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Abstract

Background: Regions with copy number variations (in germline cells) or copy number alteration
(in somatic cells) are of great interest for human disease gene mapping and cancer studies. They
represent a new type of mutation and are larger-scaled than the single nucleotide polymorphisms.
Using genotyping microarray for copy number variation detection has become standard, and there
is a need for improving analysis methods.

Results: We apply the cumulative plot to the detection of regions with copy number variation/
alteration, on samples taken from a chronic lymphocytic leukemia patient. Two sets of whole-
genome genotyping of 317 k single nucleotide polymorphisms, one from the normal cell and
another from the cancer cell, are analyzed. We demonstrate the utility of cumulative plot in
detecting 2 9 Mb (9 X106 bases) hemizygous deletion and | Mb homozygous deletion on
chromosome |3. We also show the possibility to detect smaller copy number variation/alteration
regions below the 100 kb range.

Conclusion: As a graphic tool, the cumulative plot is an intuitive and a scale-free (window-less)
way for detecting copy number variation/alteration regions, especially when such regions are small.

Background

Most efforts in genetic mapping of human diseases focus
on single-nucleotide-polymorphism (SNP): individual
nucleotide base that may differ from one person to
another. If the cause of a polymorphism is due to diverg-
ing paths in population genetic history, such as in multi-
ple ethnic groups, it can be used as an ancestry or ethnic
identity marker [1]. If the polymorphism is a functional
mutation (non-synonymous or promoter-region poly-

morphism) [2] underlying a human disease, then it is the
focus of attention in case-control genetic analyses [3].

A new type of genetic polymorphism emerged recently as
another source of mutation that may lead to human dis-
eases: the copy number variation (CNV) (for literature on
CNV, see an online bibliography [4]). Local duplication
and deletion events occuring at kb (103 bases) or Mb (10°¢
bases) scales are the cause of CNV. If these events occurred
in prior generations, CNV can be treated as a genetic
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marker whose transmission might be traced in studying
the disease-status correlation. These events can also occur
in the current generation, as de novo mutations.

Similar duplication and deletion events also occur in
somatic cells, leading to copy number alteration (CNA).
Besides the link between CNA and cancers studied before
[5], an early CNV-disease association was reported on
Charcot-Marie-Tooth disease [6], in inherited neurologi-
cal disorder. In the past year or two, the number of reports
on association of CNV with human diseases increased
dramatically, especially for psychiatric disorders such as
Schizophrenia [7-9], bipolar [10], and for brain develop-
mental disorder such as Autism [11-15]. These diseases
have long been evading genetic dissection, and the CNV
link offers new optimism for our ultimate understanding
of these diseases.

The technology for CNV detection evolves from Mb-level
comparative genomic hybridization (CGH) to higher-res-
olution array-based CGH [16]. Genotyping array whose
original goal is to genotype individual SNPs, has increas-
ingly been used for CNV detection [17-20]. There are two
relevant pieces of information from a genotyping array
data for the purpose of CNV detection.

The first is the ratio of intensity reading of alleles for a
sample to that from a reference group of normal samples.
If the ratio is larger than 1, there are more copies of piece
of DNA in the sample than normal (which is 2 copies). If
the ratio is less than 1, it indicates a deletion. The second
signal is the genotype. Deletion of one of the chromo-
somes leads to a run of homozygosity for all SNPs in the
region, though run of homozygosity can also be due to
inbreeding [21,22]. The homozygosity property of one-
copy deletion is well exploited in detecting loss-of-hetero-
zygosity in CNA of cancer cells [23].

CNV detection using genotype microarray data relies on
these two sequences: if the intensity ratio deviates from
the normal value of 1 for a chromosome region with a
consistent value, it can be a CNV region. Similarly, ifa run
of homozygosity is observed in a region, it could indi-
rectly indicate a copy-number deletion. A CNV region
detection is more convincing if CNV signals exhibited by
both sequences overlap in a common region.

Methods for calling CNV regions can be roughly classified
into two types. The first type is straightforward: a CNV
detection is claimed when the log-ratio value is signifi-
cantly deviated from 0 [24]. The problem with this
method is that the threshold for calling CNV varies greatly
from platform to platform, from study to study, and a
comparative investigation is urgently needed [16]. The
second type uses hidden Markov models (HMM), where
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the underlying CNV status is the hidden variable, and the
log-ratio and genotype sequences are the two observed
variables [25-30]. One advantage of the HMM framework
is that it can incorporate information from both
sequences at once.

