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Abstract

Background: Prostate carcinoma is among the most common types of cancer affecting hundreds
of thousands people every year. Once the metastatic form of prostate carcinoma is documented,
the majority of patients die from their tumors as opposed to other causes. The key to successful
treatment is in the earliest possible diagnosis, as well as understanding the molecular mechanisms of
metastatic progression. A number of recent studies have identified multiple biomarkers for
metastatic progression. However, most of the studies consider only direct comparison between
metastatic and non-metastatic classes of samples.

Results: We propose an alternative concept of analysis that considers the entire multidimensional
space of gene expression and identifies the partition of this space in which metastatic development
is possible. To apply this concept in cancer gene expression studies we utilize a modification of
high-dimension natural taxonomy algorithm FOREL. Our analysis of microarray data containing
primary and metastatic cancer samples has revealed not only differentially expressed genes, but also
relations between different groups of primary and metastatic cancer. Metastatic samples tend to
occupy a distinct partition of gene expression space. Further pathway analysis suggests that this
partition is delineated by a specific pattern of gene expression in cytoskeleton remodeling, cell
adhesion and apoptosis/cell survival pathways. We compare our findings with both report of
original analysis and recent studies in molecular mechanism of metastasis.

Conclusion: Our analysis indicates a single molecular mechanism of metastasis. The new
approach does not contradict previously reported findings, but reveals important details
unattainable with traditional methodology.
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Background
The utility of microarrays in cancer research has been
recognized as this technology became available. Early
studies [1] exploring the benefits of simultaneous
estimation of activity for thousands of genes have been
followed by hundreds of publications reporting impor-
tant discoveries in cancer biology. In the past decade,
design of both experiment and analysis pipelines have
settled into a “classic” template with certain variations
reflecting specific goals of the study. Samples are
collected from contrast groups, such as normal and
cancerous tissue or primary and metastatic tumors and
comparison is conducted between such groups. The
entire data set is reduced to a smaller, more manageable
number of genes (features), informative in comparing
pre-defined classes. Statistically significant differential
genes, after adjustment for possible false discovery rate
(FDR), are selected for further analysis. Additionally, the
whole set or a subset of selected genes are subjected to
hierarchical cluster analysis to highlight the difference in
expression pattern between classes of samples. The goal
of cluster analysis in this case is to identify the subset of
genes with the highest potential to serve as predictive
biomarkers. Some papers follow an alternative approach
and start the analysis with unsupervised clustering
procedures [2-5]. The results show “molecular classifica-
tion” of cancer into subtypes not necessarily following
traditional histopathology classification. Studies show a
difference in survival rate for the patients that belong to
different subtypes. However, the nature of these subtypes
has proved to be hard to interpret and even harder to
bring into clinical practice. At least partially, the utility of
molecular sub-typing of cancer samples is hampered by
the intrinsic limitations of the analysis.

Classification is typically based on the set of pre-selected
“informative” features. In turn, the “informative” prop-
erty of each feature/gene is estimated by variability in the
general population or between pre-defined classes of
samples. This pre-selection introduces bias into the
overall picture of gene expression. Rarely expressed and
marginally differential genes tend to be filtered out
before their relation to the biology of cancer could be
established on the grounds of signal intensity and
variation alone, without any consideration of correlated
gene expression and gene interaction. As a result, the
final interpretation of results is based on a biased subset
of relatively highly expressed genes depleted of early
switches and enriched with non-specific downstream
effectors.

In earlier publications we proposed an unsupervised
classification algorithm that does not require dimen-
sionality reduction. The algorithm was tested on cancer

gene expression data [6] and was essential for under-
standing of patterns of gene expression associated with
progressive insulin resistance in skeletal muscle [7]. On
the other hand, we have also proposed a new approach
to the selection of biomarkers based on systems biology,
allowing inclusion of marker genes less differential on
their own, but closely interlinked in the context of
biological pathways. A similar approach has also
revealed important biomarkers for diagnosis of persis-
tent bovine diarrhea [8]. However, these studies relied
on pre-defined sample classification and didn’t attempt
any cluster analysis. This paper proposes to join high-
dimension unsupervised clustering with a systems
biology approach in attempt to elucidate the molecular
mechanisms of metastasis.

Metastasis is the deadliest development in cancer,
responsible for most cancer-related deaths. Metastatic
cells acquire mobility and spread through the blood and
lymphatic system to form colonies in other organs. There
are multiple theories about the origin of metastasis
[9-13], but our own previous studies suggest that
primary and metastatic tumors share the same basic
metabolism. Differences between primary and metastatic
tumor samples compared across multiple tissues of
origin are associated with cytoskeleton remodeling,
antigen representation, extracellular matrix and some
other pathways[14]. In this study, the data is limited to
just one set of experiments comparing primary and
metastatic samples of prostate cancer. The original
publication of this data [15] presents the state of the
art in both functional genomics and bioinformatics of
cancer. However, it still leaves open the question we seek
to solve in this paper.

