
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch
On optimal comparability editing with applications to molecular
diagnostics
Sebastian Böcker†1,2, Sebastian Briesemeister†3 and Gunnar W Klau*†4

Address: 1Institut für Informatik, Friedrich-Schiller-Universität, Jena, Germany, 2Jena Centre for Bioinformatics, Jena, Germany, 3Div. for
Simulation of Biological Systems, ZBIT/WSI, Eberhard Karls Universität Tübingen, Germany and 4CWI, P.O. Box 94079, 1090 GB Amsterdam, The
Netherlands

Email: Sebastian Böcker - boecker@minet.uni-jena.de; Sebastian Briesemeister - briese@informatik.uni-tuebingen.de;
Gunnar W Klau* - gunnar.klau@cwi.nl

* Corresponding author †Equal contributors

Abstract
Background: The COMPARABILITY EDITING problem appears in the context of hierarchical disease
classification based on noisy data. We are given a directed graph G representing hierarchical
relationships between patient subgroups. The task is to identify the minimum number of edge
insertions or deletions to transform G into a transitive graph, that is, if edges (u, v) and (v, w) are
present then edge (u, w) must be present, too.

Results: We present two new approaches for the problem based on fixed-parameter algorithmics
and integer linear programming. In contrast to previously used heuristics, our approaches compute
provably optimal solutions.

Conclusion: Our computational results demonstrate that our exact algorithms are by far more
efficient in practice than a previously used heuristic approach. In addition to the superior running
time performance, our algorithms are capable of enumerating all optimal solutions, and naturally
solve the weighted version of the problem.

Background
Jacob et al. [1] raise the following problem from molecu-
lar diagnostics: For a group of patients that share a disease,
we have to assign each patient to a well-defined subgroup
in a hierarchical classification scheme of sub-diseases,
based on molecular characteristics of the patient [2]. Such
characteristics can be measured using high-throughput
genomic approaches such as gene expression microarrays
or SNP arrays, and may be accompanied by other data
such as fluorescent in situ hybridization. The task is to
deduce the hierarchical structure in the integrated noisy

data sets by an automated approach. To do so, Jacob et al.
[1] proceed in two steps: First, hierarchical dependencies
between patient subgroups are stored in a directed graph,
where vertices correspond to experimental characteristics
(properties), and a directed edge between two properties
A and B indicates that patients with property A are a
(noisy) superset of patients with property B. Constructing
this graph is straightforward using basic concepts from
statistics: for example, one can choose a threshold α ∈ [0,
1] and include an edge (A, B) if the ratio of patients with
feature B that also exhibit feature A is greater or equal to α

from The Seventh Asia Pacific Bioinformatics Conference (APBC 2009)
Beijing, China. 13–16 January 2009

Published: 30 January 2009

BMC Bioinformatics 2009, 10(Suppl 1):S61 doi:10.1186/1471-2105-10-S1-S61
<supplement> <title> <p>Selected papers from the Seventh Asia-Pacific Bioinformatics Conference (APBC 2009)</p> </title> <editor>Michael Q Zhang, Michael S Waterman and Xuegong Zhang</editor> <note>Research</note> </supplement>

This article is available from: http://www.biomedcentral.com/1471-2105/10/S1/S61

© 2009 Böcker et al; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 9
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10/S1/S61
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2009, 10(Suppl 1):S61 http://www.biomedcentral.com/1471-2105/10/S1/S61
[1]. Parameter α can be used to scale the sparseness of the
resulting graph.

The second step consists in cleaning the input graph: if
property A is a superset for property B, and B is a superset
for property C, then it is understood that A must also be a
superset for property C.

