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Abstract

Background: Genome-wide association studies prove to be a powerful approach to identify the
genetic basis of different human diseases. We studied the relationship between seven diseases
characterized in a previous genome-wide association study by the Wellcome Trust Case Control
Consortium. Instead of doing a horizontal association of SNPs to diseases, we did a vertical analysis
of disease associations by comparing the genetic similarities of diseases. Our analysis was carried
out at four levels — the nucleotide level (SNPs), the gene level, the protein level (through protein-
protein interaction network), and the phenotype level.

Results: Our results show that Crohn's disease, rheumatoid arthritis, and type | diabetes share
evidence of genetic associations at all levels of analysis, offering strong molecular support for the
current grouping of the diseases. On the other hand, coronary artery disease, hypertension, and
type 2 diabetes, despite being considered as a natural group with potential aetiological overlap, do
not show any evidence of shared genetic basis at all levels.

Conclusion: Our study is a first attempt on mining of GWA data to examine genetic associations
between different diseases. The positive result is apparently not a coincidence and hence
demonstrates the promising use of our approach.

Background

Human genomes differ only in about 0.1% from each
other, but this small genomic difference contains the key
difference that can determine a person's susceptibility to
diseases. In order to identify the genomic basis of certain
diseases, genome-wide association (GWA) studies, an
approach to find genetic variations (e.g. single nucleotide
polymorphisms — SNPs) associated with a particular dis-

ease have become increasingly popular and useful. With
completion of the Human Genome Project and HapMap
Project and availability of dense genotyping chips and
assembly of large and well-characterized clinical samples
[1], it is now technically possible and financially feasible
to conduct GWA studies that are powerful to detect candi-
date genes for certain genetic diseases. Meanwhile, the
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surging amount of available GWA data provides us an
excellent opportunity for mining of disease relationships.

In this study, we focused on understanding the genetic
basis of associations between seven common human dis-
eases, using the data generated by a recent extensive GWA
study undertaken in the British population [2]. The study
examined about 2,000 humans for each of seven major
diseases and a shared set of about 3,000 controls. This
study was led by the Wellcome Trust Case Control Con-
sortium (WTCCC) that brought together over 50 research
groups from the UK that are active in researching the
genetics of common human diseases. The seven diseases
examined are bipolar disorder (BD), coronary artery dis-
ease (CAD), Crohn's disease (CD), hypertension (HT),
rheumatoid arthritis (RA), type 1 diabetes (T1D), and type
2 diabetes (T2D). Although these seven diseases differ in
their clinical symptoms, according to the WITCCC [2], the-
ses diseases can be clustered into three natural groups:
CAD+HT+T2D (metabolic and cardiovascular pheno-
types with potential aetiological overlap); RA+T1D
(already known to share common loci); and CD+RA+T1D
(all autoimmune diseases). However, whether the group-
ing has sound genetic basis, that is, whether the diseases
that belong to the same group share similar genotypes,
was not addressed in depth in the WTCCC study. Elucidat-
ing the genetic commonality between diseases (i.e.
whether different diseases are caused by some common
loci) can help us discover possible hidden relationships
between diseases that may appear unrelated phenotypi-
cally. It may also improve therapeutic treatment, disease
diagnosis, and better prevention [3].

In this study, we took advantage of the GWA data of the
seven diseases to examine whether different diseases share
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some level of commonality in genotypes. Our goals are to:
(1) fish out sets of SNPs associated with the seven diseases
in the WTCCC study and analyze whether there are over-
laps between different sets of SNPs that correspond to dif-
ferent diseases, (2) analyze commonalities between genes
associated with the SNPs in these diseases, (3) construct
protein-protein interaction networks for the sets of genes
and explore common features of the networks across the
diseases, and (4) analyze the phenotypic similarities
between the diseases.

