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Abstract
Background: Genome-scale models of metabolism have only been analyzed with the constraint-
based modelling philosophy. Some gene deletion studies on in silico organism models at genome-
scale have been made, but most of them were from the aspects of distinguishing lethal and non-
lethal genes or growth rate. The impact of gene deletion on flux redistribution, the functions and
characters of key genes, and the performance of different reactions in entire gene deletion still lack
research.

Results: Three main researches have been done into the metabolism of E. coli in gene deletion.
The first work was about finding key genes and subsystems: First, by calculating the deletion impact
p of whole 1261 genes, one by one, on the metabolic flux redistribution of E. coli_iAF1260, we can
find that p is more detailed in describing the change of organism's metabolism. Next, we sought out
195 important (high-p) genes, and they are more than essential genes (growth rate f becomes zero
if deleting). So we speculated that under some circumstances and when an important gene is
deleted, a big change in the metabolic system of E. coli has taken place and E. coli may use other
reaction ways to strive to live. Further, by determining the functional subsystems to which 195 key
genes belong, we found that their distribution to subsystems was not even and most of them were
related to just three subsystems and that all of the 8 important but not essential genes appear just
in "Oxidative Phosphorylation". Our second work was about p's three characters: We analyzed the
correlation between p and d (connection degree of one gene) and the correlation between p and
vgene (flux sum controlled by one gene), and found that both of them are not of linear correlation,
but the correlation between p and f is of highly linear correlation. The third work was about highly-
affected reactions: We found 16 reactions with more than 2000 Rg value (measuring the impact
that a reaction is gotten in the whole 1261 gene deletion). We speculated that highly-affected
reactions involve in the metabolism of basic biomasses.

Conclusion: To sum up, these results we obtained have biological significances and our researches
will shed new light on the future researches.
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Background
Since various 'omics' datasets are becoming available,
biology has transited from a data-poor to a data-rich envi-
ronment. This has underscored the need for systems anal-
ysis in biology and systems biology has become a rapidly
growing field as well [1].

A change in mathematical modelling philosophy is also
necessitated, and that is based on building and validating
in silico models. Modern biological models need to meet
new sets of criteria: organism-specific, data-driven, easily
scalable, and so on. Many modelling approaches, such as
kinetic, stochastic and cybernetic approaches, are cur-
rently being used to model cellular processes. Owing to
the computational complexity and the large number of
parameters needed, it is currently difficult to use these
methods to model genome-scale networks. To date,
genome-scale models of metabolism have only been ana-
lyzed with the constraint-based modelling philosophy
[2,3]. Genome-scale network models of diverse cellular
processes such as signal transduction, transcriptional reg-
ulation and metabolism have been generated. Gene-pro-
tein-reaction (GPR) associated models can keep track of
associations between genes, proteins, and reactions [4],
and there have been several genome-scale GPR models,
such as E. coli [4,5], S. aureus [6], H. pylori [7], M. barkeri
[8], S. cerevisiae [9] and B. subtilis [10]. A reconstruction is
herein defined as the list of biochemical reactions occur-
ring in a particular cellular system and the associations
between these reactions and relevant proteins, transcripts
and genes [2]. A reconstruction can include the assump-
tions necessary for computational simulation, such as
maximum reaction rates and nutrient uptake rates [11].

Computer simulations of complex biological systems
become essential as soon as the computational capability
become available. As reconstructed networks have been
made publicly available, researchers around the world
have undertaken new computational studies using these
networks [12]. Many researches apply a core set of basic in
silico methods and often also describe novel methods to
investigate different models. An extensive set of methods
for analyzing these genome-scale models have been devel-
oped and have been applied to study a growing number
of biological problems [12]. But as we have mentioned
above, as yet, genome-scale models of metabolism have
only been analyzed with the constraint-based philosophy
[2,3].