Unfortunately, noise in the high-throughput data often
leads to cases where edge (A, C) is not included during
graph construction, even though edges (A, B) and (B, C)
are present. From a graph-theoretical point of view, we
require that for directed edges (u, v) and (v, w) present in
the graph, also (u, w) has to be present. A graph that satis-
fies this property for all vertex triples is called transitive. If
the input graph is not transitive, then it is natural to ask
for the most parsimonious way to transform the input
graph into a transitive graph, that is, the minimum
number of edge modifications (insertions or deletions)
such that the resulting graph is transitive. This problem is
called transitive approximation [3] or COMPARABILITY EDIT-

ING [4], and we stick with the latter term. Important prob-
lem variants include WEIGHTED COMPARABILITY EDITING

where each edge has individual modification costs, and
enumerating all optimal solutions. Unfortunately,
(weighted) COMPARABILITY EDITING is NP-complete [4].
Recently, Jacob et al. have presented a heuristic approach
for the problem [1].

The COMPARABILITY EDITING problem is closely related to
its undirected counterpart CLUSTER EDITING: Here, we are
given an undirected graph as input, and our task is to find
a set of edge modifications of minimum cardinality, such
that the modified graph consists of disjoint cliques. This
problem is also NP-complete [5]. To find exact solutions,
we can formulate the problem as an integer linear pro-
gram (ILP) and use a cutting plane approach for its solu-
tion [6]. Another way to find exact solutions for CLUSTER

EDITING are fixed-parameter algorithms, using the number
(or total cost) of edge modifications as parameter k [7,8].
The currently fastest algorithms for CLUSTER EDITING use
both the ILP formulation and fixed-parameter algorith-
mics and, despite the hardness of the problem, allow to
efficiently solve instances with thousands of vertices [9].

Our contributions
We have adopted both the ILP formulation and the fixed-
parameter algorithms (FPT) developed for CLUSTER EDIT-

ING to work with its directed counterpart, COMPARABILITY

EDITING. Both approaches guarantee that exact solutions
are found. In addition, FPT guarantees worst-case running
times, with exponential dependency on the parameter k
only. The ILP formulation is, in practice, several thou-
sand-fold faster than the heuristics from [1] even for small
instances with 25 vertices. Combining FPT data reduction

and ILP to solve the remaining problem leads to best run-
ning times. Both FPT and ILP can enumerate all optimal
solutions, and for FPT this is possible with almost no
computational overhead. Both approaches also work for
WEIGHTED COMPARABILITY EDITING, which might lead to
better solutions, for example, in the molecular diagnostics
application: one might use the difference to the threshold
α as modification cost of an edge, so that edges with meas-
urements close to the threshold can be inserted or deleted
cheaper than edges that deviate by a large extent from the
threshold.

Methods
Preliminaries
Throughout this paper, let n := |V|. We sometimes assume
that V = {1, ..., n}. We write uv as shorthand for an ordered
pair (u, v) ∈ V2. For weighted instances, let s : V2 → �

encode the input graph: For s(uv) > 0 a directed edge uv is
present in the graph and has deletion cost s(uv), while for
s(uv) ≤ 0 the edge uv is absent from the graph and has
insertion cost -s(uv). An unweighted COMPARABILITY EDIT-

ING instance can be encoded using s(uv) ∈ {± 1}. We call
edges with s(uv) = ∞ permanent and with s(uv) = -∞ forbid-
den. Let N+(v) denote the successors of v, N+(v) = {w ∈ V |
s(vw) > 0}. Similarly, let N-(v) denote the predecessors of v,
N-(v) = {u ∈ V | s(uv) > 0}.

A directed graph G = (V, E) is transitive if for any three ver-
tices u, v, w ∈ V with uv ∈ E and vw ∈ E we also have uw ∈
E. Any three vertices violating this condition are called a
conflict triple.

A fixed-parameter algorithm
The main idea behind many FPT graph modification algo-
rithms is to localize and resolve forbidden substructures,
either during preprocessing or in a search tree. In this
paper, we transform any directed input graph G into a
transitive graph by resolving all conflict triples. Our fixed-
parameter algorithms sometimes require a maximum
number of edge modifications k to be known in advance:
To find an optimal solution we call this algorithm repeat-
edly, increasing k.

We first present methods for the data reduction of
(unweighted and weighted) COMPARABILITY EDITING

instances. We describe polynomial-time reduction rules
and apply these rules over and over again until no further
rule will apply.

