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Abstract

Background: Gene co-expression networks are often constructed by computing some measure
of similarity between expression levels of gene transcripts and subsequently applying a high-pass
filter to remove all but the most likely biologically-significant relationships. The selection of this
expression threshold necessarily has a significant effect on any conclusions derived from the
resulting network. Many approaches have been taken to choose an appropriate threshold, among
them computing levels of statistical significance, accepting only the top one percent of relationships,
and selecting an arbitrary expression cutoff.

Results: We apply spectral graph theory methods to develop a systematic method for threshold
selection. Eigenvalues and eigenvectors are computed for a transformation of the adjacency matrix
of the network constructed at various threshold values. From these, we use a basic spectral
clustering method to examine the set of gene-gene relationships and select a threshold dependent
upon the community structure of the data. This approach is applied to two well-studied microarray
data sets from Homo sapiens and Saccharomyces cerevisiae.

Conclusion: This method presents a systematic, data-based alternative to using more artificial
cutoff values and results in a more conservative approach to threshold selection than some other
popular techniques such as retaining only statistically-significant relationships or setting a cutoff to
include a percentage of the highest correlations.

Background edges in a co-expression network, tend to have similar
The construction of gene co-expression networks is often  function [1]. This principle, often referred to as “guilt-by-
a necessary step in a bioinformatic analysis of microarray ~ association” is the idea that motivates many microarray
gene expression data. Studies have shown that genes  studies. With new high-throughput sequencing technol-
showing a similar pattern of expression, those sharing  ogies currently being used for digital gene expression
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applications, gene co-expression networks promise to
continue to find wide utility in genome-wide association
studies and other computational analyses.

These networks are constructed by computing some
similarity value between gene transcripts based upon
their expression values over a set of samples. Nodes in
the network represent transcripts while edges are
weighted by these similarity values. A threshold is
often applied to the resulting networks to retain only
the most biologically significant relationships. This
threshold application step is a major juncture in which
errors can be introduced in the form of both false
negatives and false positives. By setting this threshold
too high, important relationships can be lost. Likewise,
we must be sure to remove connections that do not
represent “real” relationships. This task is difficult since
the range of thresholds representing real biological
relationships that also avoid over-filtering can be
narrow.

Some of the many methods that have been applied to
the threshold selection problem in various types of
networks are using an arbitrary threshold [2], retaining
only the top x percent of the strongest relationships [3],
permutation testing [4], and filtering based upon control
spot correlations [5] or the statistical significance of the
relationships [5-7]. The method presented here makes
use of initial spectral graph theory-based clusterings to
help identify an appropriate threshold. Combinatorial
methods such as those described in [5] will be used to
analyze the final gene co-expression network, and such
methods often require significant computational
resources. We can justify the expense of this initial
clustering by the computational resources saved by
picking a suitable threshold in advance, especially one
that removes most non-biologically-relevant relation-
ships, which will significantly decrease computational
requirements. We know that spectral graph theory
methods can give us important information on the
structure of a graph, such as the number of connected
components, information about random walks in the
graph, and a bound on the graph diameter [8]. Various
spectral methods have also been employed to identify
clusters of related vertices [9-12]. It is these spectral
clustering methods that we believe can contribute
toward selecting a biologically-relevant threshold in co-
expression networks. A more detailed initial analysis is
presented in [13].

Results and discussion

Spectral properties and algebraic connectivity

We introduce a method for threshold selection based
upon the spectrum of the graph at varying thresholds.

http://www.biomedcentral.com/1471-2105/10/S11/S4

That is, the eigenvalues and eigenvectors of a transform
of the graph’s adjacency matrix. We applied this method
to yeast cell cycle data [14] and human expression values
collected over many different tissue types [15]. It has
been shown that the number of connected components
of a network can be identified using the spectrum of the
network [8]. Ding et al. observed that “nearly-discon-
nected” portions can also be identified by examination
of the eigenvector associated with the smallest nonzero
eigenvalue of the network, often called the Fiedler vector
[10]. The ability to find the nearly-disconnected pieces
allows us to identify those nodes sharing a well-
connected, or dense, cluster.