The in silico models can be applied to generate novel, test-
able and often quantitative predictions of cellular behav-
iors [13]. The impact of a gene deletion experiment on
cellular behavior can be simulated in a manner similar to
linear optimization of growth [14]. The results can be
used to guide the design of informative confirmation

experiments and will be helpful for metabolic engineer-
ing. Some gene deletion studies on the genome-scale in
silico models of organisms have been made [4-10,15-19],
but most of them are from the standpoints of distinguish-
ing lethal and non-lethal genes or growth rate [4-10,15-
22]. The impact of gene deletion on flux redistribution,
the characters and functions of key genes, and the per-
formance of different reactions in entire gene deletion still
lack research.

In this paper, in the part of results, we have done three
research works. The first one: First, we calculated flux dis-
tribution of E. coli_iAF1260. Then we calculated the dele-
tion impact of whole 1261 genes (using p to describe the
deletion impact of one gene), one by one, on the meta-
bolic flux redistribution of E. coli_iAF1260. Next, we
sought out the important genes that most greatly affect the
metabolic flux distribution, and furthermore determined
their functional subsystems. The second one: We analyzed
the correlation between p (describing deletion impact of
one gene) and f (describing growth rate in the deletion of
1261 genes), the correlation between p and d (connection
degree of one gene) and the correlation between p and
vgene (flux sum controlled by one gene). The third one: We
made research into what are the reactions affected most
greatly in the whole 1261 gene deletion (using Rg to
measure the impact). In the part of methods and materi-
als, we introduced the GPR model, some properties of the
in silico model of E. coli_iAF1260 (SBML (Systems Biology
Markup Language) format) and the method of constraint-
based analysis.

Results and discussion
Metabolic flux distribution of E. coli_ iAF 1260
As a base for the later comparing research, we here calcu-
late the flux distribution of E. coli_iAF1260. What we use
is E. coli_iAF1260_ flux1.xml, one of the two SBML files
that are presented with the reconstruction of E. coli [5].
The computational method we use is flux balance analysis
(FBA) [11], one of the fundamental genome-scale pheno-
typic calculations, which can simulate cellular growth.
FBA is based on linear optimization of an objective func-
tion, which typically is biomass formation. Given an
uptake rate for key nutrients and the biomass composi-
tion of the cell (usually in mmol component gDW-1 and
defined in the biomass objective function), the maximum
possible growth rate of the cells can be predicted in silico.
We use the COBRA toolbox [11] to carry out this compu-
tation of FBA. The flux distribution of E. coli_iAF1260 is
illustrated in Figure 1.

Impact of gene deletion on the metabolic flux 
redistribution and key genes
As our first work, we now do research into the impact of
gene deletion on the metabolic system of E. coli. First we
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 calculate the deletion impact of 1261 genes, further seek
out important genes and functional subsystems to which
these key genes respectively belong.

1) Impact of gene deletion on the metabolic flux redistribution and 
key genes that affect metabolism most greatly
There are 1261 genes in the model of E. coli_iAF1260. If a
single gene is associated with multiple reactions, the dele-
tion of that gene will result in the removal of all associated
reactions. On the other hand, a reaction that can be cata-
lyzed by multiple non-interacting gene products will not
be removed in a single gene deletion. By the aid of the
COBRA toolbox [11], we can calculate the impact of their
deletion. We define the impact of one gene deletion on
the whole metabolic flux redistribution as p

Where vi and  are respectively the flux value of i-th reac-

tion of the model of E. coli_iAF1260 before and after a sin-
gle gene deleting and R is the whole reaction set. In most
of the researches on gene deletion [4-10,15-22], the
change of growth rate f is often used to describe the
impact of gene deletion. The reason why we define p as the
impact of gene deletion is that we believe it is more
detailed in describing the change of organism's metabo-
lism. p has considered the flux change taking place at every
reaction, and it uses the square sum of the difference

between vi and . Otherwise, f is just a whole measure

and it does not distinguish the flux change taking place at
every reaction.

Figure 2 shows the deletion impact of these 1261 genes.
Table 1 gives p scopes, gene numbers falling within these
scopes and their corresponding percentages that these
genes take.