Results and discussion

Analysis of SNP clusters

The GWA study by the WICCC produced a list of SNPs
that are associated with each of the seven diseases. The
confidence of association of a SNP with a specific disease
is represented by the SNP's P-value. The lower the P-value
is, the more likely that the SNP is associated with the dis-
ease. Similar to the WI'CCC study [2], we discarded the
SNPs that have P-value higher than 104 because these
SNPs are weakly associated with the diseases and are more
likely owing to some statistical noise than to real biologi-
cal significance. The SNPs with P-value = 10-4 were clus-
tered into blocks. There are around 100 clusters (blocks)
of SNPs for each disease, with blocks that are on the same
chromosome at least 1 MB (mega base pairs) apart from
each other.

In order to measure the degree of commonalities between
SNP blocks of different diseases, we employed two differ-
ent metrics, the Jaccard index and the total length meas-
urement. For both metrics, the larger the metric is, the
more similar two cluster patterns are to each other. First,
figure 1 shows a matrix of Jacobian values between each
pair of seven diseases. It is a symmetric matrix. According
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to the disease grouping by the WTCCC (see Background),
we colored diseases into red groups (CAD, HT, T2D) and
green groups (CD, RA, T1D). We expect to see more simi-
larities between diseases within the same group, and thus
cells with deep red and deep green are expected to be big-
ger than others in the same row or column. This proposi-
tion is true for the green group. However it is not true for
the red group.

Second, we also used the total length to measure similari-
ties between two sets of clusters. Figure 2 shows the matrix
for seven diseases. Similar to the results based on the Jaco-
bian values, strong similarities are observed in the green
group (CD, RA, T1D), and are not observed in the red
group (CAD, HT, T2D).

Therefore, results on both measurements of the similari-
ties in SNP blocks for disease pairs show that the grouping
of CD, RA, and T1D has a strong genetic basis, whereas the
grouping of CAD, HT, and T2D has little genetic evidence.
Within the green group (CD, RA, and T1D), it is unclear
which two of them have a higher degree of commonality.
For example, the Jocobian value between CD and RA is
the highest within the three diseases, whereas the total
length measurement between RA and T1D is the largest.

Since strong correlations in SNP blocks are observed
between CD, RA, and T1D, one would wonder whether
paired blocks/clusters between these three diseases have
highly similar distribution patterns. We plotted three sets
of paired clusters between these three diseases in figure 3.
If paired clusters are the same, then they should appear at
the same location, which is not the case. Therefore,
although there are strong genetic associations between
each pair of the three diseases, the patterns of such rela-
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tions are quite different from each other and there is little
commonality shared by all three diseases.

From SNPs to genes

As some of the SNP clusters reside in genes that may have
different biological functions [4,5], we can map the SNP
clusters to genes for each disease and characterize the
degree of association between diseases at the gene level.
Studying the pattern of gene overlaps between different
diseases will allow us to move one step further towards
the functional mechanisms of diseases, most of which
result from abnormality or absence of certain proteins in
the human body. Thus not only would we be able to
obtain a clearer picture than from the SNP clusters in how
diseases may be related, but also it facilitates our investi-
gation of disease association at the level of protein net-
works [6].

The number of candidate genes shared between diseases
can indicate association of diseases. The more candidate
genes shared by two diseases, the more closely related
between the two diseases [7]. Thus, when SNP blocks are
converted to genes, we expect to see the relation between
any two diseases by calculating the number of shared
genes. As stated in the methods, we examined the distri-
bution of the distances of SNP blocks to their downstream
genes and decided to use the two extreme values for this
analysis. Figures 4 and 5 display the comparison results
on the number of shared genes between all possible com-
binations of disease pairs with 0 distance (i.e. the SNP
blocks must overlap with genes) and the maximal dis-
tance (i.e. all SNP blocks are converted into genes). We
observe a large number of genes shared between RA, T1D,
and CD, which are all auto-immune diseases. However,
the other pre-categorized group CAD, HT, and T2D, does
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Figure 3

Distribution of cluster pairs for CD, RA, and TID. The y axis value -log,, P is the average of paired clusters' strongest P-values.

not show any significant relation within its three mem-
bers. Therefore, the results of the analysis at the level of
genes display similar outcomes to the analysis at the level
of SNPs.

