding scoring function. The
expression profiles of the validated miRNA targets were
used as the training dataset for modeling SVM. Then the
test set is predicted by making a decision between the out-
put of SVM and that of the scoring function. When an
input gene in both outputs is indicated as a positive, it is
predicted as a miRNA target.

Results
Classification of miRNA targets using gene expression 
profiles
Our prediction model classifies the targets by combining
gene expression profiles and sequence information (Fig-
ure 1). Before testing the prediction model, we first inves-
tigated whether gene expression profile information can
be used to discriminate the target genes from non-target
genes. We applied SVM to classify target genes from non-
target genes. The procedure is highlighted in gray in Figure
1. The classification is only based on patterns of gene
expression between the target set and the non-target set in
specific conditions. The type of SVM used is C-SVM and

the type of kernel used is a linear kernel function. The
gene expression dataset contains a total of 211 conditions,
including 79 conditions derived from several develop-
mental series and 132 conditions from diverse stress treat-
ments. It has been reported that miRNAs affect the
expression of a number of target genes involved in differ-
ent developmental processes and stresses. We expect that
both the developmental series dataset and the stress data-
set are informative enough to discriminate targets from
non-targets.

To achieve a good classification, it is important to define
true miRNA target genes. We collected the experimentally
validated miRNA targets to construct a highly accurate
training dataset. The true target genes were extracted from
several literature sources describing experimentally vali-
dated miRNA targets [12,27-30]. A total of 101 non-
redundant target genes were collected (Additional file 1).
Eighty-nine of them overlap with those in the expression
dataset. 60% of these genes (53 genes) were used as the
positive examples of the training dataset and the rest (36
genes) were used as the positives of test dataset. 1,000
negative examples were randomly selected from all the
genes on the array excluding the validated target genes.
The positive examples were increased by the number of
negative examples through random re-sampling in order

The procedure of computational prediction of miRNA tar-getsFigure 1
The procedure of computational prediction of 
miRNA targets. After the training dataset of gene expres-
sion files is trained by SVM, the test set is predicted by the 
decision making of SVM classifiers and the scoring method 
based on the sequence alignment.

Gene expression 
Profile Set

Expressions Sequences

Test dataset

Sequence Dataset
(miRNA, mRNA)Pre-processing

SVM Classifier 
Sequence

Alignment Score

Decision Making

Data separation
Targets: None targets

Training dataset
(Expressions)
Page 3 of 9
(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 1):S34 http://www.biomedcentral.com/1471-2105/10/S1/S34
to keep a balance (1:1 ratio) between the size of the posi-
tive dataset and that of the negative dataset.

We investigated the prediction accuracies of using target
datasets with different qualities for classification: vali-
dated, putative, and random sets (Figure 2). The validated
dataset is the same as the dataset described above. The
putative dataset contains 378 targets collected from sev-
eral reports which were identified through computational
screening [7,8,26,31], of which 328 overlapped with
those in the expression dataset. The positive and training
and test sets were generated using the expression profiles
of these 328 putative target genes while the negative train-
ing and test sets were generated by randomly selecting
genes excluding those 328 target genes. The dataset of ran-
dom targets was generated by random assignment of pos-

itive or negative labels in order to observe the baseline of
prediction. The size of these three datasets is identical
through random re-sampling of positive examples. As
expected, the target genes could be classified by prediction
using only gene expression dataset. The prediction accu-
racy is lower when the putative target dataset is used than
when the validated target dataset is used (Figure 2).

We then performed the analysis to determine which
expression datasets can be used to classify the genes more
accurately. Our results indicated that no significant differ-
ence regarding the specificity and the sensitivity was
found between the two datasets: the developmental data-
set and the stress dataset, as well as the combined dataset
(Figure 3).

The miRNA target prediction with SVM using the gene expression datasetFigure 2
The miRNA target prediction with SVM using the gene expression dataset. Three datasets with different qualities, 
which were the validated target dataset, the putative target dataset, and the random dataset, were compared in terms of the 
prediction accuracy.
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We then determined which features in the expression
datasets are important for the classification. The ranker
search method using SVM was used to select the features.
The list of the top ranked 20 features is shown in Table 1.
The rank was determined by 10-fold cross validation with
the training dataset, which is consisted of the validated
targets (positive) and the randomly selected genes exclud-
ing the validated targets. The features from the develop-
mental dataset and the stress dataset are highly ranked
without significant disproportion, further confirming that
there is no significant difference of performance between
the two datasets. The full list of ranked features is shown
in Additional file 2.