For this study, we analyzed the spectrum of the largest
connected component in networks constructed at
increasingly stringent thresholds. Figure 1, which illus-
trates the number of vertices belonging to the largest
connected component, shows that the largest compo-
nent often contains a majority of the network nodes. The
exception occurs at high thresholds where the network
becomes very sparse. It can be shown that the multi-
plicity of the zero eigenvalue is equal to the number of
connected components in the graph.

Therefore, when analyzing only the spectrum of the
largest component, the smallest eigenvalue will be equal
to zero while the remaining eigenvalues will be nonzero.
We will use the common notation of calling this smallest
nonzero eigenvalue the algebraic connectivity of the
component and refer to it as A,. Figure 2 shows the
algebraic connectivity for the two data sets studied.
Lower connectivity values indicate the presence of
nearly-disconnected components [10]. A; reaches a
minimum in yeast at t = 0.82, though it remains at a
relatively low level (less than 0.05) from ¢ = 0.75 to
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Connected components. The percentage of network
nodes contained within the largest connected component for
both yeast and human data sets.
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Algebraic connectivity. Algebraic connectivity measured
at various thresholds for co-expression networks on both
yeast and human data sets. Very high connectivity values
falling at the extreme upper thresholds were omitted to keep
the scale of the chart from overwhelming the value of other
observations.

t = 0.87. For human, the connectivity values are much
more variable, though a minimum is obtained at 0.85.

Spectral clustering

Many spectral clustering methods exist, with possibly the
simplest being a spectral bipartitioning of the network
such as that described in [16]. In that case, the
eigenvector associated with 4,, which we will refer to
as vy, is sorted and nodes are partitioned into two groups
based upon the magnitude of their associated eigenvec-
tor value. In [10], the authors showed that sorting the
eigenvector associated with 4, in ascending order often
produces a step function-like plot. They also showed that
the steps in such a plot delineate transitions from one
nearly-disconnected component to another. Since each
eigenvector value is associated with a node in the
network, individual nodes can be assigned to a cluster
based upon the steps in the eigenvector values. This
method allows a finer partitioning than the spectral
bipartitioning methods and precludes the need for
recursive application of the partitioning method. This
particular spectral clustering method is particularly
amenable to the threshold selection problem due to its
ability to identify clusters of various sizes and because it
is not necessary to specify the number of partitions
desired.

A sliding window method, illustrated in Figure 3, was
used to identify transitions from one cluster to another.
Since these transitions are often not immediate, but
occur over the span of several eigenvector values, a
simple comparison of adjacent positions is not suffi-
cient. Therefore, we compute the difference of
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Figure 3

Sliding window. An example of a sliding window
comparison to detect transitions between well-connected
components.

eigenvector values some constant distance apart. Here
we used a window size of five positions, which was
observed to correctly identify most steps in the eigen-
vector plot.

Employing the principle of guilt-by-association, we
know that weaker relationships should connect func-
tionally dissimilar portions of the network. Therefore as
the threshold is increased, these portions will become
less connected to one another, resulting in a likely
increase in “nearly-disconnected” components. We select
the threshold value that maximizes the number of these
components and thus minimizes the number of edges
connecting these pieces. Figure 4 shows the number of
clusters identified at various thresholds for both data
sets. Based upon the number of clusters, the spectral
graph theory-based method identified potential thresh-
old values of 0.78 in the co-expression network on yeast
data and 0.83 in the human network.

We can see in the previous figure that the number of
clusters identified by the spectral method subsequently
decreases as we proceed past the selected threshold. This
is likely due to a decreasing network size overall, as well
as individual clusters falling below the minimum cluster

Number of clusters
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Figure 4

Number of clusters. The number of clusters identified by
the spectral method in yeast and human co-expression
networks at various thresholds.
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size. Similarly, the algebraic connectivity shown in
Figure 2 shows an associated increase at the upper end
of the threshold range due to the very small size of the
largest component at these thresholds. For example, at
the t = 0.98 threshold in yeast data (not shown), the
network consists of only two nodes, with a single edge
connecting them for a 100% edge density.