2 KB upstream regions of genes tend to be enriched with
regulatory elements [7]. SNPs in such regions as well as in
transcription factor binding sites (TFBSs) are mutations
that might affect the regulation of gene expression and
genetic interactions. Interestingly, we found that although
there are 266 SNPs in RA, for example, located within the

Figure 4
Numbers of shared genes under 0 distance.

2 KB upstream region of genes, none of them reside in the
predicted regions of TFBSs. Thus, there is little evidence
for the claim that some studied SNPs may lead to abnor-
mal regulation of gene expression that in turn contributes
to the pathogenesis of diseases.

From genes to protein networks

Analysis of SNPs can show us the low level of association
between primary sequences and diseases. But in order to
understand the disease pathogenesis from a functional
point of view, we need to study SNPs (and thereof genes)
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Figure 5
Numbers of shared genes under maximal distance.
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at the protein level because the majority of genes must be
translated into proteins to participate in protein-protein
interaction networks or pathways and to perform their
biological functions [6]. Mapping gene data onto the pro-
tein-protein interaction (PPI) network and comparing the
PPI networks associated with different diseases will allow
us to investigate whether different diseases have overlaps
in networks or pathways, and thus may provide an alter-
native approach for identifying the genetic basis of com-
monalities or associations between diseases.

Using the STRING database, we constructed seven disease
networks. Figure 6 shows the seven networks, each of
which contains a set of proteins that are associated with
the diseases. Because hub nodes form the backbone of a
network, they are considered to be an important measure-
ment for the similarity between protein interaction net-
works; moreover, backbone network has also been shown
to be highly conserved in maintaining housekeeping bio-
logical function of the cell [6]. Thus, we examined all the
hub proteins in the networks to see whether there are
shared hub proteins. We defined hub proteins as the pro-
tein nodes with degrees > 15 in a disease network [6].
Table 1 shows the number of hub proteins identified for
each disease. The T1D has the highest number of hub pro-
teins among the seven diseases, probably due to the fact
that it has the highest number of genes that were used to
construct the disease network.

Shared hub protein analysis reveals two findings (Table
2). First, CD, RA, and T1D shared a protein, the DNA-
directed RNA polymerase I subunit provides the molecu-
lar evidence for the grouping of these three diseases. It has
been shown that the DNA-directed DNA polymerase

activity of RA specimens was increased in the high-speed
pellet fraction of cell lysates, which makes virus infection
in RA more vulnerable [8]. Also it has been shown that
polymerase chain reaction is a very important step in
Mycobacterium paratuberculosis, which is in turn a infec-
tious cause of Crohn's disease [9]. The DNA-directed RNA
Polymerase I subunit can be easily exploited by virus to
produce virus DNAs for subsequent infection. We were
not able to find any literature documenting the connec-
tion between the DNA-directed RNA Polymerase and
T1D. Therefore, existing literature seems to support our
finding of the molecular link - the DNA-directed RNA
Polymerase, for the associations between at least two of
the three diseases. Second, RA and T1D share five proteins
(Table 2), suggesting that they have a stronger association
in their molecular mechanisms of pathogenesis as com-
pared to CD and T1D or CD and RA. Table 3 shows the
biological function of the five proteins and whether their
association with RA and T1D is supported by existing lit-
erature. Four proteins were found to be associated with RA
and two proteins with T1D. Two proteins, HLA class I and
IEX-1, are both supported to have association with RA and
T1D. Also notice that HLA class I has immune response
function, which is consistent with the grouping of CD, RA,
and T1D into auto-immune diseases.

Therefore, our results show that it is possible to identify
the underlying molecular mechanism that might contrib-
ute to the commonality between different diseases, either
in terms of pathogenesis or disease phenotypes, by tracing
shared hub proteins between diseases.
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Figure 6
the PPl networks for: from left to right, BD, HT, RA (upper panel), CAD, CD, and TID (Lower panel), respectively.