Figure 3 shows the deletion impact of these 1261 genes to
the growth rate f of E. coli. Every deletion of these 1261
genes will entail a new f.

We define those genes with p>9800 as key genes or high-
p genes, and there are 195 genes in total. There are 187
cases in which f = 0, their corresponding genes are usually
called essential genes or zero-f genes, and all of their p are
>9800. These 187 so-called essential genes are consistent
with previous literatures [5], except "s0001" which is not
included in the report of Ref. [5]. The left 8 genes with p >
9800 &f ≠ 0 are shown in Table 2 with bold text, and we
call them INE (Important but Not Essential) genes. Addi-
tional file 1 provides the details. Comparing with experi-
ment observation [22], six (b3731, b3733, b3734, b3735,
b3736, b3738, b3731) of the 8 INE genes are essential
genes; Comparing with experiment observation [23], two
(b3731, b3736) of the 8 INE genes are essential genes. At
the same time, two genes (b0529 and b3956) are reported
as essential genes in Ref. [5], but they are not key genes as

p v vi i

i

R

= ′ −∑( )2 (1)

′vi

′vi

Flux distribution of E. coli_iAF1260Figure 1
Flux distribution of E. coli_iAF1260. X-axis indicating 
every reaction in rxns (the order is as the same as in rxns, 
total 2382) and y-axis indicating the value of its correspond-
ing flux (unit is mmol gDW-1h-1). Rxns is the reaction set in 
the model.

The deletion impact p of 1261 genes of the E. coli_iAF1260 modelFigure 2
The deletion impact p of 1261 genes of the E. 
coli_iAF1260 model. X-axis indicating every gene in 1261 
genes (the order is as the same as in genes, total 1261) and 
y-axis indicating its impact p. Genes is the set of genes in 
model.

Table 1: p scopes, gene number (GN) and percentages

p scope 0 0–100 100–1500

GN 498 532 17

% ≈39% ≈42% ≈1%

p scope 1500–9800 >9800
GN 19 195
% ≈2% ≈15%
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for our computation, while b3956 is reported as nones-
sential gene both in Ref. [22,23] and b0529 is reported as
nonessential gene both in Ref. [22]. From these compari-
sons, we can find that p has an advantage over f in describ-
ing the change of organism's metabolism.

We also note that there are 8 genes with p>9800 &f ≠ 0.
Based on the fact, we can speculate that, under some cir-
cumstances and when an important gene is deleted, a big
change in the metabolic system of E. coli has taken place
and E. coli may use other reaction ways to strive to live.
This may reflect the robustness of the metabolic networks
of microbes. It is also an important and interesting con-
clusion.

2) Functional subsystems to which these key genes belong
If a gene catalyzes a reaction which belongs to a certain
subsystem, we say that the gene belongs to the subsystem.
Functional subsystems about important genes in the met-
abolic system of micro-organism are seldom reported. We
have hereinabove defined those genes with p>9800 as key
genes. We now list the functional subsystems to which
every key gene belongs, 23 subsystems in total, and several
genes appear in more than one subsystem, shown in Table
2. The 23 functional subsystems are "Threonine and
Lysine Metabolism (TLM), Cofactor and Prosthetic Group
Biosynthesis (CPGB), Valine Leucine and Isoleucine
Metabolism (VLIM), Cell Envelope Biosynthesis (CEB),
Lipopolysaccharide Biosynthesis Recycling (LBR),
Methionine Metabolism (MM), Arginine and Proline
Metabolism (APM), Glycerophospholipid Metabolism 

(GM), Membrane Lipid Metabolism (MLM), Purine and
Pyrimidine Biosynthesis (PPB), Nucleotide Salvage Path-
way (NSP), Citric Acid Cycle (CAC), Glycine and Serine
Metabolism (GSM), Tyrosine Tryptophan and Phenyla-
lanine Metabolism (TTPM), Transport Inner Membrane
(TIM), Alanine and Aspartate Metabolism (AAM), Folate

Metabolism (FM), Alternate Carbon Metabolism (ACM),
Histidine Metabolism (HM), Cysteine Metabolism (CM),
Inorganic Ion Transport and Metabolism (IITM), Oxida-
tive Phosphorylation (OP), Unassigned (U)".