Results and discussion
The first inspection of the cluster analysis output
produced expected results. Among nine clusters and
two singleton listed in the FOREL output, two clusters
were composed entirely of metastatic tumor samples and
one contained two primary and one metastatic samples.
This observation is generally consistent with the hier-
archical clustering on the unreduced set of genes
reported in the original publication of LaTulippe et al
[15]. The patterns of gene expression in metastatic tumor
samples are more similar within the class than they are
to most non-metastatic samples. Further analysis reveals
a few important details unattainable with the original
analysis. The estimated relative position of clusters in
gene expression space is depicted on Figure 1. The bulk
of gene expression space defined by samples is occupied
by variable size clusters of non-metastatic samples. Three
clusters containing metastatic samples were situated
close to each other and tended to occupy a definite
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area of elongated shape, which starts with the cluster
containing mixedmetastatic and non-metastatic samples.

The FOREL algorithm tends to break large uneven
continuums into clusters the same way the human eye
tends to separate constellations on the night sky (even
though they in fact belong to the same Milky Way
galaxy). This property is created by consecutive extrac-
tion of clusters from the overall population of samples
rather than simultaneous partitioning (for example in
k-means family of algorithms). On each step, FOREL
identifies the best cluster, but clusters extracted on
different steps are not necessarily separable from each
other and can even overlap in space. This property of the
algorithm creates the opportunity to probe the entire
space of features (genes) for areas of higher or lower
density, concentration or depletion of samples of certain
class (metastatic, for example) and then reconstruct
relative positions for such areas. Interpretation of cluster
juxtaposition allows us to make a few important
observations. The congregation of clusters made of
non-metastatic samples occupies a large space and the
clusters are not clearly separable from each other or
forming any geometrical pattern. The observed “cloud”
is consistent with a single class with relatively high
variability. Three clusters containing metastatic samples

are also likely to represent the same continuous class, but
opposite to non-metastatic they occupy a compact area,
show less variation and demonstrate an elongated
pattern. In other words, metastatic tumors are more
constrained in the ratios at which different genes can be
co-expressed, possibly more tightly regulated and origi-
nating from a limited to a single origin and a single path
of development. It remains for future studies to
determine whether this elongated trend reflects the
progression of metastatic transformation and can be
used to estimate the age of the metastasis from the event
that trigger the transformation. For resolution, these
questions need more information than is contained in
this data, but the missing data could be acquired in
future experiments.

While the space of gene expression on Figure 1 is reduced
to abstraction, direct comparison between selected areas
(marked by clusters, cluster centroids and other land-
marks) can be performed in the original unreduced
space. Genes differentially expressed between such areas
can be further studied using biological pathway and gene
interaction tools. Interpretation of the pathway analysis
results provides important clues about biology behind
the patterns. The overview of biological pathways over-
represented among genes differentially expressed
between primary and metastatic clusters is given in
Figure 2. The complete chart of significant pathways can
be found in supplemental materials (Additional file 1).
This analysis shows both commonality and difference
compared to meta-analysis of primary vs. metastatic
tumors of different origin[14]. The oxidative phosphor-
ylation pathway that dominates the lists of significant
pathways in meta-analysis as well as colon and breast
cancer sets is not near the top of the chart, but both
oxidative phosphorylation and glycolysis/glyconeogen-
esis are reported among statistically significant pathways.
On the other hand, a number of pathways related to
cytoskeletal remodeling, tissue morphology, cell adhe-
sion and cell motivity are highly significant in all studies.

Using FOREL cluster centroids as anchor points, we can
also compare metastatic samples to primary tumors, not
as a whole homogeneous class, but as a conglomerate of
subclasses. This comparison probes different areas of
expression space flagged out by non-metastatic samples.
Figure 3 shows comparison analysis between metastatic
and different subspaces of non-metastatic area inter-
preted in terms of biological pathways. The bulk of
biological pathways show exactly or approximately the
same difference shared by all areas of non-metastatic
space. However, there are genes unique to separate parts
of the space and the number of such differences is
consistent with the distance between clusters. Cluster 4 is