Comparison of disease phenotypes
All three levels of analysis of the seven diseases show con-

Table I: Numb f hub teins i h di . . .
avle Hmber oT b proteins In each disease sistent results that support the grouping of CD, RA, and

Disease Number of hub proteins T1D, but not the grouping of CAD, HT, and T2D. In order
to further verify our results, we compared the phenotypes
BD 2 of the seven diseases to see how they are related at the phe-
notypical level using MimMiner. MimMiner is a pheno-
CAD I type comparison tool that uses the Online Mendelian
Inheritance in Man (OMIM) database and various text
CD 21
Table 2: The number of shared hub proteins in disease
HT 2
networks.
RA 17 Diseases Number of hub proteins
TID 25 CD,RA,and TID |
T2D 0 RAand TID 5
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Table 3: The function of five hub proteins shared by RA and TID and supporting publications.

Protein name Function(GO)

Association with RA  Association with TID Pubmed id

HLA class | histocompatibility Immune response Yes Yes 11369787
antigen
Radiation-inducible immediate- ~ NOT found in GO Yes Yes 16368886, 14630199
early gene IEX-1
Collagen alpha Integral to membrane; Beta-amyloid Yes No 8816431
binding; Heparin binding
Death domain-associated Nucleus; Protein binding; Protein No No n/a
protein 6 homodimerization acitivity; Transcription
factor binding
Mediator of DNA damage Nucleus; Protein binding Yes No 17913746

checkpoint protein |

mining algorithms to classify phenotypes [7]. The Mim-
Miner score measures the degree of similarity of various
diseases to the target disease in terms of phenotypes. The
higher the score is, the more similar the two diseases are
in terms of their phenotypes. Thus, we can judge using the
MimMiner score the degree of similarity of various dis-
eases to the diseases of our interest. Table 4 shows the
MimMiner results for three of the seven diseases (for brev-
ity, only the top ten hits for each disease were shown). We
did not find any significant hits for BD, CAD, HT, and
T2D from any of the seven diseases. It is clear that consist-
ent with the results of the analysis performed at the levels
of SNP, genes, and proteins, Crohn's disease, rheumatoid
arthritis, and type 1 diabetes also have a close phenotypic
connection, whereas coronary artery disease, hyperten-
sion, and type 2 diabetes do not.

Conclusion

We analyzed associations between GWA studies of seven
diseases. Our study was carried out at four levels — analysis
at the nucleotide level (SNPs), analysis at the gene level,
analysis at the protein level (protein-protein interaction
network), and analysis at the phenotype level. For one
group of diseases (CD, RA, and T1D), strong associations
are found across all levels of analysis. In particular, our
results indicate that within this group, RA and T1D are
more strongly associated than they are to CD, suggesting
RA and T1D are originated by highly similar molecular
mechanisms, which can shed light on further exploration
of these diseases. For another group of diseases (CAD, HT,
and T2D), no genetic association is found at all levels of
analysis. The negative result could be due to inappropriate
grouping of the diseases (for example, classifying accord-
ing to metabolic and cardiovascular phenotypes might be
superficial and inaccurate) or that our analysis might be
too primitive to recover the hidden genetic associations
for this group. However, given our rather thorough analy-

sis to uncover the relationships among these diseases and
the strong confirmation of the grouping of CD, RA, and
T1D, we think that the latter is highly unlikely.

Our study is a first attempt on mining of GWA data to
examine genetic associations between different diseases.
The positive result is apparently not a coincidence and
hence demonstrates the promising use of our approach.
With the increasing amount of GWA data, it becomes
increasingly important to examine whether there are any
hidden relationships between different diseases, espe-
cially the diseases without apparent phenotypic common-
alities (e.g. similar disease symptoms). At the same time,
many diseases have highly similar symptoms such that it
remains controversial whether they are different diseases
or actually one disease with different names. For example,
there has been a long-standing controversy whether schiz-
ophrenia and bipolar are one or two disease traits [10]. It
is conceivable that with proper data, our approach could
make a definite contribution to this question and ques-
tions of similar kind.

Methods

Analysis of SNP clusters

In order to explore the relationship between SNPs of dif-
ferent diseases, we clustered SNPs into blocks and exam-
ined whether there are commonalities between SNP
blocks of different diseases. The motivation for clustering
SNPs into regions is that neighboring regions of the
genome tend to have similar expressions and likely func-
tion together, by analyzing the SNPs on the level of clus-
ters and genomic regions rather than specific points, we
are more likely to identify patterns of a larger scale. Specif-
ically, we examined the distribution of the distances
between all of the two nearest SNPs on the same chromo-
some, and found that using the 1 MB as a cutoff value for
clustering SNPs into blocks (i.e. the distance between SNP
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Table 4: Disease names and their top 10 significant phenotype
hits, the rows in bold are diseases of interest.