Parameter-dependent data reduction
Our parameter-dependent data reduction is similar to that
for CLUSTER EDITING in [8]. For every tuple uv we define
induced costs icf (uv) and icp(uv) for marking uv as forbid-
den or permanent, respectively:
Page 2 of 9
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S61 http://www.biomedcentral.com/1471-2105/10/S1/S61
We use these values and also take into account costs for
inserting or deleting uv:

• For all u, v ∈ V where

icf(uv) + max{0, s(uv)} > k :

Insert uv if necessary, and mark uv as permanent by assign-
ing s(uv) ← +∞.

• For all u, v ∈ V where

icp(uv) + max{0, -s(uv)} > k :

Delete uv if necessary, and mark uv as forbidden by assign-
ing s(uv) ← -∞.

If there is a pair uv such that both conditions hold simul-
taneously, the problem instance is not solvable. To under-
stand these rules, assume that an edge uv is not present in
an optimal solution. Then, for edges ux and xv present in
the input, either ux or xv (or potentially both) have to be
deleted to make the graph transitive.

Clearly, we can also remove isolated vertices and edges.
Unfortunately, we are currently not able to give a problem
kernel for COMPARABILITY EDITING: A problem kernel is a set
of reduction rules so that after exhaustive application of
the rules, the remaining instance has size polynomial in
the parameter k and independent of the original problem
size n [10]. Our reduction rules are obviously not a prob-
lem kernel, because we never reduce the number of verti-
ces in the graph except when vertices or edges become
isolated. Constructing a problem kernel remains an inter-
esting open problem.

If both uv and vu are permanent, we can merge vertices u,
v into a new vertex u': For each vertex w ∈ V \{u, v} we join
uw, vw such that s(u'w) ← s(uw) + s(vw). Moreover, in case
w is a non-common neighbor of u, v we can reduce k by
min{|s(uw)|,|s(vw)|}. But it almost never happens in
application that both uv and vu are permanent simultane-
ously, so this technique can rarely be applied. In particu-
lar, if the input graph is acyclic then no vertices will ever
be merged.

Algorithm engineering and parameter-independent data reduction
First, we describe a fast method to compute a lower bound
on the cost of WEIGHTED COMPARABILITY EDITING: Let CT be
a set of edge-disjoint conflict triples. Then,

is a lower bound for solving all conflict triples in CT .
Since finding the set CT maximizing this value is compu-
tationally expensive, we greedily construct a set of edge-
disjoint conflict triples CT and use the above sum as a
lower bound. We can use such lower bounds to make
induced costs icf (uv) and icp(uv) tighter: let b(G, uv) be a
lower bound that ignores all edges uw, wu, vw, and wv in
its computation, for all w ∈ V \{u, v}. Then, we can set an
edge to forbidden or permanent if

icp*(uv) := icp(uv) + max{0, -s(uv)} + b(G, uv) > k

or

icf*(uv) := icf(uv) + max{0, s(uv)} + b(G, uv) > k

holds, respectively.

We now utilize an idea from [9] to transform the above
parameter-dependent data reduction into a parameter-
independent one. Therefore we use an upper bound for the
modification costs of G as our parameter k. Without the
knowledge of a current parameter both parameter-
dependent data reduction rules can now be applied dur-
ing the preprocessing. To calculate the upper bound we
use a greedy approach that iteratively searches for edges
where reduction rules almost apply. In detail, we search
for an edge uv such that max{icp*(uv), icf*(uv)} is maxi-
mum and set uv to forbidden or permanent, respectively.
Note that we can use any other upper bound for this
reduction as well. The combination of lower and upper
bounds makes this reduction very effective in application.

In our preprocessing, we mark an edge as permanent or
forbidden when we can guarantee that this edge is always
or never part of an optimal solution, respectively. This will
usually not reduce the size of the instance. However, we
will see in the section devoted to our computational
results that in practice, adding information about perma-
nent and forbidden edges makes it easier to solve the
remaining instance. Note that we can process the reduced
instance with any exact method or even heuristics.