Figure 5 shows the step-like structures found for
two thresholds in yeast data. At the t = 0.78 threshold
identified by the spectral method, as discussed above,
the steps are not as clearly delineated as at the ¢t = 0.84
threshold, also shown. While the step functions are more
defined at the higher threshold, the number of nodes
remaining in the network has greatly decreased and the
remaining clusters have become too small to surpass our
minimum cluster size requirement.

Combinatorial analysis

Paracliques [17] were computed for co-expression net-
works generated at the selected thresholds for both the
human and yeast data sets. The Paraclique algorithm,
based upon solving the AN® -complete clique problem
[18], is often more appropriate for microarray data than
using the basic clique method. Due to the noise inherent
in such data, a small number of edge weights can drop
just below the network threshold. Paraclique corrects
such a situation by allowing vertices to be added to the
paraclique if they are adjacent to at least g of the original
clique members. For most of our analyses (except the
comparison with known clusters of co-expressed yeast
genes described below), we set g = 1. The Paraclique
algorithm performs this adjustment while still retaining

8.2
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the benefits of clique such as being an unsupervised
method, identifying only the densest subgraphs, and
possessing a natural resistance to false positives.

In the yeast co-expression network at the t=10.78
threshold chosen by the spectral method, 93 paracliques
were found with the largest containing 21 gene
transcripts. At the t = 0.55 threshold identified by
choosing the top one percent of correlations, we found
636 paracliques with a maximum size of 93. The human
network produced many more and larger paracliques,
with 497 paracliques and the largest one containing 78
transcripts at the more conservative threshold of 0.83.
The human network constructed over all tissues and
replicates at the lower threshold of 0.65 contained 2,
843, 536 edges, and the Paraclique run extended for
almost 2.9 hours on an Intel Pentium 4 EM64T 3.4 GHz
processor. This graph contained 1283 paracliques, with
the largest having 324 members.

Comparison with other results

Traditional methods

We examined the difference between the networks
generated at thresholds selected by the spectral method,
retaining only the strongest one percent of relationships,
and filtering by statistical significance at the p < 0.05 and
p < 0.01 levels. The statistical significance results assume
all data points are present for every pair of transcripts,
which may not be the case. Table 1 shows results from
each one of these methods, with the “Adj. p < 0.05” and
“Adj. p < 0.01” columns containing significance values
after adjustment for multiple tests. For both data sets, the
eigenvector-based method selected a higher threshold
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Figure 5

Sorted eigenvectors. Eigenvector values associated with the smallest nonzero eigenvalue in yeast co-expression networks
at thresholds of (a) 0.78 and (b) 0.84. For each vertex, the associated eigenvector value is plotted.
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Table I: Threshold values. Threshold values computed by various methods for yeast and human co-expression networks

Threshold values

Spectral p < 0.05 p < 0.0l
Yeast 0.78 0.22 0.28
Human 0.83 0.16 0.20

Adj. p < 0.05 Adj. p <001 1%
0.46 0.49 0.55
036 0.38 0.65

than the other methods. While this shows that the
spectral method excludes relationships that would
otherwise be considered statistically significant, available
computational resources and tractability of the problems
involved often indicate the need to reduce the network
size. For example, the network from human data at a
threshold of 0.22, which would correspond to p < 0.05 if
all replicate tissues were averaged, has 106, 629,395
edges on 22, 283 vertices. Also, while correlations at this
low magnitude would be categorized as significant, they
are still rather weak and should be excluded to further
reduce the false positive rate.

Table 2 lists the number of vertices and edges contained
in both the yeast and human graphs at the threshold
generated by the statistical significance method at both
the p < 0.05 and p < 0.01 levels adjusted for multiple
tests, as well as the spectral approach and the method of
retaining the top one percent of correlations. Since the
set of edges at a higher threshold is a subset of the edges
at each of the lower thresholds, it is easy to see the
number of relationships filtered out by each subsequent
increase in threshold value. While the yeast data set is
small and does not pose a significant challenge to the
computation resources available, we can see that graphs
constructed on the human data set become very large as
the threshold is decreased. We will see that the problem
becomes difficult to solve on a single processor even at
the threshold selected by the relatively conservative
method of retaining the top one percent of relationships.