We can find that the distribution to subsystems of these
195 key genes is not even and most of them are related to
"Cofactor and Prosthetic Group Biosynthesis", "Cell
Envelope Biosynthesis" and "Purine and Pyrimidine Bio-
synthesis" subsystems, especially CPGB. We can also find
that all of the important but not essential (INE) genes, 8
in total, appear in "Oxidative Phosphorylation".

The reason for many high-p genes just belonging to several
metabolic subsystems maybe is in that these subsystems
involve many reactions and provide supports for other
subsystems; The reason for INE genes just belonging to
"Oxidative Phosphorylation (OP)" subsystem probably is
in that the permissibility which E. coli use other reaction
ways to carry out this kind of metabolism, under the given
media condition, takes place on OP subsystem.

Analysis to the three characters of p
As our second work, we now begin research into some
properties of the metabolic network of E. coli, i.e., three
characters of p. Some properties about the metabolic net-
work of micro-organisms have been reported in literatures
[15-22]. Because the measure we defined is different, our
research will provide further evidences to the properties
about the metabolic network.

1) Correlation between p and f (describing growth rate in the deletion 
of 1261 genes)
Figure 4 is the scatter diagram (p, f), total 1261 data pairs.
Many data pairs are superposition and locate at the same
place, so there aren't lots of points in the figure. From the
diagram, we can easily find that the relationship between
p and f is of highly linear correlation. High p corresponds
to low f.

2) Correlation between p and d (connection degree of every gene in 
network)
We compute out the related reaction number d of every
gene in those 1261 genes of the E. coli_iAF1260 model, as
illustrated in Figure 5. From the figure, we can find that
some but not many genes have high d value, but we don't
know whether they affect metabolic flux distribution
greatly.

Figure 6 is the scatter diagram (d, p), 1261 data pairs in
total. Still many data pairs are superposition and locate at
the same place. From the diagram, we can easily find that
the relationship between d and p is not of linear correla-
tion. So high-d genes and low-d genes are equally impor-
tant to the metabolism of E. coli_iAF1260.

The deletion impact of 1261 genes to f of the E. coli_iAF1260 modelFigure 3
The deletion impact of 1261 genes to f of the E. 
coli_iAF1260 model. X-axis indicating every gene in 1261 
genes and y-axis indicating new f after its deletion.
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Table 2: The functional subsystems (SS) and their related genes of E. coli_iAF1260

SS TLM CPGB VLIM CEB LBR

genes b0003 b0004, b0025, b0029 b0071 b0085 b0096
b0004 b0052, b0103, b0109 b0072 b0086 b0179
b0031 b0131, b0133, b0134 b0073 b0087 b0181
b0166 b0142, b0154, b0159 b0074 b0088 b0182
b2472 b0173, b0174, b0369 b3770 b0090 b0524
b2478 b0414, b0415, b0417 b3771 b0091 b0914
b2838 b0420, b0421, b0423 b3774 b0954 b0915
b3359 b0475, b0750, b0907 b1093 b0918
b3433 b1096, b1208, b1210 b1094 b1094
b3809 b1277, b1662, b1740 b1288 b1215
s0001 b1812, b2103, b2153 b2323 b3198

b2315, b2320, b2400 b3176 b3633
b2515, b2530, b2564 b3189
b2574, b2615, b2746 b3729
b2747, b2763, b2764 b3730
b2927, b3041, b3058 b3967
b3177, b3187, b3360 b3972
b3368, b3634, b3639
b3804, b3805, b3850
b3974, b3990, b3991
b3992, b3993, b3994
b3997, b4039, b4040