Branching strategy
After parameter-independent data reduction, the remain-
ing instance can be solved using a branching tree strategy.
In such algorithms, we identify a conflict triple and then

icf uv s ux s xv

icp uv s xu s

x N u N v

() min{ (), ()}

() min{ (),

() ()

=

= −

∈ ∩+ −

∑
(()}

min{ (), ()}

()\ ()

()\ ()

xv

s uy s vy

x N u N v

y N v N u

∈

∈

− −

+ +

∑
∑+ −

min{ (), (), ()}s uv s vw s uw
uvw CT

−
∈

∑

Page 3 of 9
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S61 http://www.biomedcentral.com/1471-2105/10/S1/S61
branch into sub-cases to repair this conflict. Let uvw be a
conflict triple so that uv and vw are edges but uw is not.
Recursively branch into three cases:

1. Insert uw, mark uv, uw, and vw as permanent.

2. Delete uv, mark vw as permanent, and uv and uw as
forbidden.

3. Delete vw, mark vw as forbidden.

In each branch, we lower k by the insertion or deletion
cost required for the executed operation. When a con-
nected component decomposes into two components, we
calculate the optimum solutions for these components
separately. If k falls below zero, we discard the respective
branch of the algorithm. Keeping in mind that we can find
a conflict triple in time O(n3), the branching algorithm
has running time O(3k·n3). Unfortunately, we cannot
replace the polynomial factor by a summand because no
polynomial-size problem kernel is known for the
problem.

As an algorithm engineering technique, we do not process
conflict triples in an arbitrary order but instead, choose
that conflict triple uvw such that icp(uv) + icp(vw) + icf(uw)
is maximal. Doing so, we choose a triple that results in a
comparatively small branching number while avoiding
the time-consuming exact computation of branching
numbers. The branching number is the root of the charac-
teristic polynomial of the branching vector and governs
the asymptotic size of the search tree, see again [10] for
details. To find an optimal solution we call the algorithm
repeatedly, increasing k in an interval defined by lower
and upper bound for this problem instance. While travers-
ing the search tree, we apply reduction rules in every recur-
sion step. Clearly, lower bounds as described in the
section on parameter-independent data reduction, can
also be used to stop search tree recursion more efficiently.

It is understood that our algorithm can also enumerate all
optimal solutions, by completely traversing the search
tree.

An integer linear programming approach
Let x be a binary decision vector with xij = 1 if directed edge
(i, j) is part of the solution and xij = 0 otherwise. Then, an
optimal solution to WEIGHTED COMPARABILITY EDITING can
be found by solving

s. t. xij + xjk - xik ≤ 1 ∀1 ≤ i, j, k ≤ n (2)

xij = 0 ∀ij with s(ij) = -∞ (3)

xij = 1 ∀ij with s(ij) = ∞ (4)

xij ∈ {0, 1} ∀1 ≤ i, j ≤ n. (5)

The n3 triangle inequalities (2) of the ILP ensure that no
conflict triple as shown in Fig. 1(a) occurs in the solution
and model exactly the definition of transitivity. Equations
(3) and (4) exclude forbidden edges and force permanent
edges to be part of the solution.

Let be a feasible solution of the ILP and let be the
corresponding edge set. It is easy to see that the graph G =

(V,) is transitive. The objective function properly sums
up the deletion and insertion costs as detailed by Table 1.

Thus, an optimal solution of the ILP corresponds to an
optimal solution of WEIGHTED COMPARABILITY EDITING.
Figures 1(b) and 1(c) show a small example instance of
the problem and the corresponding ILP. The ILP formula-
tion basically describes the partial order polytope of a
complete directed graph.

Müller [11] has investigated the facial structure of partial
order polytopes and his results on facet-defining inequal-
ities and their separation can directly be used to develop
an effective branch-and-cut algorithm for WEIGHTED COM-

PARABILITY EDITING:

We start optimizing the LP relaxation (1) with an empty
constraint set. Let denote the vector corresponding to
an intermediate solution of the linear programming relax-
ation. We first check whether violates any triangle ine-
qualities. If this is the case, we add the violated
inequalities, resolve, and iterate. Otherwise, we check
whether is integral. If so, we stop, and is an optimal

solution. If, however, has fractional entries, we may
separate additional facet-defining inequalities. Müller
proposes to focus on odd closed walk inequalities and
presents an efficient separation algorithm in [11]. If we
find cutting planes in the separation procedure we iterate,
otherwise we branch. Applying the cutting plane method
at each node of the branch-and-bound tree leads to a
branch-and-cut algorithm.

