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Abstract

Background: One of the topics of major interest in proteomics is protein identification. Protein
identification can be achieved by analyzing the mass spectrum of a protein sample through different
approaches. One of them, called Peptide Mass Fingerprinting (PMF), combines mass spectrometry (MS)
data with searching strategies in a suitable database of known protein to provide a list of candidate proteins
ranked by a score. To this aim, several algorithms and software tools have been proposed. However, the
scoring methods and mainly the statistical evaluation of the results can be significantly improved.

Results: In this work, a Perl procedure for protein identification by PMF, called MsPI (Mass
spectrometry Protein Identification), is presented. The implemented scoring methods were derived
from the literature. MsPI implements a strategy to remove the contaminant masses present in the
acquired spectra. Moreover, MsPI includes a statistical method to assign to each candidate protein,
in addition to the scoring value, a p-value. Results obtained by MsPI on a dataset of 10 protein
samples were compared with those achieved using two other software tools, i.e. Piums and Mascot.
Piums implements one of the scoring methods available in MsPI, while Mascot is one of the most
frequently used software tools in the protein identification field. MsPI scripts are available for
downloading on the web site http://aimed11.unipv.it/MsPI.

Conclusion: The performances of MsPI seem to be better than those of Piums and Mascot. In fact, on
the considered dataset, MsPI includes in its candidate proteins list, the “true” proteins nine times over ten,
whereas Piums includes in its list the “true” proteins only four time over ten. Even if Mascot also correctly
includes in the candidates list the “true” proteins nine times over ten, it provides longer candidate lists,
therefore increasing the number of false positives when the molecular weight of the proteins in the
sample is approximatively known (e.g. by the 1-D/2-D electrophoresis gel). Moreover, being MsPI a Perl
tool, it can be easily extended and customized by the final users.
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Background
Protein identification is one of the hardest tasks in
proteomics and over the years many high-throughput
technologies and methods have been developed for
improving it. Mass spectrometry has become a key tool
for protein identification, being able to measure with
high precision the mass/charge ratio (m/z) of charged
molecules such as peptides. However, due to the large
amount of generated data, protein identification repre-
sents from a computational point of view one of the
major challenges in proteomics [1,2].

Protein identification by mass spectrometry can be
performed following two approaches: the Peptide Mass
Fingerprinting (PMF), relying on single-stage MS, and
the Peptide Fragment Fingerprinting (PFF), which is
based on tandem mass spectrometry [3]. This paper only
copes with the former approach. PMF allows the
identification of a protein by combining MS data with
searching strategies on a suitable protein database,
provided that the amino acid sequence of the protein
in the biological sample is already known and stored in
the database. Therefore de novo protein identification
cannot be performed by PMF. As illustrated in Figure 1,
the PMF workflow can be subdivided in the following
three steps:

1. sample preparation and spectrum acquisition;
2. reference protein database generation;
3. matching of the acquired spectrum against the
generated reference protein database.

1. sample preparation and spectrum acquisition
Proteins are separated from other cellular components
and resolved by gel electrophoresis on the basis of either
molecular weight (MW) only (1-D electrophoresis) or
both isoelectric point (pI) and MW (2-D electrophor-
esis). Protein bands (or spots in 2-D) are excised from
the gel and digested with a protease that cleaves the
protein at specific peptide bonds depending on the
amino-acid sequence, generating a pool of peptides [4].
The mixture of peptides obtained by enzymatic digestion
is then analyzed by mass spectrometry, often in MALDI-
TOF configuration, for obtaining the mass spectrum of
the whole mixture.

2. reference protein database generation
The enzymatic digestion of all the known proteins of
interest is reproduced in silico. The result of this task is
the generation of a database of all the theoretical peptide
masses grouped by proteins (hereinafter, reference
protein database).

3. matching of the acquired spectrum against the
generated reference protein database
From the acquired spectrum a list of peptide masses
(hereinafter, query mass list) is extracted [5-7] and
compared with those of each protein contained in the
reference protein database. Due to the intrinsic measure-
ment error, the comparison between reference masses
and experimental data has to be made considering a
tolerance window around the experimental mass value,
expressed in term of absolute or relative mass. The
evaluation for each protein of the agreement between
experimental and theoretical spectra can be done by
several algorithms available in the literature [8-12] and
in some cases already implemented in software tools (e.
g., Aldente [13], Mascot [14], Ms-Fit [15], Piums [16]
and ProFound [17]). The output of these algorithms is a
ranked list (hereinafter, ranked candidate protein list) of

Figure 1
PMF consists of three steps. (1) The preparation of the
biological sample: a band or a spot of the electrophoretic gel
is selected and digested by a suitable protease, such as
trypsin. The resulting mixture of peptides is analyzed with a
mass spectrometer, usually in MALDI-TOF configuration.
(2) A reference protein database is created, reproducing in
silico on a set of known proteins the step 1, considering also
possible missed cleavages and post-translational
modifications. (3) The acquired spectrum is matched against
the theoretical spectra generated by in silico digestion of all
proteins in the reference database (step 2) and a ranked list
of candidate proteins is obtained.
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all the proteins of the reference database, which have at
least one peptide whose mass matches against those of
the query mass list. Finally, a statistical validation of the
results should be performed, leading to the retrieval of a
very short list of proteins (hereinafter, significant
candidate protein list) that match with high confidence
the protein(s) actually contained in the sample [18].