To correct for multiple tests, we apply the method
described in [5]. For example, the o = 0.05 significance
level was divided by the number of transcripts on the
array. The normal quantile function was used, followed
by an inverse Fisher’s z’ transformation to determine the
associated correlation value. This adjustment for

multiple comparisons increases the standard p-value
slightly, though the significance level threshold is still
very low. Such large sample sizes (n = 82, yeast; n = 158,
human) tend to translate into low correlation values
required for significance, even with adjustment.

Previous studies

Other spectral techniques have also previously found
utility in addressing in the network threshold problem.
Nearest neighbor eigenvalue spacing was used in [19] to
employ random matrix theory methods for threshold
selection. Here, the authors analyzed the eigenvalues of
the network by examining the distribution of spacings
between successive eigenvalues and determined the
point at which this spacing distribution transitioned
from Poisson to Gaussian Orthogonal Ensemble (GOE).
[19] also studied the yeast dataset described in [14] and
found that the transition began at t = 0.62 and was
complete by t=0.77. For this yeast data set, the
identification of the t = 0.77 point corresponds approxi-
mately to our result of t = 0.78.

Much information is provided about the co-expression
of yeast genes over the cell cycle in [14]. We compared
Paraclique results with seven of the clusters of genes
identified by the authors that had similar expression
levels over the cell cycle. Paracliques were enumerated at
the 0.78 threshold identified by the spectral method,
with additional vertices being added to the paraclique if
they were adjacent to at least three of the original clique
members. A preliminary examination of the Paraclique
results uncovered several paracliques containing por-
tions of these clusters of genes known to be co-expressed
over the cell cycle, according to [14]. A summary of the
results is given in Table 3. Note that all of these
comparisons were performed on an abbreviated set of
cluster genes present in the heatmaps in the [14]

Table 2: Vertex and edge counts. The numbers of vertices and edges in graphs constructed at thresholds identified by various methods

Vertex and edge counts

Spectral Adj. p <0.05 Adj. p < 0.01 1%
Vertices Edges Vertices Edges Vertices Edges Vertices Edges
Yeast 1652 4746 6177 665, 859 6174 463, 000 6108 212, 127
Human 6163 66, 126 22, 283 50, 202, 163 22,283 44, 057, 599 17, 757 2, 843, 536
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Table 3: Comparison with known co-expressed yeast genes
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Cluster and paraclique overlap

Cluster (from [14]) Number of genes in cluster

(abbreviated-from heat map figures)

Number of paracliques
with cluster overlap

Total paraclique overlap

CLN2 58
Y' 27
Histone 9

MET 20
CLB2 36
MCM 38
SICI 27

25
19
8
0
10
0
0

OO —O—NN

A list of clusters of genes found to be co-expressed over the yeast cell cycle in [14], along with the number of paracliques found to contain
those genes in this study and the total number of cluster genes found in all paracliques. Comparisons were performed on an abbreviated set of

cluster genes specified in the heatmap figures from [14].

manuscript. Single paracliques were found to contain
genes from both the histone and CLB2 clusters, with 8/9
histone genes accounted for and 10/36 CLB2 genes.
Paracliques also contained CLN2 and Y’ cluster genes
(25/58 and 19/27, respectively) though genes from each
of these two clusters spanned two distinct paracliques.
None of the genes from the MET, MCM, or SIC1 clusters
were found. The conservative threshold value of 0.78
along with the stringency of the paraclique algorithm
likely precluded the appearance of the MET, MCM, and
SIC1 cluster genes. The method here was able to identify
several known cell cycle-regulated genes, particularly
those [14] identified as forming the “tightest cluster”, the
histones. A more comprehensive set of comparisons
utilizing all of the co-expressed genes identified in [14]
as well as other sources of known co-expressed cycle
cycle genes will be necessary to draw any significant
conclusions. In [20], the author examined the spectral
threshold selection method along with other approaches
in a bootstrap analysis on three yeast data sets. The study
found that the spectral threshold method produced
thresholds of 0.93, 0.97, and 0.89 on yeast anoxia and
reoxygenation [21] and yeast alpha-factor arrest [14]
data sets, respectively. Networks constructed at these
thresholds contained maximum cliques of sizes 73, 17,
and 15.