Note that in our current implementation we have not yet
realized additional cutting planes because separating tri-
angle inequalities proved to be sufficient for the tested
instance sizes. Once larger or more complicated instances
have to be dealt with, the separation of odd closed walk

min () ()s ij s ij xij

j

n

i

n

ij E

−
==∈

∑∑∑
11

(1)

x E

E

x

x

x x

x

Page 4 of 9
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S61 http://www.biomedcentral.com/1471-2105/10/S1/S61
inequalities seems to be a promising direction to
approach new orders of magnitude in instance size.

To enumerate solutions with the ILP approach, we pro-
pose the following, straightforward iterative cutting plane
approach. Cutting of a given solution x*, as done in line 3
of the algorithm, can be realized by adding inequality

1 find first optimal solution x* with value z0 = z*;

2 repeat

3 add cutting plane (6) which cuts off x*;

4 find next optimal solution x* with value z*;

5 until z* > z0 or ILP infeasible ;

Results and discussion
We evaluate the performance of our algorithms on three
datasets. First, Jacob et al. [1] synthetically created graphs
for a fixed number of nodes n and an edge probability p.
Two vertices u, v ∈ V := {1, ..., n} with u <v are connected
by a directed edge (u, v) with probability p. For each com-
bination of n ∈ {10, 15, 20, 25} and p ∈ {0.1, 0.2, ..., 0.9}
they generated 20 graphs. On average, these graphs are
most distant from the transitive state for p = 0.5.

Second, we generated a dataset of larger graphs. We
defined these graphs by the number of nodes n and the
number of edge changes k. Initially, we generate a transi-
tive graph that has n nodes V := {1, ..., n} and contains all

 directed edges of the form (u, v) for u <v. Next, we

choose k distinct vertex tuples uv ∈ V2 and delete or insert
the corresponding edges. The resulting graph has distance
at most k to a transitive graph.

Third, we also evaluate our algorithms on the biological
dataset from [1], which results from an extensive study
with patients suffering from mature aggressive lympho-
mas. Here, we demonstrate that the FPT approach can
enumerate all optimal instances in short computation
time.

Performance of reduction rules

Combining FPT reduction rules with upper and lower
bounds allows us to reduce input graphs in advance. In

The integer linear programming approachFigure 1
The integer linear programming approach. (a) Conflict triple, (b) small example instance of WEIGHTED COMPARABILITY
EDITING, and (c) corresponding integer linear program. Solid edges are present in the graphs, dashed edges are absent. Edges
missing from the complete directed graph in (b) have zero weight.

x xi

i x

i

i xi i| |

()
∗ ∗= =

∑ ∑+ − ≥
0 1

1 0 (6)

Table 1: Deletion and insertion costs used in the objective
function of the ILP approach.

ij ∈ ij ∉

(i, j) ∈ E s(ij) - s(ij) = 0 s(ij) - 0 > 0
(i, j) ∉ E -s(ij) > 0 0

n

2

⎛

⎝
⎜

⎞

⎠
⎟

E E
Page 5 of 9
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S61 http://www.biomedcentral.com/1471-2105/10/S1/S61
contrast to the CLUSTER EDITING problem this will usually
not reduce the graph size. However, we can mark some
edges in the graph as permanent or forbidden. We meas-
ure the reduction ratio by estimating the real modification
costs using the mean of upper and lower bound. The

reduction ratio is defined as , where costsorig-

inal and costsreduced are the estimated modification costs

before and after the reduction. Table 2 shows that reduc-
tion of the first artificial dataset is less effective for edge

probabilities around p ≈ 0.5. We attribute this to the fact

that graphs with p ≈ 0.5 are almost random and have
strong local defects, whereas other graphs are closer to the
transitive state. Average running times for the reduction
are between 4 ms for graphs with 10 vertices, and 95 ms
for 25 vertices.