Classification of miRNA targets using gene expression 
profiles and sequence information
We then compared the efficiencies of target prediction
between two different methods: the method using the
combined information of expression profiles and
sequence information (SVM+SC) and the method using
the sequence information alone (SC). The results are
shown in Table 2. SVM+SC3 indicates our method com-
bining SVM classifier and SC, the scoring method based
on the weighted summation of the numbers of mis-
matches, as well as wobbles and indels between miRNA
and mRNA as described in Jones-Rhoades and Bartel [26],
with 3.0 as the cutoff score. SC1 indicates the scoring
method with a cutoff score of 1.0. TP, FP, TN and FN are
the true positive, false positive, true negative, and false

negative, respectively. The precision is a positive predic-
tive value calculated by TP/(TP+FP). The sensitivity and
the specificity are calculated as TP/(TP + FN) and TN/(TN
+ FP), respectively. The sensitivity of SVM+SC3 is higher
than that of SC1, whereas its specificity is higher than that
of SC3. Although the false positive rate of SC1 achieves
zero, which is the same as that of SVM+SC3, the true pos-
itive rate is much lower. SC3 can predict more true posi-
tives than SVM+SC3, but it contains more false positives.
These results suggest that the information of gene expres-
sion profiles can be utilized to increase the efficiency of
miRNA target gene prediction when combined with
sequence information.

Table 2: Comparison of predictions using different methods.

SVM+SC3 SC1 SC3

TP (True Positive) rate 0.36 0.20 0.83
FP (False Positive) rate 0.00 0.00 0.03
TN (True Negative) rate 1.00 1.00 0.97
FN (False Negative) rate 0.64 0.80 0.17
Sensitivity (TP/(TP+FN)) 0.36 0.20 0.83
Specificity (TN/(TN+FP)) 1.00 1.00 0.97
Precision (TP/(TP+FP)) 1.00 1.00 0.97

SVM+SC3, the method combining the SVM classifier and the scoring 
method based on the sequence matches. SCτ indicates the score 
cutoff, τ. The results were obtained with 100 test sets.

The performance of target prediction with SVM using differ-ent gene expression setsFigure 3
The performance of target prediction with SVM 
using different gene expression sets. The performance 
of target prediction with SVM using developmental- or 
stress-related gene expression profiles, or combined expres-
sion profiles from the two datasets.
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Table 1: Feature selection in the gene expression dataset.

Rank Sample ID Type Tissue

1 ATGE26 D Leaf
2 Heat-Shoots-1.0 h S Shoot
3 UV-B-Roots-1.0 h S Root
4 ATGE73 D Pollen
5 ATGE91 D Leaf
6 ATGE34 D Flower
7 Drought-Roots-0.25 h S Root
8 Drought-Shoots-0.25 h S Shoot
9 UV-B-Shoots-3.0 h S Shoot
10 Cold-Roots-24 h S Root
11 ATGE97 D Seedling
12 Drought-Roots-24.0 h S Root
13 UV-B-shoots-0.5 h S Shoot
14 ATGE55 D Flower
15 ATGE101 D Seedling
16 Drought-Shoots-3.0 h S Shoot
17 Wounding-Shoots-6.0 h S Shoot
18 Osmotic-Shoots-1.0 h S Shoot
19 Oxidative-Roots-6.0 h S Root
20 UV-B-Roots-6.0 h S Root

The top 20 ranked features for miRNA target classification. Each 
feature corresponds to a condition in the two expression datasets (D: 
developmental process and S: stress treatment).
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Genome-wide identification of miRNA target genes 
associated with developmental processes and stress 
responses
We extracted the target genes identified by our classifier
(SVM+SC3) excluding those that have been validated in
Arabidopsis. The training dataset was generated as
described in the previous section. Since the classification
is dependent on the expression dataset, these targets may
be involved in the corresponding biological process. The
top 20 ranked genes predicted as the development-related
and stress-related targets are listed in Tables 3 and 4,
respectively. A number of genes retrieved by the classifier
have reported roles in the corresponding developmental
processes and stress responses, while the functions of
most targets we identified are not clear.