Figure 1
Relative position of metastatic and non-metastatic
cluster of samples. Clusters 9 and 10 contain only
metastatic samples (marked blue), Cluster 7 contains one
metastatic and two non-metastatic samples. Clusters 1 and
11 are singletons.
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the nearest to metastatic space, but it has differences in
oxidative phosphorylation, cytoskeleton remodeling and
immune response pathways in addition to all other
differences shared among non-metastatic samples. These
pathways are among most prominent general differences
reported in meta-analysis of primary vs. metastatic
tumors [14]. Proximity of Cluster 4 to the metastatic
space and the pattern of gene expression characteristic to
this space allow the hypothesis that there is an area in
non-metastatic cancer expression space from which
metastatic cells are recruited after metabolic transforma-
tion. Such transformation shifts the energy balance
further towards glycolytic pathways in energy production
(Wartburg effect [16]). Clusters observed in proximity to
the metastatic expression space are separated from
metastatic transformation by minimal changes in meta-
bolism that can probably be induced by hypoxia or other
conditions in growing primary tumors.

Observations are not limited to the canonic pathways
defined by the software developers like Ingenuity or
Genego. In some cases, pre-defined pathways obstruct
the analysis by including too many gene interactions

related through shared genes or metabolites, but not
necessarily acting as a whole in every biological process.
It has been recently reported that sarcosine (N-methyl-
glycine) can be a good predictor of metastatic prostate
cancer [17]. Sarcosine level can be relatively easily
estimated in a blood test. This biomarker has been
identified in a large-scale proteomics study. However,
glycine metabolism does not appear in the list of
differential pathways in our study. The only reason for
that the canonic map includes multiple chains of
reactions and gene interactions involving glycine. A
quick look at the map (Figure 4) shows that only the
chain of enzymatic reactions leading from phosphocho-
lin to glycin is involved. However, the entire chain is
consistently down-regulated. Blockage of methylglycine
demethylation can explain accumulation of sarcosine
and it increased levels easily detectable in the blood-
stream. The data we used for this analysis was published
seven years ago and already contained all the clues
pointing towards the role of glycine metabolism in
metastatic development. With additional computational
analysis and systems approach, this important discovery
could have been made much earlier. Figure 3 also shows

Figure 2
Biological pathways separating metastatic and non-metastatic expression space as defined by GeneGo
Metacore (A) and Ingenuity Pathway Analysis (B). Only 10 most significant pathways are shown (image is edited/
stretched to fit the same dimension). The complete diagrams are available in supplementary materials (Additional file 1).
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the difference in expression levels if metastatic samples
are compared to different clusters of primary tumors
and, thus, different areas of non-metastatic expression
space. Notably, Cluster 4 has the least difference in
expression levels in comparison to metastatic tumors. In
Figure 1, Cluster 4 is also the nearest to the group of
metastatic samples in expression space. This observation
means that sarcosine accumulation in blood may be
indicative of an aggressive tumor, but not all primary
tumors are equally distinguishable from metastatic
tumors by this test. On the other hand, topological
(and thus metabolic) proximity of some primary tumors
to the metastatic expression space may indicate higher
potential for metastatic progression in the future.

Methods
Data
The original data set includes 3 non-cancerous, 23 pri-
mary tumor and 9 metastatic tumor samples collected at
MSKCC between 1993 and 1999. Samples were snap-

frozen in liquid nitrogen and stored at -80°C. Each
sample was histologically examined. Cells of interest
were manually selected from the frozen block, trimming
away non-neoplastic tissues. RNA was extracted by
homogenization using RNAeasy kif (Qiagen, Valencia,
CA) and evaluated for integrity by denaturing agarose
gel. Complementary DNA was synthesized from total
RNA using t7-promoter-tagged oligo(dT) primer. Gene
expression was estimated by hybridization to Affymetrix
U95 microarrays. MAS 4.0 (average difference) algorithm
was used to quantify expression values.

Clustering algorithm
As a starting point for the algorithm development we
took the heuristic concept proposed by Zagoruiko et al.
[18,19], which included the original idea of a limited
radius hypersphere, moving stepwise to the mass center
of captured objects. This idea represents a departure from
widely used k-means and other hypersphere-based
algorithms. This algorithm has been also extensively