Our data reduction reduces graphs even more effectively if
they are large and close to the transitive state. Using the
second artificial dataset, we found that if the ratio k/n is
less than 3, our reduction achieves a reduction ratio of
98.5%. This is in fact very promising for biological data
since here, input graphs are usually close to the transitive
state. Average running times for the reduction are between
4.1 s for graphs with 100 vertices, and 5.9 min for large
graphs with 500 vertices.

Artificial data by Jacob et al
We compare the running times of our exact FPT and ILP
algorithms to the running times of the heuristic algorithm

of Jacob et al. [1]. The reader should keep in mind that
both our algorithms guarantee to find optimal solutions.
Figure 2 shows running times for different graph sizes.
Clearly, the performance of the algorithms differs signifi-
cantly. Running times of the heuristic approach continu-
ally increase with greater edge probability. In contrast, our
FPT and ILP algorithms show highest running times for
the most "complicated" graphs with edge probability
around 0.5. Clearly, running times of all three algorithms
increase for larger graph size. The ILP algorithm outper-
forms the other two algorithms for graphs with more than
10 nodes by several orders of magnitude and computes
provably optimal solutions for all instances in less than a
second. The FPT algorithm shows good performance for
nearly transitive graphs and solves them in less than an
hour. Table 3 shows some detailed running times.

Most graphs derived from real-world data are almost tran-
sitive. This is due to the fact that the "true" graph is known
to be transitive but the input graph suffers from some
noise in the data. Our second benchmark set of larger arti-
ficial graphs accommodates this aspect, and we compare
FPT and ILP on this dataset. To allow for a fair compari-
son, we first apply our data reduction preprocessing, and
solve the reduced instances with FPT branching and the
ILP algorithm. Figure 3 shows the running times of all
three approaches. All approaches can solve large instances
with up to 1 500 edge modifications in a matter of min-
utes. Again, performance of the ILP approach strongly
depends on the graph size and less pronounced on the
number of modifications. The opposite can be observed
for the FPT algorithm. Since the benchmark set contains

Table 2: Reduction ratios for artificial data by Jacob et al. Average reduction ratio for different edge probabilities. Each group contains
80 instances.

edge probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

avg. reduction ratio 0.33 0.20 0.08 0.05 0.03 0.15 0.24 0.21 0.74

1 − costs
costs

reduced
original

Table 3: Runtimes for artificial data by Jacob et al. Average runtimes of the heuristic approach of Jacob et al. [1], the FPT algorithm,
and the ILP approach. (*) The FPT algorithm was not able to solve 17 instances of size 25 with edge probability 0.5 within 7 days of
computation.

size 10 25
edge probability 0.2 0.5 0.8 0.2 0.5 0.8

avg. cost 2.35 6.15 5.95 20.2 60.5 46.6
time Jacob et al. < 0.2 s < 0.2 s < 0.2 s 2.95 h 12.2 h 30.4 h
time FPT 4 ms 7 ms 5 ms 209 ms 12.2 h* 5.9 min
time ILP < 0.5 ms 1.5 ms 0.5 ms 2 ms 0.65 s 30 ms
Page 6 of 9
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S61 http://www.biomedcentral.com/1471-2105/10/S1/S61
large graphs with moderate modification costs, the FPT
algorithm outperforms the ILP algorithm on this data.
However, in case we use our data reduction in advance,

running time of the combined FPT-ILP approach is signif-
icantly smaller than those of both algorithms and shows
the best overall performance. Our results indicate that

Artificial data by Jacob et alFigure 2
Artificial data by Jacob et al. Performance of the heuristic approach of Jacob et al., the FPT algorithm, and the ILP approach.

0.2 0.4 0.6 0.8 1.0

1e
−

03
1e

−
01

1e
+

01
1e

+
03

1e
+

05

edge probability

tim
e

in
 s

ec
on

ds

FPT n= 10
FPT n= 15
FPT n= 20
FPT n= 25
ILP n= 10
ILP n= 15
ILP n= 20
ILP n= 25
Jacob et al. n= 10
Jacob et al. n= 15
Jacob et al. n= 20
Jacob et al. n= 25

Larger artificial dataFigure 3
Larger artificial data. Average runtimes of the FPT algorithm, the ILP approach, and the ILP approach on preprocessed
instances.