Functional comparisons

Due to the nature of the data set analyzed, genes
existing in dense regions of the human co-expression
network will be those that show the same pattern of
expression over many tissue types, though not necessa-
rily over- or under-expressed in a single tissue type.
Similarity in many samples is likely required to drive
correlations to a significant level. Similarly, genes
identified to be in paracliques in the yeast data set are
those that vary together throughout the cell cycle. We
used the GO Slim Mapper at the Saccharomyces

Genome Database (SGD) [22] and Ingenuity Pathways
Analysis (Ingenuity Systems, http://www.ingenuity.
com) to analyze some resulting paracliques in yeast
and human, respectively.

In the yeast networks, we examined the biological
process gene ontology category for the three largest
paracliques and identified categories for which more
than three genes appeared. At the t = 0.78 threshold,
these paracliques were of size 21, 17, and 15. For the
largest paraclique, nine of the 21 genes had unknown
molecular function; 7, hydrolase activity category; 6,
helicase activity; 3, RNA binding. The second paraclique
showed categories of DNA binding, enzyme regulator
activity, and hydrolase activity. All genes in the third
appeared in the structural molecule activity category, and
five in RNA binding. The three largest paracliques at the
lower threshold of t = 0.55 identified by the top one
percent of correlations method were of size 93, 53, and
37, respectively. Many more of these genes were found to
have unknown molecular function (40, 13, and 17). The
first also contained genes related to hydrolase activity,
RNA binding, helicase activity, transferase activity, and
nucleotidyltransferase activity. Those with more than
three members in the second paraclique were transferase
activity, DNA binding, hydrolase, enzyme regulator
activity, protein binding, and protein kinase activity.
Protein binding, hydrolase, and RNA binding were
identified in the third paraclique.

For human paraclique results, we also examined the
three largest paracliques at the thresholds identified by
the spectral method and the “top 1%” method. At the
t = 0.83 threshold, the first paraclique matched five
networks containing more than three of the paraclique
members. These included networks related to cellular
organization, gene expression, genetic disorder, drug
metabolism, and cell signaling, for example. The second
paraclique matched only three networks, all related to
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protein synthesis. Similarly, the third network aligned
with only two networks with a match of more than one
gene. Both of these were related to reproductive systems
development and disease, respectively, among other
functions. The t = 0.65 threshold produced a maximum
paraclique size of 324 which matched 14 networks with
more than three genes in common, with the most
enriched being related to post-transcriptional modifica-
tion. The second largest paraclique matched 13 networks
ranging from cellular assembly and organization, genetic
disorder, to inflammatory disease, and many others.
Similarly, the third paraclique matched nine networks,
mostly having some relation to cancer, though some
were annotated with cellular development, post-transla-
tional modification, and developmental/genetic disor-
der, for example.

For yeast results, while paracliques computed at the
higher threshold of ¢ = 0.78 are understandably smaller,
fewer genes are unidentified based upon their biological
process. In one case, all of the genes in a paraclique fell
into the same category. In paracliques on networks
constructed at both the high and low thresholds, genes
belonged to a wide variety of biological processes, and
largely the same categories appeared within the three
largest paracliques in both groups. IPA results on the
three largest human paracliques shows that lower
thresholds result in a larger number of networks
matching the paraclique transcripts. These networks
seem to be annotated with a larger range of functions
compared to the relatively few networks identified at the
higher thresholds. In this sense, it is possible that the
higher threshold values produce paracliques that are
more specific to a particular network or function,
allowing us to examine the results at a finer granularity.
Of course, analyzing only the three largest paracliques
does not give enough information to draw definitive
conclusions, and it is likely that some of the actual
biological networks involved or genes belonging to these
networks will have been lost by using a more stringent
threshold.