When the parameter settings in a HMM are fixed, HMM is
a stationary (homogeneous) process along a chromo-
some. There is one parameter in HMM which controls the
transition probability from the (hidden) CNV state to
non-CNV state. That parameter can also be transformed to
the characteristic size for CNV region [28]. What if the
CNV regions do not have a characteristic size, or equiva-
lently, the length distribution is not exponential? In that
case, CNV-calling methods that do not require stationarity
are preferred.

The guanine-cytosine content (GC%) in DNA sequences
has been a focus of non-stationary, non-Markov, long-
range-correlated modeling for more than twenty years
[31-33]. It is well acknowledged that the hierarchical pat-
tern of GC%-domains within GC%-domains is possible
[34,35]. In order to detect both small and large GC-homo-
geneous domains, one applies methods that do not preset
a characteristic scale. One such method is the recursive
segmentation that adopts a divide-and-conquer approach
[36]. Another is the cumulative plot.

Cumulative plot is a graphic display of sequence informa-
tion such that trend in a region becomes more visible and
obvious. It is a window-less method because no character-
istic scale needs to be specified, although a window can be
imposed to a plot when all patterns within certain length
scale are to be ignored. In DNA sequence context, such
cumulative plots were called "DNA walk" [37,38] or "Z
curve" [39,40]. The cumulative plot has also been widely
used for detection of replication origin [41,42]. To our
knowledge, cumulative plots have not been applied to
CNV/CNA detection. The purpose of this paper is not to
provide a comprehensive comparison of various CNV/
CNA-calling methods, but limited to the presentation and
illustration of this new approach.

Results and discussion

Since our method applies equally to CNV and CNA data,
here we examine the CNA pattern in a cancer patient with
chronic lymphocytic leukemia (CLL) [43]. DNA samples
from the patient's normal cell and that from the cancer
cell are obtained and genotyped with 317,000 SNPs
genomewide. Figure 1 shows the log-ratio and &
sequences (see Methods) for chromosome 13, where a 9
Mb CNA region (deletion) in the cancer cell is clearly vis-
ible. A deletion region is characterized by a drop in log-
ratio value, and an absence of heterozygosity. Our goal is
to capture the same information using cumulative plots.
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Log-ratio and genotype sequences for chromosome 13 in paired samples from a CLL patient. Log-ratio (top) and
genotype & (bottom) sequence for SNPs from chromosome |3 of two samples taken from the same cancer patient: black for
normal cell and blue for cancer cell. For the log-ratio plot, the copy number of 2 level log(2/2) = 0 and the copy number of |

level log(1/2) = -0.693147 are marked.

The left panel of Figure 2 shows the two cumulative plots
corresponding to log-ratio sequence and homozygosity
indicator sequence h, respectively. In the simplest version,
at each new SNP, the curve moves up or down by an
amount equal to the log-ratio value of that SNP, or by the
presence of a homozygote (+1) and a heterozygote (-1).

For a deletion region, the log-ratio value is consistently
negative, and the first cumulative plot shows a drop; and
genotype is consistently homozygous (also called run of
homozygosity (ROH)), and the second cumulative plot
shows a jump. However, from Figure 2 (left), even outside
the CNA region, the first (second) cumulative plot contin-
ues to go down (up), reflecting a global abundancy of neg-
ative log-ratio over positive one (homozygotes over
heterozygotes).

To remove the global or chromosome-wide average, we
redraw a detrended cumulative plot (right panel of Figure
2) where the linear trend from the normal cell is sub-
tracted from the two cumulative plots. If the difference of
global trends between the cancer and normal cell is an

artifact, e.g., the poor DNA quality in cancer cell that leads
to higher missing rate for genotype calling, thus seemingly
lower heterozygote frequency, then the normal and cancer
cumulative plots should be detrended separately. Without
such an evidence, we use the linear trend in normal cell to
detrend both samples to highlight the difference between
the two.