1.0 1.5 2.0 2.5 3.0

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

k/n

tim
e

in
 s

ec
on

ds

FPT n= 100
FPT n= 300
FPT n= 500
ILP n= 100
ILP n= 300
ILP n= 500
ILP reduced n= 100
ILP reduced n= 300
ILP reduced n= 500
Page 7 of 9
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S61 http://www.biomedcentral.com/1471-2105/10/S1/S61
Lymphoma dataset from [1] (mature aggressive B-cell lymphoma)Figure 4
Lymphoma dataset from [1] (mature aggressive B-cell lymphoma). All twelve optimal solutions enumerated in 25 ms
with the FPT approach. The node numbers correspond to the molecular characteristics given in Table 4.

Table 4: Lymphoma dataset from [1] (mature aggressive B-cell lymphoma). Mapping of node numbers in Figure 4, the
abbreviations used in [1], and the molecular characteristics.

node nr abbrev. in Jacob et al. molecular characteristic

1 CD10 Antibodies for biomarker CD10 are present in histological section of lymphoma tissue
2 Ki-67 Antibodies for biomarker Ki-67 are present in histological section of lymphoma tissue
3 CD5 Antibodies for biomarker CD5 are present in histological section of lymphoma tissue
4 bcl6BR Breakpoint in the BCL6 locus
5 IGH-BCL2 Fusion of BCL locus to immunoglobulin IGH
6 ABC Gene expression profile similar to activated B-cells
7 GCB Gene expression profile similar to germinal center B-cells
8 mBL Gene expression signature which characterices molecular Burkitt lymphoma (Hummel et al.)
9 non-mBL Absent gene expression signature non-mBL.
10 IG-MYC Translocation of MYC locus involving fusion of MYC to immunoglobulins IGH, IGK or IGL
11 atyp.myc Breakpoint in the MYC locus without fusion to an immunoglobulin
12 MYC- No abberation of the MYC locus
13 CD10- Antibodies for biomarker CD10 are absent in histological section of lymphoma tissue
14 Ki-67- Antibodies for biomarker Ki-67 are absent in histological section of lymphoma tissue
15 CD5- Antibodies for biomarker CD5 are absent in histological section of lymphoma tissue
16 bcl6BR- No breakpoint in the BCL6 locus
17 IGH-BCL2- No fusion of BCL locus to immunoglobulin IGH
Page 8 of 9
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S61 http://www.biomedcentral.com/1471-2105/10/S1/S61
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

both algorithms are suitable for even larger graphs.

Lymphoma dataset
Finally, we run the FPT algorithm on the data on mature
aggressive B-cell lymphoma from Jacob et al. and enumer-
ate all optimal solutions. This results in twelve optimal
solutions shown in Fig. 4. All optimal solutions were enu-
merated in only 25 ms. In contrast, Jacob et al. [1] report
only six optimal solutions that were found by their
heuristic.

Conclusions and outlook
We have studied the WEIGHTED COMPARABILITY EDITING

problem and have presented two exact algorithms for its
solution. Our experimental results demonstrate that the
exact approaches significantly outperform the heuristic
approach proposed in [1]. In addition to the superior run-
ning time performance, our algorithms are capable of
enumerating all optimal solutions, and naturally solve the
weighted version of the problem.

In the future we plan to implement the full cutting plane
approach including the odd closed walk inequalities pro-
posed by Müller [11] and expect an even better perform-
ance behavior of the ILP approach. On the FPT side,
constructing a problem kernel remains an interesting
open problem. Further, we want to study the weighted
problem variant more intensively, since weighted directed
graphs seem to be more realistic models of molecular
properties than unweighted ones. Labeling edges of
molecular graphs with probabilities or log-likelihoods
may lead to fewer and medically more meaningful opti-
mal solutions and may also help to distinguish good solu-
tions from false positive transformations. Finally, a more
precise ranking of multiple (optimal and non-optimal)
solutions might prove beneficial for the interpretation of
results, and also hints on the "reliability" of edges.
Clearly, detecting hierarchical relationships in noisy data
may have applications that go beyond hierarchical disease
classification.