Table 4: IPA networks from two paracliques

http://www.biomedcentral.com/1471-2105/10/S11/S4

Threshold effect on co-expression networks

With respect to an individual paraclique, an increase in
correlation threshold can have have at least two effects,
and possibly both of these: a decrease in the number of
genes contained within a paraclique, or the splitting of a
paraclique into two or more disjoint paracliques. These
new disjoint pieces may contain additional genes that
were not present in the original paraclique due to the
smaller number of genes with which a new gene would
have to share a connection. Both of these cases are
possibly desirable when a large paraclique encompasses
genes participating in a variety of biological functions. If
that large paraclique is split into multiple disjoint pieces
of highly connected genes, or genes connected to the
paraclique at a lower correlation level are excluded, only
the core set of genes putatively involved in a more
focused set of biological functions or pathways remain.

We decided to identify occurrences of each of these cases
in the human data set due to the availability of the rich
annotation information for human results available
within IPA. Using the combinatorial methods described
above can become intractable at the very low threshold
values corresponding to large numbers of vertices and
edges identified by the statistical significance methods.
Therefore, we performed a pairwise comparison between
paracliques computed at the two highest threshold
values selected by all of the methods studied. The degree
of overlap between each paracliques in the graph
constructed by choosing the highest one percent of
correlations (0.65) and each of those identified at the
higher spectral threshold (0.83) was found. This allowed
us to determine which paracliques at the higher thresh-
old possibly correspond to those in the graph at the
lower threshold. Note that due to the nature of the
Paraclique algorithm, there is not necessarily a one-to-
one correspondence between every paraclique in the first
set with one or more paracliques in the second set.

Table 4 illustrates the case in which the number of
transcripts in a paraclique was decreased when moving

IPA networks

Paraclique Threshold  Unique genes Network functions

| 0.65 21 Hematological System Development and Function, Humoral Inmune Response, Tissue Morphology
Cellular Movement, Embryonic Development, Hair and Skin Development and Function

2 0.83 13 Hematological System Development and Function, Humoral Immune Response, Tissue Morphology

Cellular Movement, Embryonic Development, Hair and Skin Development and Function

Paraclique | was extracted from a graph constructed at the 0.65 threshold while the smaller paraclique 2 is from a graph at the 0.83 threshold
level. IPA indicates that genes from both of these gene sets match a similar set of network functions. In both cases, the set of focus molecules
identified by IPA consisted of IGHD, IGHGI, IGHM, IGKC, and IGL for the first network and IGKV -5 for the second.
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Figure 6

Paraclique containment. The large green paraclique of
51 transcripts, A, was computed at the 0.65 threshold.
Paraclique B, identified from the graph at a 0.83 threshold,
contained |7 transcripts. After converting to gene symbols,
A and B had an intersection of size 12 genes. The remaining
genes from paraclique A may be present in other, smaller
paracliques found at the 0.83 level. IPA showed that
paraclique A matched several possible networks, while the
smaller paraclique B matched only a single network
associated with cellular development, hematological disease,
and cell morphology.

from a lower to a higher threshold value. A paraclique
containing 24 transcripts computed at the higher thresh-
old was found to be completely contained within a
paraclique of size 47 at the lower threshold. While the
paraclique at the higher threshold was much smaller,
both sets of transcripts mapped to approximately the
same set of [PA focus molecules, and therefore matched
similar network functions. However, due to the reduced
input size, the associated p-values for enrichment in
many of the biological functions were reduced (not
shown). After mapping transcript IDs to gene symbols, it
appeared that the increase in threshold excluded mostly
a few uncharacterized genes from the paraclique.