Developmental-related miRNA targets
AGO7/ZIPPY (At1g69440), a member of the Argonaute
family, plays a role in the TAS3 ta-siRNA pathway. TAS3
ta-siRNAs are required for proper leaf development
through the action of AGO7 [32]. SPL5 (At3g15270) and
SPL9 (At2g42200) are the members of the SQUAMOSA
PROMOTER BINDING PROTEIN-LIKE (SPL) family of
transcription factors. Increased expression of SPL5,
together with two other genes from the same family, SPL3
and SPL4, promotes vegetative phase change and flower-
ing, and the decreased level of miR156 during juvenile-to-
adult transition is responsible for this increase [33]. SPL3
and SPL4 are the validated targets that belong to our train-
ing dataset. SPL9 is also regulated by miR156 and acts
redundantly with SPL15 in controlling shoot maturation

[34]. AtREM1 (At4g31610) encodes a protein with fea-
tures of transcriptional activators and its deduced protein
contains three repetitions of a B3-related DNA-binding
domain. It may play a role in the organization of repro-
ductive meristems, as well as during flower organ devel-
opment [35]. NTT (NO TRANSMITTING TRACT ;
At3g57670) encodes a C2H2/C2HC zinc finger transcrip-
tion factor specifically expressed in the transmitting tract.
Mutations in NTT cause reduced fertility by severely
inhibiting pollen-tube movement [36].

Stress-related miRNA targets
At1g74840 encodes a protein belonging to the myb fam-
ily of transcription factors and responds to the CdCl2 and
NaCl treatments [37]. BIT1 (At2g36890), also a MYB tran-
scription factor, plays an important role in controlling
blue light responses [38].

Discussion
In this study we presented a novel method for screening
miRNA targets that are likely to be involved in specific
biological processes. Currently, several computational
algorithms for miRNA target prediction have been imple-
mented and the majority of them use properties such as
the hybridization based on sequence base pairing
between miRNA and mRNA or the minimum free energy.
Although computational screening has identified a large
number of putative miRNA targets, only a small portion
of the targets can be validated. In addition, these compu-
tational tools do not imply which biological processes
might be correlated with the targets. One advantage of our

Table 3: Top 20 target genes associated with the developmental series.

Locus ID miRNA Rate Description

At1g69440* miR854 0.97 Encodes ARGONAUTE7
At1g62930 miR400 0.83 Similar to pentatricopeptide (PPR) repeat-containing protein
At5g47250 miR472 0.82 Disease resistance protein
At3g15270* miR156 0.78 Squamosa promoter-binding protein-like 5
At5g59000 miR414 0.77 Zinc finger family protein
At4g31610* miR414 0.77 REM1 (Reproductive Meristem 1) transcription factor
At5g58980 miR396 0.77 Ceramidase family protein
At5g43730 miR472 0.76 Disease resistance protein
At4g15430 miR855 0.72 Similar to early-responsive to dehydration protein-related
At5g08430 miR414 0.70 SWIB complex BAF60b domain-containing protein/plus-3 domain-containing protein
At2g28510 miR829 0.69 Dof-type zinc finger domain-containing protein
At5g48560 miR778 0.69 Basic helix-loop-helix (bHLH) family protein
At1g27360 miR156 0.68 Squamosa promoter-binding protein-like 11
At3g53310 miR414 0.65 Transcriptional factor B3 family protein
At2g42200* miR156 0.64 Squamosa promoter-binding protein-like 9
At1g63130 miR400 0.62 Transacting siRNA generating locus
At3g20910 miR169 0.62 CCAAT-binding transcription factor
At2g34960 miR157 0.61 Encodes a member of the cationic amino acid transporter
At1g62670 miR161 0.61 Pentatricopeptide (PPR) repeat-containing protein
At3g57670* miR854 0.57 Similar to zinc finger

The targets were predicted with the expression dataset of the developmental series. The rate indicates the fraction of runs in which the gene was 
predicted as a positive in 200 runs. * indicates the gene reported to be involved in the developmental process.
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method, by using gene expression profile information, is
that it can suggest which target genes have highest priori-
ties to be involved in a specific biological process.