Figure 3
Comparative analysis of biological pathways differential between metastatic and different areas of non-
metastatic expression space. Shared identical pathways correspond to the striped bars, similar pathways correspond to
the empty white bar. Pathways unique to particular clusters are color-coded. For example, oxidative phosphorylation pathway
contributes more to the difference between metastatic and Cluster 4 than any other cluster.
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Figure 4
Map of Glycine metabolism. Gene expression pattern is marked by flags showing direction (blue-lowered, red – increased
expression) and relative scale of change. Flag 1 corresponds to metastatic expression space, flags 2, 3, 4, 5, 6, A, B and C
correspond to clusters 2,3,4,5,6 and 8.
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discussed in a reference book for applied statistics in
economics [20]. Since their first introduction algorithms
of the FOREL family have been widely applied in
taxonomic analysis of biomedical data, pattern recogni-
tion in geology and image analysis [21-24]. The original
algorithm underwent a significant development to
accommodate for extreme dimensionality of gene
expression data. The results of this development and
case study in classification of molecular subtypes of lung
cancer has been recently published [6]. Our algorithm is
based on dynamic amalgamation of objects (for exam-
ple, expression profiles) in vicinity of an artificially
introduced object (FORmal ELement). The vicinity is
defined by equal distance from a point in all directions
by selected inter-object distance metric (such as Eucli-
dean, correlation, binary, etc.). Although theoretically
the vicinity could be defined as any geometrical shape
around the given point, only hyperspheric vicinity has
been implemented and used in this study. FOREL
clustering is based on the perception of the data set O as:

O O i
i

k

=
=

( );
1
∪

where O(i) is a cluster of ni elements. Clusters are
extracted from the general population in order of their
statistical fitness (see Cluster validation). This perception
is fundamentally different from the popular k-means
algorithm, which shares certain similarity with FOREL,
but in k-means concept the whole data set is a sum of
distinct classes rather then a union. FOREL clusters can
partially or completely overlap in space or even share the
same centroid, but can be separated as long as they differ
in other statistical characteristics, for example density. In
a nutshell, a white and a yolk of an egg would be
separate classes by FOREL, while inseparable by k-means.
Other hypersphere-based algorithms such as k-means
imply Gaussian distribution of objects (phenotypes) in
clusters [25]. FOREL is more flexible and does not
require such assumptions. FOREL effectively combines
the best features of k-means and hierarchical clustering
approaches for the price of increased computation
complexity. However, the performance of our C++
implementation is acceptable; up to a few hundreds of
microarrays can be clustered on a PC within one hour.
The algorithm starts with positioning of a hypersphere
with a radius R0 and a center C0 in a certain coordinate,
which can be one of the objects or a centroid of pre-
defined cluster or any other point of interest in the
expression space. Position of the “formal element”
element is calculated as a center of mass of all objects,
for which the distance ri(Ci) ≤ Ri. After the mass center of
all captured objects is calculated, its center is moved to
the new position. If new objects are found within the

radius from the new position, they are added to the
provisional cluster and the mass center is recalculated.
This process is repeated until the no more objects can be
added on the current step of the algorithm and the
hypersphere stops.

Cluster validation
Our version of FOREL consists of alternating steps of
cluster isolation and cluster validation. Each completed
walks of a hypersphere with Rn and a center Cm produces
a provisional cluster O(RnCm), which is temporarily
stored. We perform an exhaustive coverage of the data
trying each element of the original data set as potential
starting point. For each starting point we perform series
of clustering steps with different hypersphere radius,
ranging between minimum R = min(D(Ci, Cj))+μ and
maximum R = min(D(Ci, Cj))- �m Here D(Ci, Cj) is a
distance (for example, Euclidean) between any two
objects in the data set and μ is a margin, introduced to
reduce computation time. The step of R increment is also
a parameter. The resulting provisional clusters are fuzzy
subsets, each captured by a hypersphere with specific
radius as it moves gradually from the starting to the
resting point. The validity of the provisional cluster can
be verified by a statistical utility measure based on
density, variance, sum of inter-cluster distances, etc (see
[26] for review). If the cluster meets the selection criteria,
it is removed from the original data set and the process
reiterated until no more statistically valid (according to
the chosen metric) unclassified objects are left or the best
provisional cluster does not satisfy the minimal fitness
requirement. Current implementation accommodates a
few different metrics for computational cluster valida-
tion, but only two metrics have been applied in this
study, density-based:

F
i

= 1
2s if ni ≥ 2 and F = 0 othersise;

and connectivity-based:

F
D CiC j

n= ∑min( )
( ) for a cluster of n elements

This metric is a reasonable compromise between preci-
sion and performance, which has proven to be effective
in analysis of microarray data [6].