There are cases in which annotations for a large
paraclique can be convoluted and hard to interpret.
Figure 6 shows a paraclique containing 51 transcripts
(representing 36 genes) at the 0.65 threshold. This
paraclique shares all of the 17 transcripts (12 genes)
present in a paraclique at the higher 0.83 threshold.
While the larger set of genes matched five top-scoring
network functions in IPA, the smaller set matched only a
single network related to cellular development,

http://www.biomedcentral.com/1471-2105/10/S11/S4
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Figure 7

Paraclique decomposition. The large paraclique on the
left, identified at the 0.65 one percent threshold, contained
154 gene transcripts. 150 of these were contained in the
core clique Cl. Sixteen paracliques were found at the 0.83
spectral threshold with an intersection with this large
paraclique of at least one transcript. The largest of these,
labeled C and D, were of size 54 and 42, respectively. All 54
genes in paraclique C were contained in the paraclique on
the left, while the intersection with D was of size 35. Edges
may exist between members of the different paracliques, but
are not shown for readability. Dotted lines indicate that not
all connections are present between a gene and the core
clique, since the paraclique requires all but one possible
connection between a gene and the core maximal clique.

hematological disease, and cell morphology which was
also the top-scoring network at the 0.65 level. The ability
to analyze these gene sets at finer levels of granularity
greatly increases the confidence with which we can
interpret the results.

The large paraclique at the left in Figure 7 was identified
at the 0.65 threshold and was found to be “split” into
two main components at the 0.83 threshold. While both
of these components contain mostly ribosomal protein
transcripts, 1170 edges were lost between the two groups
by raising the threshold. Since the Paraclique method at
the selected stringency requires that all but one connec-
tion exist between all paraclique members, the larger
paraclique was decomposed into the two main compo-
nents with a high proportion of genes overlapping with
the original paraclique (54/54 and 35/42, respectively)
on the right of the figure as well as several smaller pieces
with an overlap of between 1 and 13 transcripts. The
average correlation of the remaining edges within the
two smaller paracliques was around 0.90.

Conclusion

We have presented a systematic threshold selection
method that makes use of spectral graph theory
techniques. We have shown that in the selected data
sets this method results in a more conservative
approach to threshold selection than both the test of
statistical significance at p < 0.01 and including only the
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highest-weighted 1% of edges, in terms of the number
of relationships retained for further analysis. We believe
that the primary strength of the spectral graph theory-
based method presented here is that it is a systematic
method for threshold selection. Both the statistical
significance method and the percentage cutoff method
can be adjusted to produce graphs that prove to be
tractable in a combinatorial analysis and contain fewer
false positives, but the need for an arbitrary cutoff value
is still present in these methods. The spectral approach
attempts to move beyond the need for employing these
arbitrary thresholds and computes a cutoff value based
upon the underlying community structure of the data
rather than merely sample size or the relative distribu-
tion of correlation values. We have also shown that for
the yeast cell cycle data studied, this method produces
results in agreement with a previous study making use
of methods from random matrix theory. Functional
comparisons between networks constructed at the
threshold selected by the spectral method and the
method of choosing the top one percent of correlations
show that the networks built at the lower threshold are
often time consuming to analyze and in the yeast data
set, many of the paraclique members fall into the
unknown biological process category while other genes
span several other GO categories. At the higher thresh-
old, fewer of these genes fail to be categorized based
upon the gene ontology. For human data, fewer
networks were identified as being enriched in the
paracliques, making interpretation of the results easier.

Future work may include adapting more advanced
spectral clustering methods such as the k-way partition-
ing methods described in [9,11,12] for use in threshold
selection. We also plan to investigate the use of the
metric of modularity [23], which serves as a quantitative
measure of the proportion of intra-cluster edges, as a
guide for determining an optimal threshold. Both of
these features can be incorporated into a future graphical
user interface-based software package that can be applied
to general microarray data sets to perform a spectral
analysis for determining an appropriate threshold.