b4407, s0001

SS MM APM GM MLM PPB

genes b0159 b0159 b0175 b0185 b0522, b0523
b2687 b0386 b2585 b1092 b0945, b1062
b2942 b2818 b3018 b1094 b1131, b1281
b3939 b3172 b4041 b2316 b2312, b2476
b4013 b3957 b4160 b2323 b2499, b2507
s0001 b3958 b3255 b2557, b2780

b3959 b3256 b3642, b4005
b3960 b4006, b4177
s0001 b4244, b4245

SS NSP CAC GSM TTPM TIM

genes b0639 b0720 b0907 b0908, b1260 b0914
b1098 b1136 b1261, b1262 s0001
b2827 b1263, b1264
b3648 b1693, b2329
s0001 b2599, b2600

b3389

SS AAM FM ACM HM CM

genes b0928 b1415 b1415 b2019, b2020 b2750, b2751
b3941 b3608 b2021, b2022 b2752, b2762

b2023, b2024 b2763, b2764
b2025, b2026 b3607

SS IITM OP U

genes b3040 b3731, b3732 s0001
b3196 b3733, b3734
s0001 b3735, b3736

b3737, b3738

* genes (text in bold) are important but not essential genes
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3) Correlation between p and vgene (flux sum controlled by every 
gene)
We define the flux sum controlled by every gene as

Where vj is the flux value of j-th reaction of the model of
E. coli_iAF1260 before a single gene deleting and Rgene is
the reaction set controlled by the given gene. We can easily
compute out the flux sum vgene of every gene in those 1261
genes of the E. coli_iAF1260 model, as illustrated in Figure
7. From the figure, we can find that some but not many
genes have high vgene value, but will they affect metabolic
flux distribution greatly?

Figure 8 is the scatter diagram (vgene, p), 1261 data pairs in
total, and many data pairs are superposition. From the
diagram, we can also find that the relationship between
vgene and p is not of linear correlation as well. So genes
with high vgene and genes with low vgene are equally impor-
tant to the metabolism of E. coli_iAF1260.

Impact of gene deletion on every metabolic reaction
As our third work, we now make research into what are
the reactions affected most greatly in the whole 1261 gene
deletion. Highly-affected reactions (HAR) are often
neglected in many researches in literatures about gene
deletion study.

1) Impact of gene deletion on every metabolic reaction
There are 2382 reactions in the in silico model of E.
coli_iAF1260. We define Rg to measure the impact that a
reaction is gotten in the whole 1261 gene deletion.

v vgene j

j

Rgene

= ∑ (2)

The controlled reaction number of every gene in 1261 genes of the E. coli_iAF1260 modelFigure 7
The controlled reaction number of every gene in 
1261 genes of the E. coli_iAF1260 model. X-axis indicat-
ing every gene in 1261 genes (the order is as the same as in 
genes, total 1261) and y-axis indicating the number of its 
controlled reactions.

The scatter diagram (d, p)Figure 6
The scatter diagram (d, p). X-axis indicating d (connec-
tion degree of every gene) and y-axis indicating the corre-
sponding gene impact p.

The related reaction number of every gene in 1261 genes of the E. coli_iAF1260 modelFigure 5
The related reaction number of every gene in 1261 
genes of the E. coli_iAF1260 model. X-axis indicating 
every gene in 1261 genes (the order is as the same as in 
genes, total 1261) and y-axis indicating the number of its 
related reactions.

The scatter diagram (p, f)Figure 4
The scatter diagram (p, f). X-axis indicating p and y-axis 
indicating f, total 1261 data pairs. Many data pairs locate at 
the same points.
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Where v0 and vk are respectively the flux value of a certain
reaction of the model of E. coli_iAF1260 before and after
k-th gene deleting, and G is the set of whole 1261 genes.

Figure 9 provides each Rg of 2382 reactions and Table 3
shows Rg scopes, corresponding reaction number within
these scopes and the percentages that these reactions take.
In the following section, we will determine what the
highly-affected reactions are.