Cumulative plots can be customized to pick any specially
defined signal. Suppose we are mainly interested in
regions with copy number equal to 1, i.e., hemizygous
deletion. Such deletion region should exhibit two fea-
tures: (1) log-ratio is equal to log(1/2) = -0.693147 (as
versus log(2/2) = 0 in the normal situation); (2) homozy-
gosity indicator equal to 1 (as versus to a mixture of -1's
and 1's). For a SNP, we then define a "one deletion" indi-
cator variable whose value is 1 if -2 < log-ratio < -0.34657
(mid-point between -0.693147 and 0) and if its genotype
is a homozygote and the value is -1 otherwise.

Figure 3 shows the cumulative plot for "one deletion"
indicator variable, without or with detrending (by the lin-
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Figure 2

Cumulative plot of log-ratio and homozygosity sequence. Cumulative plot and detrended cumulative plot for both the
log-ratio sequence and the homozygosity indicator sequence (for the chromosome |3 data shown in Figure ). Top: cumulative
plots for log-ratio sequence. Bottom: cumulative plot for homozygosity sequence (I for homozygote, -1 for heterozygote).
Left: original cumulative plots. Right: detrended cumulative plots. The linear trend obtained from the normal sample is used to
detrend both the normal and the cancer sample. Black for the normal cell and blue for the cancer cell. The 9 MB hemizygous
deletion and the neighboring | Mb homozygous deletion region are marked by red lines.

ear trend in the normal sample). In both versions, the
hemizygous deletion region can be seen clearly. Not only
the cumulative plot detects the CNA region easily, but also
it delineates the border of the deletion region accurately.

When deletion occurs in both chromosomes, called
homozygous deletion, the copy number is equal to zero.
For homozygous deletions, both A- and B-channel inten-
sity (see Methods) is close to zero, and the log(r) is a large
negative value. Because in the A- and B-channel plane (see
Methods), these SNPs are near the origin, the angle 6 can
not be determined unambiguously. This leads to a broad
distribution of @ values between 0 and 1, as can be seen
from Figure 1 (top).

We define a "two deletions" indicator variable whose
value is 1 if the log-ratio is < -2; and the value is -1 other-

wise. Note that the genotype information is not used. Fig-
ure 4 shows the cumulative plot for the "two deletions"
indicator variable for chromosome 13. One homozygous
deletion region with ~1 Mb is clearly identified immedi-
ately adjacent to the 9 Mb hemizygous deletion region.

The 9 Mb deletion on chromosome 13 in our CLL sample,
which was one of the known common deletions for this
disease [44], represents an example of easy detection of
CNA/CNV region, because the difference between the nor-
mal and cancer cell for both log-ratio and genotype
sequence is already obvious from the raw data (Figure 1).
The advantage of cumulative plot is perhaps its ability to
detect CNA/CNYV region of smaller sizes.

Figure 5 shows the example of chromosome 6 of our sam-

ple where there is no large-scaled CNA region. The log-
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Cumulative plot of the hemizygous deletion indicator variable. Cumulative plot (top) and detrended cumulative plot
(bottom) for the 9 Mb hemizygous deletion region on chromosome 13, using the "one deletion" indicator variable.

ratio and genotype sequence look almost identical
between the normal and the cancer cell. The cumulative
plot for the "one deletion" indicator variable shows that
there are +400 more SNPs in the cancer cell than in the
normal cell to have the one deletion signal (the "two dele-
tion" cumulative plot is not shown because the signal is
mostly absent along the chromosome). However, these
SNPs are distributed throughout the chromosome,
instead of forming clusters, and we still do not have strong
evidence that the cancer sample has more micro deletion
regions as compared to the normal sample. In order to
explore the possible existence of smaller CNA regions, we
pick the longest ROH region (roughly 4 Mb) and view it
with cumulative plots. Figure 6 (left) shows the un-
detrended cumulative plot for the one-deletion indicator
variable in this region. A clear hemizygous deletion region
should show up as a jump in the cumulative plot. How-
ever, the tendency within this ROH region is downward
instead of upward. In other words, although all genotypes
in this region are homozygous, the log-ratio mostly fails
the <-0.34657 criterion.

The failure in detecting hemizygous deletion at the Mb
scale does not necessarily prevent its possible existence at
a smaller length scale. The right panel of Figure 6 shows a
200 kb sub-region (marked in Figure 6 (left)) that con-
tains a 36 kb region with an upward trend in the cumula-
tive plot. A zooming into any small region in a cumulative
plot enables it to detect CNA/CNV regions with ever
smaller sizes.