Methods

Microarray data sets

We studied the publicly-available Homo sapiens and
Saccharomyces cerevisiae microarray data sets described
in [15] and [14], respectively. The former contains
expression values from a panel of seventy-nine different
tissue types in human measured on Affymetrix
HG_U133A gene expression microarrays at the Geno-
mics Institute of the Novartis Research Foundation
(GNF). Data was downloaded from the NCBI Gene
Expression Omnibus website http://www.ncbi.nlm.nih.

http://www.biomedcentral.com/1471-2105/10/S11/S4

gov/geo/ as raw CEL files and subsequently preprocessed
and normalized using the R statistical software package
version 2.6.1 [24] and the justRMA() function of the affy
version 1.12.2 [25] Bioconductor [26] package. The latter
contains expression from baker’s yeast samples collected
over a time period to measure changes during the cell
cycle and was downloaded from the author’s webpage in
tab delimited format.

Network construction and representation

We constructed a gene co-expression network at increas-
ingly stringent thresholds by beginning with a complete
graph with vertices representing gene transcripts. The
Pearson product-moment correlation coefficient was
computed between each pair of transcripts with at least
10 data observations in common and used to weight the
appropriate network edge. A high-pass filter was subse-
quently applied to the absolute value of each edge
weight, removing those edges with an absolute weight
less than some threshold t. As t proceeded from 0.70 to
0.95, a co-expression network was constructed at each
threshold value. Traditional non-spectral methods were
used to identify connected components within the
network and extract the largest for spectral analysis.
The resulting unweighted graph G = (V, E) can be
represented by its adjacency matrix, given by

1 if(i,j)e E,
0 Otherwise.

Aij(G):{
We define a transform of the adjacency matrix, the

Laplacian of the graph G, as in [8] by

-1 if(i,j)e Eandi#j,
0 Otherwise
where deg(i) denotes the degree of vertex i. The benefit of

the Laplacian matrix is that both adjacency and degree
information is readily available.

Eigenvalue and eigenvector computation

We aim to solve the eigenvalue problem on the
Laplacian matrix defined above. Using notation similar
to [10], this involves solving the system of equations
resulting in the eigenvalues

0=24) <A <...< 4,

and associated eigenvectors
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where 7 is the number of nodes in the component being
analyzed.

The linear algebra software package MATLAB version
R2008b (The Mathworks, Inc., http://www.mathworks.
com) was used to compute approximations to selected
eigenvalues and eigenvectors of the filtered correlation
network. Using the sparse matrix operations native to
MATLAB and the eigs() function, the two smallest
eigenvalues and their associated eigenvectors were com-
puted. The eigenvector associated with the second-smallest
eigenvalue A, was extracted and sorted in increasing order.

Cluster detection

The detection of “gaps” in the ordered set of eigenvector
values was performed using a sliding window technique.
The sliding window compares two eigenvector values
windowsize positions apart, where windowsize was
chosen to be five for this study. When these two values
are significantly different, then the beginning of a new
cluster is indicated. In this case, we define a significant
difference to be greater than m + 5, where m is the
median of all differences in positions windowsize apart
and s is the standard deviation of this set of values. To
prevent the many small partitions that often occur at
extremely high thresholds from overwhelming the
results, identified partitions less than some minimum
size, in this case 10 nodes, were discarded.

Paraclique extraction

The graph theoretical algorithm Paraclique, developed
by Michael A. Langston’s team at the University of
Tennessee and described in [17], was employed to
extract dense sets of genes from resulting co-expression
networks. Paraclique begins by finding a clique, or
completely connected subgraph, of maximum size in the
network. The maximum clique is augmented with genes
connected to all but g of the clique members, with g = 1
in this case. This dense subgraph is removed from the
network and the process repeats until no new para-
cliques larger than some minimum size can be found.
For comparisons with known yeast co-expression net-
works, we set g = 3, which was found to incorporate
more of the known co-expressed genes without signifi-
cantly increasing the number of other genes present. We
required the base maximum clique size to consist of at
least five members for the comparison with previous
yeast co-expression studies and three for all other human
and yeast results.

Functional comparisons
Functional comparisons were performed using the
Saccharomyces Genome Database GO Slim Viewer

http://www.biomedcentral.com/1471-2105/10/S11/S4

http://www.yeastgenome.org and Ingenuity Pathways
Analysis software (Ingenuity Systems, http://www.inge-
nuity.com) for yeast and human networks, respectively.
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