2) Highly-affected reactions (HAR)
There are 42 reactions which the Rg value of every one of
them is beyond 500. Especially, for those with more than
2000 Rg value, there are 16 reactions in total, and they are
"ATPS4rpp, CO2tex, CO2tpp, CYTBO3_4pp, ENO,
EX_co2(e), EX_h2o(e), EX_ o2(e), GAPD, H2Otex,
H2Otpp, NADH16pp, O2tex, O2tpp, PGK, PGM".

Why are these 16 reactions more sensitive to gene dele-
tion? Maybe, it is due to the fact that they involve in the
metabolism of basic biomasses such as H2O, ATP, O2,
NADH.

Conclusion
In this paper, we have done three main researches into the
metabolism of E. coli in gene deletion. The first was to find
its important genes and the corresponding belonging sub-
systems, the second was to analyze the characters of p, and
the third was to find its highly-affected reactions in gene
deletion.

To the first work: We used p to describe the impact which
gene deletion entailed. Our first finding was that maybe p
is more detailed than f in describing the change of organ-
ism's metabolism in gene deletion. After calculating the
deletion impact of 1261 genes, we sought out 195 impor-
tant genes (high p genes, p >9800), and they are more than
essential genes (f = 0 genes). So our second finding was
that under some circumstances and when an important
gene is deleted, the metabolic system of E. coli has greatly
changed and E. coli may use other reaction ways to strive
to live. The third finding was that the distribution to sub-
systems of these 195 key genes is not even and most of
them are related to about three subsystems ("Cofactor and
Prosthetic Group Biosynthesis", "Cell Envelope Biosyn-
thesis" and "Purine and Pyrimidine Biosynthesis") and
that all of the 8 important but not essential (INE) genes-
appear just in "Oxidative Phosphorylation" subsystem.
We have also tried to give some explanations.

To the second work: We have done research into p's three
characters, i.e. its relationship with f, d, vgene. We found
that p-f correlation was of highly linear correlation, while
both of the p-d correlation and the p-vgene correlation were
not of linear correlation. Our research can provide further
evidences to the properties about the metabolic network,
because the measure we defined is different.

To the third work: We defined Rg to measure the impact
that a reaction is gotten in the whole 1261 gene deletion.
We calculated the Rg value of each 2382 reactions and
gave a statistics to the Rg scopes and the corresponding
reaction number. Finally, we sought out 16 reactions with
more than 2000 Rg value. We have also tried to give an
explanation, i.e., these highly-affected reactions involve in
the metabolism of basic biomasses.

In summary, because the in silico model of E. coli_iAF1260
is credible, we can conclude that the results we obtained
have biological significances and that the researches we
have done will shed new light on the future research. As a
next step, we will try more media conditions to the

R v vg k

k

G

= −∑ 0 (3)

The Rg of each 2382 reactions of E. coli_iAF1260Figure 9
The Rg of each 2382 reactions of E. coli_iAF1260. X-
axis indicating every reaction in 2382 reactions (the order is 
as the same as in rxns, total 2382) and y-axis indicating its 
corresponding Rg value.

The scatter diagram (vgene, p)Figure 8
The scatter diagram (vgene, p). X-axis indicating vgene (the 
flux sum controlled by every gene) and y-axis indicating the 
impact, p.
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research on E. coli, and will also do similar work on other
organisms and compare them with the case of E. coli.

Methods
Gene-protein-reaction (GPR) associated model
The association between genes and reactions is not a one-
to-one relationship. Many genes may encode subunits of
a protein which catalyze one reaction, while there are
genes that encode so-called promiscuous enzymes that
can catalyze several different reactions. So it is necessary to
keep track of associations between genes, proteins, and
reactions and to distinguish "&" and "OR" associations in
GPR models. Examples of different types of GPR associa-
tions are illustrated in Ref. [4,14].

GPR model structure of E. coli_iAF1260
The in silico model that we use is E. coli_iAF1260 [5], a
metabolic reconstruction consisting of the chemical reac-
tions that transport and interconvert metabolites within
E. coli K-12 MG1655. This network reconstruction was
based on a previous reconstruction, termed E. coli_iJR904
[4]. The general features of E. coli_iAF1260 are shown in
Ref. [5].