It was previously suggested that run of homozygosity can
be a sequence feature that is associated with certain
human diseases [45]. We see here that ROH is only a par-
tial indicator for a CNA/CNV region. The longest ROH on
chromosome 6 in our sample only shows some weak evi-
dence in a much narrower region for one-deletion CNA.
Considering both ROH and log-ratio sequence is clearly
better than considering ROH alone. Although ROH may
still be biologically meaningful, as it could reflect a copy-
neutral loss-of-heterozygosity event, one has to obtain
extra evidence to exclude population genetics events such
as inbreeding as the true cause.
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Cumulative plot of the homozygous deletion indicator variable. Cumulative plot (top) and detrended cumulative plot
(bottom) for the | Mb homozygous deletion region on chromosome 13, using the "two deletions" indicator variable.

The pairing of the normal and the cancer sample is not
essential to our method. In Figures 3, 4, 6, the CNA
regions can be identified by cancer sample (the blue
curve) alone. However, the comparison with the normal
sample provides supporting evidence that deletion only
occurs in the cancer cell and not in the normal cell. When
SNPs along a chromosome are not evenly distributed, it
may not be appropriate to move one step per SNP in the
cumulative plot. For example, if multiple SNPs are in
strong linkage disequilibrium in a densely typed region,
the indicator variable values are positively correlated, and
a sequence of +1 values is partially a consequence of their
correlation, not as a series of independent evidences for
CNA/CNV. We can adjust for this correlation by calculat-
ing the probability ratio « (see Method) in favor for con-
cordant genotypes between neighboring SNPs, as
compared to the average. If o > 1, we discount a +1 (or -
1) movement by dividing the « value. For the chromo-
some 13 data, a is in a very narrow range of (0.9921,
1.0002). Because the probability ratio in favor of concord-

ant homozygotes is so close to 1, the adjusted cumulative
plot is indistinguishable from the original cumulative
plot.

So far the delineation of an upward trend in the cumula-
tive plot is determined by visual inspection. Segmentation
programs can be developed to carry out the delineation
automatically. In particular, one may move along the
cumulative plot, calculate the slope from the start point to
the moving position, then from the moving position to
the end point. The position that maximizes the difference
of the two slopes is chosen, leading to the first segmenta-
tion. This segmentation can be carried out recursively sim-
ilar to the method described in [36].

Finally, for case-control analysis using CNV, one deals
with two groups of samples [46]. In this situation, cumu-
lative plot can be first applied to each individual person to
identify the CNV/CNA region. Then, chromosomes can be
partitioned into equal-sized windows and the frequency
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Figure 5

Log-ratio and genotype sequences for chromosome 6 in paired samples from a CLL patient. The log-ratio

sequence (top), genotype Osequence (bottom), and the detrended cumulative plot for the "one deletion" indicator variable for
SNPs on chromosome 6. Black and blue color refer to the normal and cancer cell sample taken from the same cancer patient.
The largest run-of-homozygosity region is marked by red vertical lines. The copy number of 2 level log(2/2) = 0 and the copy

number of | level log(1/2) = -0.693147 are marked in the log-ratio plot.

of CNV/CNA-containing window in the case group is
compared to that in the control group for a statistical test.

Conclusion

We have shown here that cumulative plots of an indicator
variable derived from the log-ratio and SNP genotype
sequence can easily identify CNV or CNA regions. We
illustrate the procedure for hemizygous deletion (copy
number equal to 1) and homozygous deletion (copy
number equal to 0) using samples taken from a chronic
lymphocytic leukemia patient. Although CNV/CNA
regions at the Mb scale can also be detected by viewing the
raw data, cumulative plot is able to delineate the borders
with higher degree of accuracy. Another advantage of
cumulative plot is perhaps in detecting smaller CNV/CNA
regions, such as those in the range of 10 kb-100 kb, as it

is a scale-free approach that does not require a fixing of
the window size. Cumulative plot is simple enough that
no special-purpose program is needed for its use except a
graphic routine: for example, all results shown here are
obtained by the general statistical package R [47].