Rank id Score Disease Name
Crohn's disease and its phenotype hits.
| 266600 1.0000 inflammatory bowel disease |
2 191390 0.6624 ulcerative colitis
3 605225 0.6402 inflammatory bowel disease 7
4 180300 0.4314 rheumatoid arthritis
5 177900 0.4256 soriasis susceptibility
6 301000 0.4220 wiskott-aldrich syndrome
7 222100  0.4065 diabetes mellitus, insulin-dependent
8 249100 0.4054 familial mediterranean fever
9 232220 0.4048 glycogen storage disease ib
10 219700 0.4043 cystic fibrosis
rheumatoid arthritis and its phenotype hits.

| 180300 1.0000 rheumatoid arthritis
2 180350 0.4476 rheumatoid nodulosis
3 266600 0.4314 inflammatory bowel disease |
4 222100 0.4117 diabetes mellitus
5 106300 0.3881 ankylosing spondylitis
6 191390 0.3861 ulcerative colitis
7 606044 0.3816 sjogren syndrome
8 254500 0.3736 myeloma, multiple

http://www.biomedcentral.com/1471-2105/10/S1/S68

Table 4: Disease names and their top 10 significant phenotype
hits, the rows in bold are diseases of interest. (Continued)

9 109100 0.3681 autoimmune disease
10 300310 0.3665 agammaglobulinemia
type | diabetes and its phenotype hits.
| 125480 1.0000 diabetes mellitus
2 275000 0.4704 graves disease
3 601318 0.4478 diabetes mellitus
4 270150 0.4458 sjogren syndrome
5 600496 0.4415 maturity-onset diabetes of the young
6 217000 0.4141 complement component 2 deficiency
7 180300 0.4117 rheumatoid arthritis
8 266600 0.4065 inflammatory bowel disease |
9 137100 0.4049 immunoglobulin a defil
10 125850 0.4042 maturity-onset diabetes

blocks is greater than 1 MB) achieves a good balance
between the total number of blocks produced and the cut-
off distance. We also tried several hierarchical clustering
methods and found that the results are highly similar to
our straightforward clustering method (i.e. using a cutoff).
Therefore, for the remainder of our work, we used the SNP
blocks produced by the straightforward clustering
method.

To quantify the degree of commonalities between two dis-
eases in terms of SNP blocks, we compared the distribu-
tion of the set of SNP blocks belonging to two diseases.
We observed that some SNP clusters of different diseases
share the same region or are physically very close to each
other. We considered these SNP blocks to be paired
blocks. Therefore, we can compare cluster patterns of dif-
ferent diseases by examining the prevalence of paired clus-
ters. Figure 7 shows that two clusters from two diseases are
paired when their locations on the chromosome overlap
or are very close. The paired clusters demonstrate commo-

Page 8 of 11

(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 1):S68

nalities between the two sets of SNPs that are strongly
associated with the two diseases.

We also use the total length to measure the similarity
between clusters. The total length was calculated between
each pair of sets of clusters, which is the sum of all paired
clusters' lengths for two diseases (Figure 7). This value is
proportional to the number of paired clusters and the
cluster length (which indicates the reliability of the asso-
ciation). Thus we still expect larger value for stronger sim-
ilarities.