If gene expression profiles of transgenic lines with
increased miRNA expression are available, it is possible to
do high-throughput and more accurate screening of tar-
gets [39]. As the under expressed genes are extracted, puta-
tive targets can be defined and the set overlapped with
computationally predicted targets can be obtained.

Unfortunately, this kind of high-throughput expression
profile dataset is difficult to generate due to the high cost
and the labor-intensive experimental process. However,
currently many expression profile datasets, which were
generated without the context of miRNA are available in
the public domains for several organisms. This expression
profile information could be a valuable source for miRNA
target prediction. Although exclusively using gene expres-
sion profiles for prediction does not show very good per-
formance, our results indicate that utilization of
expression profiles combined with sequence information
can identify condition-specific targets and compensate for
the limitations of current sequenced based methods.

We identified miRNA target genes associated with the
developmental processes and stress responses at the
genomic scale using our proposed method. Our results are
supported by previous reports indicating that several
genes we identified are involved in the corresponding bio-

logical processes. However, the biological functions of
most target genes are still largely undetermined. The genes
ranked with high priorities in developmental processes or
stress responses could be the candidates for further studies
in terms of gene regulation. We expect that our applica-
tion alleviates experimental efforts as it suggests novel
candidates with high confidence.

Our method provides a framework for identifying miRNA
targets involved in specific conditions. It can be applied to
diverse gene expression datasets including cancers, dis-
eases, and other species of which the validated target
information is sufficient for training the SVM classifier.
Since the free energy for miRNA-target duplex is impor-
tant to predict the targets in animals, it is possible to com-
bine our method with the method using the minimum
free energy of hybridization to improve target prediction
and to identify condition-specific targets. Consequently,
our approach could contribute to elucidation of gene reg-
ulatory programs related to miRNAs and their target genes
in diverse biological processes.

Conclusion
Our results suggested that the gene expression profiles
related to specific conditions have the potential to dis-
criminate miRNA targets from non-targets. The combina-
tion of gene expression and sequence-based methods
ensures retrieval of true targets and targets related to spe-
cific biological process. We have shown that in Arabidopsis
the targets related to the biological processes of develop-

Table 4: Top 20 target genes associated with stress responses.

Locus ID miRNA Rate Description

At5g43760 miR854 0.88 A member of the 3-ketoacyl-CoA synthase family involved in the biosynthesis of VLCFA
At5g47250 miR472 0.79 Disease resistance protein
At3g20710 miR859 0.79 F-box/Kelch-repeat protein
At2g36890* miR847 0.60 Myb-like transcription factor MYB38
At4g28310 miR837-5p 0.60 Unknown protein
At5g41410 miR414 0.55 Homeodomain protein required for ovule identity
At2g25980 miR846 0.53 Jacalin lectin family protein
At5g57590 miR396 0.52 Mutant complemented by E coli Bio A gene encoding 7,8-diaminopelargonic acid aminotransferase
At1g49750 miR854 0.47 Leucine-rich repeat family protein
At5g39710 miR400 0.47 Similar to pentatricopeptide (PPR) repeat-containing protein
At3g13690 miR419 0.47 Protein kinase family protein
At3g18980 miR859 0.45 F-box family protein
At5g43730 miR472 0.45 Disease resistance protein
At2g32760 miR414 0.43 Unknown protein
At1g74840* miR863-5p 0.43 Myb family transcription factor
At1g80340 miR835-5p 0.42 Encodes a protein with gibberellin 3 β-hydroxylase activity
At1g26210 miR414 0.41 unknown protein
At2g17830 miR859 0.41 F-box family protein
At4g14680 miR395 0.40 ATP sulfurylase
At5g61480 miR870 0.38 Leucine-rich repeat transmembrane protein kinase

The targets were predicted with the expression dataset of stress treatments. The rate indicates the fraction of runs in which the gene was 
predicted as a positive in 200 runs. * indicates the gene reported to be involved in the stress responses.
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ments and stresses were successfully extracted by the pro-
posed method. The same framework can be applied to
other biological processes or species.
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