SBML format file to the model E. coli_iAF1260 can be
downloaded from the supplementary information of Ref.
[5]. There are two SBML files that are presented with the
reconstruction, each containing a different flux distribu-
tion XML files. SBML file properties are given in the sup-
plementary of Ref. [5]. The dimensions of rxns, mets, and
genes are respectively 2382, 1668, 1261.

The minimal media of in silico model is an important
aspect. The computational minimal media of E.
coli_iAF1260 is also included in the supplementary infor-
mation of Ref. [5]. In the method of constraint-based
analysis, the biomass objective function (BOF) should be
defined. The BOF was generated by defining all of the
major and essential constituents that make up the cellular
biomass content of E. coli [5].

Gene-protein-reaction associations embodied in rxn-
GeneMat matrix, which is a matrix with as many rows as
there are reactions in the model and as many columns as
there are genes in the model. The ith row and jth column-
contains a one if the jth gene in genes is associated with
the ith reaction in rxns and zero otherwise.

Methodology of constraint-based analysis
1) Constraint-based analysis
In silico modelling and simulation of genome-scale bio-
logical systems are different from that practiced in the
physicochemical sciences. A network can fundamentally
have many different states or many different solutions.
Which states (or solutions) are picked is up to the cell and
based on the selection pressure experienced, and such
choices can change over time. Therefore, constraint-based
approaches [2,3] to the analysis of complex biological sys-
tems have proven to be very useful. The differences
between the physicochemical sciences and the physical
sciences or engineering are illustrated in Ref. [14]. All the-
ory-based considerations (i.e., engineering and physics)
lead one to attempt to seek an "exact" solution, and typi-
cally computed based on the laws of physics and chemis-
try. However, constraint-based considerations (as in
biology) are useful. Not only can a network have many
different behaviors that are picked based on the evolu-
tionary history of the organism, but also these networks
can carry out the same function in many different and
equivalent ways [14].

2) Representation of reconstructed metabolic network
Before calculation and simulation, the reconstructed met-
abolic network must be represented mathematically. The
stoichiometric matrix, S, is the centerpiece of a mathemat-
ical representation of genome-scale metabolic networks.
It represents each reaction as a column and each metabo-
lite as a row, where each numerical element is the corre-
sponding stoichiometric coefficient.

An upper and lower bound for the allowable flux through
each reaction also requires defining. This represents the
lowest and highest reaction rate possible for each reaction.
The set of upper and lower bounds is represented as two
separate vectors, each containing as many components as
there are columns in S, and in the same order. In many
cases, reversible reactions are defined to have an arbitrary
large upper bound and an arbitrarily large negative lower
bound. Irreversible reactions have a lower bound that is
nonnegative, usually zero.

In order to predict meaningful fluxes, setting upper and
lower bounds is especially important for exchange reac-
tions which serve to uptake compounds to the cell or
secrete compounds from the cell. The lower bound of
exchange reaction column must be a finite negative

Table 3: Rg scopes, reaction number (RN) and their percentages

Rg scopes 0 0–20 20–60

RN 876 1279 114

% ≅37% ≅54% ≅5%

Rg scopes 60–500 >500

RN 71 42

% ≅3% ≅2%
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number using this orientation (e.g., glucose). The upper
bound of exchange reaction column must be greater than
zero. At least one of the reactions in the model must have
a constrained lower/upper bound, and typically, the sub-
strate (e.g., glucose or oxygen) uptake rates are set to
experimentally measured values. The upper and lower
bounds for exchange reactions are quantitative in silico
representations of the growth media environment.

3) Biomass objective function (BOF) and minimal media
The constraint-based approach is based on the assump-
tion that cells strive to maximize their growth rate. This
assumption which provides an acceptable starting point
for many types of computations is satisfied by simulating
maximal production of the molecules required to make
new cells (biomass precursor molecules). In spite of their
limitations, the predictive power of genome-scale models
of metabolic networks has been demonstrated in diverse
situations through careful experimentation [11].