Methods
log-ratio and genotype data

In a two-channel (two-color) SNP genotyping microarray,
the A- and B- channel (A- and B-allele) intensity reading is
recorded. These two intensities are normalized by refer-
ence intensity values which are obtained by averaging
many normal samples. Each SNP can be represented by a
point in the (x, y) plane where x, y are the normalized A-
and B-channel intensity. The polar coordinate of the point
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Zoom in of smaller regions. Cumulative plots of "one deletion" indicator variable for the region marked in Figure 5 (left),
and the sub-region marked by a horizontal bar on the left (right). Black and blue refer to the normal and the cancer sample.

is "~ sz +y’ and @ = tan'1(y/x) [48]. Log(1) is the "log
ratio" value that provides a copy-number information,
and @provides a genotype information, where 6= 0, 1 cor-
respond to two homozygotes, and 6 = 0.5 corresponds to
the heterozygote. Note: (1) r value depends on a group-
averaged reference level, and this information is provided
by the array-maker company. (2) Although r and @ is in
principle independent, there could be weak correlation
between them. Our starting point are the two sequences of
log(r) and discretized @ values (i.e. genotype) along a
chromosome.

Cumulative plots for log-ratio and homozygosity sequence
The r and @ variable is transformed by: log-ratio = log(r)
and homozygosity indicator h =4 x |6- 0.5| - 1. For het-
erozygotes, h is close to -1, and for two homozygotes, h is
close to 1. Denote the i-th SNP's log-ratio and homozy-

gosity indicator as log(r;) and h;. The (original) cumula-
tive plots of these two sequences are:

J
cumulog.ratio; = Zlog(ﬁ)

i=1

j
cumu.h; = z(hi)

i=1

A cumulative plot can be detrended such that the first and
the last SNP are on the same horizontal line. The purpose
of this detrending is to remove the chromosome-wide
bias so that regional deviations are highlighted. In our
normal and cancer cell from the same individual example,
we detrend the normal sample by subtracting the linear
function a + bx;, where x;is the Mb position of the ith SNP,
N is the number of SNPs, and
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To highlight the difference between the cancer cell and the
normal cell, we use the a and b obtained from the normal
cell to detrend the cumulative plot for the cancer cell.

Cumulative plots corrected by spacing between
neighboring SNPs

When SNPs are not distributed evenly along a chromo-
some, one may consider correcting the effect of inhomo-
geneous correlation between neighboring SNPs. We first
calculate the probability of a neighboring SNP of a
homozygous SNP to be also homozygous due to the cor-
relation between them. This calculation is carried out by
the Haldane's map [49].

Haldane's map relates the number of recombinations
within a chromosomal interval M and the probability of
observing a recombinant between the two end points R:

R= 1-exp(—2M) .
2

The unit of M is Morgan, which is roughly equal to 100
Mb (or 1 centi Morgan is equal to 1 Mb [50]). The proba-
bility of observing a non-recombinantis 1 - R.

Denote p,,,,, the probability that one homozygous SNP is
followed by another homozygous SNP that is M genetic
distance apart. Since Haldane formula is applicable to
haplotype, or a single copy of a chromosome, for two cop-
ies of a chromosome, p,,,,= (1 -R)2~ 1 - 2R = ¢2M,

Suppose the average spacing between two neighboring
SNPsis M . Fora neighboring SNP pair whose spacing M

<M , it is more likely for both SNPs to be homozygous
than the average, by a probability ratio of

— = _ 2(M-M)
% = Pame | Psame = € , and the cumulative plot for

the homozygosity indicator variable can be adjusted by
dividing that ratio:

J j B
cumu.hj = 2 h|oa;= Ehiez(MFl,i_M)'
i=1 i=1

We assume that p,,,,, is calculated in the same way as for
other indicator variables, meaning CNV/CNA of a partic-
ular type is maintained at the neighboring SNP by the
same probability e-2M, and the above formula can be used

http://www.biomedcentral.com/1471-2105/10/S1/S67

to correct other cumulative plots. Note that transition
probability from one genotype in a SNP to another geno-
type in the neighboring SNP can also be estimated from
the HapMap data.
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CGH: comparative genomic hybridization; CLL: chronic
lymphocytic leukemia; CNA: copy number alterations;
CNV: copy number variations; GC%: guanine and cyto-
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of homozygosity; SNP: single nucleotide polymorphism
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