Application of FOREL family algorithms has a number of
potential pitfalls which have to be considered. Clusters
produced by FOREL may overlap in space partially or
completely, thus should not be assumed separable by
ANOVA. In fact further analysis of relations between
FOREL clusters may reveal continuous trend, like in was
in case of gene expression patterns in skeletal muscle of
diabetic and non-diabetic patients [7].
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Software implementation
The implementation developed by A. Ptitsyn [6]
employs a complete test of every object as a possible
cluster seed or hypersphere starting point. By default the
current version of the program implements an iterative
solution: all possible radii are tested with a certain step
within a limited range. The step (or precision) is derived
from the analysis of variation of distances within the
whole data set. The range is defined by the minimal and
maximal distance found within the whole dataset. These
are extreme values, with a radius less than a minimal
distance, the algorithms can produce only singletons,
and on the other hand with radius equal to the maximal
distance, all objects are guaranteed to fall into one large
cluster. The best radius is one that produces a provisional
cluster with the best quality. “Best” is an ambiguous term
which can be defined differently in different versions of
FOREL. Current implementation has a parameter which
allows to choose between quality estimated through
density or connectivity of cluster elements (see “Cluster
validation”). Cutting percentile margins from the possi-
ble radius range can reduce the computation demands of
the program. By default 20% of the range is cut from
both minimal and maximal radius values. The “brute
force” approach to computational cluster validation
implemented in current version (see “Cluster valida-
tion”) provides more reliable results compared to re-
sampling, but results in considerably longer execution
times. Typical running time for FOREL clustering does
not exceed a few minutes on an average Pentium 4 PC.
Depending on the validation metric applied and the
parameter settings complete clustering of a large data set
(up to a few hundred microarrays) data can take up to a
few hours. The demand for computational power is
significantly mitigated by effective C++ implementation
and generally affordable, considering the time required
to collect such data.

Current implementation of FOREL clustering algorithm
runs on the standard PC under MS Windows (Win32
console application) or Linux. FOREL execution time is
practically unaffected by the dimensionality of the data,
but can be sensitive to the number of objects (samples)
in the set.

Cluster visualization
For cluster visualization dimensionality is reduced from
over 12,000 down to 3 in two consecutive steps. First,
the results of FOREL cluster analysis are used to identify
centroids of non-singleton clusters. These points are used
as anchors to reduce the dimensionality down to the
number of identified clusters. Second, principal compo-
nent analysis is applied to reduced the “centroid space”
down to the space of three first principal components.

Spotfire Decisionsite (TIBCO Software, Palo Alto, CA) is
used for graphical depiction of clusters. The resulting
picture reflects juxtaposition of clusters based on
geometrical distances between cluster centroids and
cluster radius. Individual position of samples inside
each cluster is lost in dimensionality reduction, but
guaranteed to be inside the space delimited by cluster
radius.

Selection of differentially expressed genes
A set of differentially expressed genes was selected using
University of Pittsburgh Gene Expression Data Analysis
suite (GEDA)[27]. The software is available for down-
loading from http://bioinformatics.upmc.edu/GE2/
GEDA.html. For selection, we applied the standard J5
metric with threshold 4 and optional 4 iteration of
Jackknife procedure to reduce the number of false-
positive differential genes. Both J5 metric and threshold
parameter are standard pre-set values recommended by
the developers. We did not attempt to estimate the
confidence level of individual genes and used J5 not as a
statistical test, but as a selection procedure providing a
shortlist of genes deviating from the expected average
value and enriched with differential genes. This metric
has obvious limitation and could not be recommended
for a direct substitute of t-test. However, it is also free
from assumptions of independence and normal distri-
bution of intensities (or gene abundance estimates)
required for t-test. Used for preliminary selection
followed by computational validation and pathway
analysis J5 produces unbiased and sensible results. The
details of tandem application of preliminary J5 inference
with selective pathway analysis are discussed in Ptitsyn
et al [14].

Functional annotation and pathway analysis
Analysis of biological pathways was performed using
MetaCore software (GeneGo Inc.), Ingenuity Pathways
Analysis (IPA, Ingenuity Systems Inc.). Significance of a
particular pathway represented in a given list of genes is
estimated by Fisher’s exact test with adjustments to
current database contents. The GeneGo and IPA data-
bases are accessed online and the contents (including
Canonic Maps, Molecular Functions, Gene Interactions
etc.) are frequently updated by the corps of curators
reading research publications and extracting information
related to all forms of interaction among genes and
chemical compounds. Consequently, the results of
pathway analyses performed at different times may
differ in details. The maps of canonic signaling and
metabolic pathways are fuzzy, but tested for significance
independently. As a result, the list of significant path-
ways often enriched with redundant pathways over-
lapping by majority of components. In comparison
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between such lists of pathways Metacore distinguishes
“similar” and “identical” pathways as shown in Figure 3.
The interpretation of the meaning of statistically
significant pathways relies on the knowledge of the
biological function underlying the pathway maps and
cross-comparison between two independent pathway
databases (IPA and Metacore).
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