The biomass objective function (the function vgrowth, see
below) is a special reaction taking as substrates of all bio-
mass metabolites, ATP and water and producing ADP,
protons, and phosphate (as a result of the non-growth
associated ATP maintenance requirement) [6].

The minimal media is determined computationally with
the systematic testing of distinct inputs. Different combi-
nations of molecules are allowed to enter the reaction net-
work until the minimal group that allowed biomass
production, or non-zero Z (see below), was found [6]. It
is only concerned that some amount of biomass produc-
tion is calculated but do not discriminate between
extremely slow, inefficient growth and rapid growth.

4) Computation of phenotypic states
In genome-scale metabolic networks, the fluxes within a
cell usually cannot be uniquely calculated because a range
of feasible values exist when fluxes are subjected to known
constraints. Flux balance analysis (FBA) is used to find
optimal growth phenotypes. Briefly, a large-scale linear
programming is used to find a complete set of metabolic
fluxes (v) that are consistent with steady-state condition
(eq. 4) and reaction rate bounds (eq. 5), and at the same
time maximize the biomass objective function in the
defined ratio. This corresponds to the following linear
programming problem [6]:

max Z = vgrowth

Subject to

S·v = 0

αi <vi <βi

Where S is the stoichiometric matrix, and αiand βi define
the bounds through each reaction vi. The flux range was
set arbitrarily high for all internal reactions so that no
internal reaction restricted the network, with the excep-
tion of irreversible reactions, which have a minimum flux
of zero. The inputs to the system were restricted to a min-
imal media.

The value of Z computed with the above procedure can
either be zero (predicting no growth) or greater than zero
(corresponding to cellular growth) depending on the
inputs and outputs that are allowed, according to the
nutrients provided in the media.

5) Gene deletion study
The effect of a gene deletion experiment on cellular
growth can be simulated in a manner similar to linear
optimization of growth [5,11]. Gene-reaction associa-
tions model the logical relationship between genes and
their corresponding reactions. If a single gene is associated
with multiple reactions, the deletion of that gene will
result in the removal of all associated reactions, i.e. to
simultaneously restrict the fluxes (upper and lower flux
bounds) of these reactions to zero prior to computing
maximal biomass objective function. On the other hand,
a reaction that can be catalyzed by multiple non-interact-
ing gene products will not be removed in a single gene
deletion. The possible results from a simulation of a single
gene deletion are unchanged maximal growth (non-
lethal), reduced maximal growth or no growth (lethal).
Those genes were considered essential if no biomass could
be produced without their usage.

List of abbreviations
GPR: Gene-protein-reaction; SBML: Systems Biology
Markup Language; FBA: Flux balance analysis; INE:
Important but Not Essential; HAR: Highly-affected reac-
tions; BOF: Biomass objective function; TLM: Threonine
and Lysine Metabolism; CPGB: Cofactor and Prosthetic
Group Biosynthesis; VLIM: Valine Leucine and Isoleucine
Metabolism; CEB: Cell Envelope Biosynthesis; LBR:
Lipopolysaccharide Biosynthesis Recycling; MM: Methio-
nine Metabolism; APM: Arginine and Proline Metabo-
lism; GM: Glycerophospholipid Metabolism; MLM:
Membrane Lipid Metabolism; PPB: Purine and Pyrimi-
dine Biosynthesis; NSP: Nucleotide Salvage Pathway;
CAC: Citric Acid Cycle; GSM: Glycine and Serine Metabo-
lism; TTPM: Tyrosine Tryptophan and Phenylalanine
Metabolism; TIM: Transport Inner Membrane; AAM:
Alanine and Aspartate Metabolism; FM: Folate Metabo-
lism; ACM: Alternate Carbon Metabolism; HM: Histidine
Metabolism; CM: Cysteine Metabolism; IITM: Inorganic
Ion Transport and Metabolism; OP: Oxidative Phosphor-
ylation; U: Unassigned
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