The source code of our reduction and comparability edit-
ing tools, as well as the data used in this article is publicly
available as the charles package of the open software
library planet-lisa [12]. Furthermore, we plan to imple-
ment a web interface for our tools in order to give a large
community access to our exact clustering and comparabil-
ity editing tools and to facilitate comparison and
evaluation.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
SBö, SBr, and GWK jointly conducted the research, per-
formed the experiments, and wrote the paper.

Acknowledgements
We thank Rainer Spang's group in Regensburg and, in particular, Juby Jacob
for providing us with the data from [1]. SBr gratefully acknowledges finan-
cial support from LGFG Promotionsverbund "Pflanzliche Sensorhistidinki-
nasen" at the University of Tübingen.

This article has been published as part of BMC Bioinformatics Volume 10 Sup-
plement 1, 2009: Proceedings of The Seventh Asia Pacific Bioinformatics
Conference (APBC) 2009. The full contents of the supplement are available
online at http://www.biomedcentral.com/1471-2105/10?issue=S1

References
1. Jacob J, Jentsch M, Kostka D, Bentink S, Spang R: Detecting hierar-

chical structure in molecular characteristics of disease using
transitive approximations of directed graphs. Bioinformatics
2008, 24(7):995-1001.

2. Hummel M, et al.: A biologic definition of Burkitt's lymphoma
from transcriptional and genomic profiling. N Engl J Med 2006,
354(23):2419-2430.

3. Delvaux S, Horsten L: On best transitive approximations to
simple graphs. Acta Inform 2004, 40(9):637-655.

4. Natanzon A, Shamir R, Sharan R: Complexity Classification of
Some Edge Modification Problems. In Proc. of Workshop on
Graph-Theoretic Concepts in Computer Science (WG 1999) Volume 1665.
Lect. Notes Comput. Sc., Springer; 1999:65-77.

5. Křivánek M, Morávek J: NP-Hard Problems in Hierarchical-
Tree Clustering. Acta Inform 1986, 23(3):311-323.

6. Grötschel M, Wakabayashi Y: A cutting plane algorithm for a
clustering problem. Math Program 1989, 45:52-96.

7. Gramm J, Guo J, Hüffner F, Niedermeier R: Graph-modeled data
clustering: Fixed-parameter algorithms for clique
generation. Theor Comput Syst 2005, 38(4):373-392.

8. Böcker S, Briesemeister S, Bui QBA, Truß A: A fixed-parameter
approach for Weighted Cluster Editing. In Proc. of Asia-Pacific
Bioinformatics Conference (APBC 2008) Volume 5. Series on Advances in
Bioinformatics and Computational Biology, Imperial College Press;
2008:211-220.

9. Böcker S, Briesemeister S, Klau GW: Exact Algorithms for Clus-
ter Editing: Evaluation and Experiments. In Proc. of Workshop
on Experimental Algorithms (WEA 2008) Volume 5038. Lect. Notes Com-
put. Sc., Springer; 2008:289-302.

10. Niedermeier R: Invitation to Fixed-Parameter Algorithms Oxford University
Press; 2006.

11. Müller R: On the partial order polytope of a digraph. Mathe-
matical Programming 1996, 73:31-49.

12. Klau GW, et al.: [web page] [http://www.planet-lisa.net]. [Accessed 25
September 2008]
Page 9 of 9
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10?issue=S1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18285370
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18285370
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18285370
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16760442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16760442
http://www.planet-lisa.net
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Our contributions

	Methods
	Preliminaries
	A fixed-parameter algorithm
	Parameter-dependent data reduction
	Algorithm engineering and parameter-independent data reduction
	Branching strategy

	An integer linear programming approach

	Results and discussion
	Performance of reduction rules
	Artificial data by Jacob et al
	Lymphoma dataset

	Conclusions and outlook
	Competing interests
	Authors' contributions
	Acknowledgements
	References