Conversion of SNP blocks to genes

When analyzing disease association at the SNP level, we in
fact compared the distribution of SNP clusters between
different diseases. At the level of genes, our task was to
convert the SNP clusters to genes. Naturally, the first ques-
tion was what kind of SNP clusters should be used. The
confidence level of a SNP cluster was taken into account
in our experiment. We selected SNP clusters by a thresh-
old of P-value. Specifically, all SNPs having a P-value less
than this threshold, i.e. with stronger relation to an indi-
vidual disease above a lower bound, should be included
into the clusters to be further converted into genes. We did
several tests on different thresholds varying in a large
range and set it to 10-4. We have two reasons for selecting
this value. (1) SNPs with P-values less than this value are
at least not insignificant. This P-value is the default thresh-
old value used by the WI'CCC for distinguishing moder-
ate and significant SNPs from insignificant ones [2]. (2)
Under this threshold, the numbers of genes converted and
related to each disease seem reasonable. Table 5 shows
that with threshold values of lower magnitudes than 104,
the number of genes found for some diseases such as HT
and T2D drops to 0, suggesting that the threshold values
of lower magnitude than 10+ are too stringent.

Construction of protein-protein interaction

First, from the seven sets of genes that are associated with
the diseases, we translated the gene IDs into the ENSEMBL
peptide IDs using the Biomart tool [11]. Second, we
downloaded the STRING database [12], which contains
all the known and predicted protein-protein interaction
data and also direct (physical) and indirect (functional)

Clusters of disease A

__ | i ] _.

Clusters of disease B
? Less than 1 mega bp

Figure 7
Demonstration of paired clusters. Same colored clusters are
considered to be pairs.

http://www.biomedcentral.com/1471-2105/10/S1/S68

Table 5: numbers of genes found for the seven diseases under
different thresholds of P-value.

P-value BD CAD CD HT RA TID T2D
104 105 Il 610 40 808 1095 33
10-> 3 9 43 0 618 994 5
10-¢ 0 2 22 0 584 956 0
107 0 | 14 0 584 857 0

associations. The strengths (scores) of protein-protein
interactions and associations are evaluated by a compos-
ite criteria of multiple sources: Genomic Context, High-
throughput Experiments, Conserved Co-expression, and
Previous Knowledge that are mainly curated from the
PubMed, and are thus quite robust.

Determine upstream distance from genes

We used the human gene annotation in the UCSC's
genome database for mapping SNP clusters to genes. This
database contains adequate information about human
genes and their locations along chromosomes. Before
starting the conversion, the algorithm still remains
unfixed for one issue. The straightforward method should
work like the follows: if one SNP cluster shares a part of its
region along the chromosome with a gene (or genes), the
gene (genes) should be considered related to the cluster
and added to the converted gene list. However this may
not be a sufficiently sound criterion. In our experiment,
we believe that we should take into account the regulatory
effect of an SNP cluster from the upstream of a gene. This
means that a cluster located upstream of a gene but having
no shared regions sometimes can have a major effect on
the gene, for example as a gene expression enhancer. In
this case, when converting a cluster of SNPs to genes, not
only genes having overlapping regions with the SNP clus-
ter, but also genes located downstream of the cluster with
no overlap, should be included into the converted gene
list.

We calculated the distances of all the SNP clusters to their
nearest genes along chromosomes. Figure 8 shows how
the distances of SNP clusters to nearest genes are distrib-
uted. Most cases (92.67%) of distances range from 0 to
500,000 base pairs. The highest frequency occurs in the
range from O to 4,000 base pairs, which accounts for
15.88% of all cases, much higher than all the other ranges
with the same width.

Since sometimes the regulatory region of a gene can be
distantly located in the upstream region of the actual
gene, it is hard to decide what distances should be used to
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Figure 8

histogram for the distances of SNP blocks to the nearest genes.

convert SNP clusters into genes. We therefore used two
extreme values for the distance allowed for a SNP block
away from a gene: 0 and the maximum distance, to see the
effect of distance on the conversion of SNP clusters to
genes.

From SNPs to genes analysis

SNPs in the regulatory regions of genes can have a major
effect of the patterns of gene expression. In order to exam-
ine whether there are SNPs falling in regulatory regions of
genes, we obtained more than 100,000 computationally
identified transcriptional regulatory modules within the
human genome from the PReMod database and wrote a
C++ program to identify the SNPs that are within the tran-
scriptional regulatory modules. The following describes
the simple algorithm:

if Extracting 2 KB upstream regions of genes. then

if there are SNPs in the regions then
if any TFBSs are inside the regions then
Print result.
end if
else
"No result”
end if
end if
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