Even if PMF is conceptually simple and fast, it presents
some liability, mainly due to the occurrence of false
positives in the final list, especially when the sample is a
mixture of proteins and the reference database is wide.
The available tools do not provide complete satisfactory
strategies. All tools present some limitations and no one
implements all the best solutions proposed in the
literature. They have a closed architecture and than
they are not modifiable by adding other more effective-
ness solutions. The main problems concern the possi-
bility of choosing the reference protein database and to
update it, of choosing an adeguate maximum number of
missed cleavages or the post-translational modifications
of interest (see the Methods section for their explana-
tions). Usually, masses of contaminants detected by the
spectrometer are not removed before identifications or
contaminant proteins cannot be specified by the user.
Ranking algorithms can be improved and statistical
evaluation of the results are frequently lacking. This
paper presents a complete Perl procedure for the
analysis of mass spectrometry data by PMF, starting
from the creation of the reference protein database and
ultimately providing the statistical validation of the
results. The three scoring methods reported in [12] were
chosen and implemented in the MsPI Perl tool. Their
performance has been tested on an experimental dataset
acquired on ten protein bands. The refined output
provided by MsPI has been benchmarked to the results
obtained on the same dataset using two on line
available tools, Piums and Mascot, and this evaluation
will be presented in this paper. While Mascot is one of
the most commonly used software tools for protein
identification, its scoring method, however, could not
be implemented into MsPI because of the lack of
documentation.

Methods
This section describes the procedure proposed in this
paper to analyze PMF data and implemented into the
MsPI Perl scripts. It includes the downloading from the
web of a protein database and its in silico digestion to
build a reference protein database, the removal of
contaminants from the query mass list, the definition
of a ranked candidate protein list and the extraction of a
shorter significant candidate protein list.

Reference protein database
A reference database, containing the masses of all
possible peptides obtained by the enzymatic digestion
of all known proteins with a selected protease, is created.
First of all a suitable protein database is downloaded and
then elaborated as described in the following paragraphs
for obtaining the theoretical spectra of every protein
stored in the database. For example, in this work the
Swiss-Prot database, available on the European Bioinfor-
matics Institute web site [19], was considered. Release
56.1 of September 2008 contains 397.539 complete
protein sequences belonging to different organisms
(20.326 belong to Homo sapiens). A Perl script was
created for automatically downloading the last available
release (see the Appendix).

Amino-acid sequences of Swiss-Prot protein entries are
provided in a FASTA format file. To make the matching
phase more efficient, the number of proteins submitted
to in silico digestion is reduced by restricting the search
to those protein entries belonging just to one or few
organisms of interest. In addition, the information
coded in the header line of the FASTA format is decoded
and efficiently organized through a Perl regular expres-
sion. Moreover, MsPI completes the downloaded data-
base with several additional information, such as
protein MWs and pIs. These data can help further
reducing the candidate proteins on the basis of the
“qualitative” information about the MW and the pI
coming from the electrophoretic gel, thus speeding up
the searching step and/or decreasing the number of false
positives.

Computation of molecular weight and isoelectric point
In the considered version of the Swiss-Prot database, the
MW and the pI of proteins are not part of the
annotations, so that they have to be computed by
MsPI. The MW of a protein can be computed on the basis
of its amino-acid sequence, knowing the average mass of
each amino acid. In fact, it is sufficient to add, in
accordance with the protein sequence, the average
amino-acid weights reported in Table 1 to the average
mass of one water molecule (H2OMWav = 18.01524) to
take into account that the amino- and carboxyl-
terminals are not involved in any peptide bond.

Therefore:

MW amwprot i
N

i= + =18 01524 1. Σ

where amwi is the average mass of the i-th amino acid
and N is the total number of amino-acid residues of the
protein.
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The pI of a protein is the value of pH at which the
molecule does not carry any net charge [20]. It depends
on the molecular composition of the protein and in
particular on the presence of amino-acid residues
carrying a charge. Therefore, the pI does not depend on
the whole amino-acid sequence, but only on the seven
amino acids that have ionizable groups in the side chain
and on the amino- and carboxyl- terminals. For
computing pI, the pKr value of each amino acid must
be known. The pKr is formally given by:

pKr Kr= − log

where Kr is the acid dissociation constant of the residue,
that is the degree of dissociation of the molecule in
water solution. The determination of the pKr coeffi-
cients is not a trivial task. In fact, as reported in Table 2,
there is not a wide consensus in the literature and in the
different software tools about the pKr values [21,22].
Fortunately, the computation of the pI value of a
protein is not a crucial step of the identification
procedure, because it does not affect the ranking in
the candidate list. In fact, pI is used to filter out some of
the false positive identifications on the basis of its
experimental value read from 2D gel. Due to the
uncertainty in its computation and the experimental
noise the comparison is usually made with a wide
tolerance. In the MsPI package, in accordance with other
tools, the values suggest by Lehninger were adopted, but
the user can set the values proposed by the other
authors as well.

For the amino acids with positive polarity, the fraction of
charged molecules can be computed as:

Q
pH pKr

+ =
+ −

1

1 10

Whereas, in case of negative polarity the fraction of
charged molecules can be computed as:

Q
pKr pH

− =
+ −

1

1 10

The total net charge of a protein is then given by the sum
of all the charges carried by all the amino-acid residues.
Therefore:

Q Q Q Q Q Q Q Q Q Qprot
NH COOH K R H D E C Y= − + + + − − − −

2
a b g d z hε

where the Greek letters represent the number of occur-
rences of each kind of amino acid. The pI can be then
computed letting Qprot = 0 and resolving the equation
with respect to the variable pH. This equation does not
admit an analytical solution, then it has to be solved
through an iterative algorithm (e.g. a bisection method).

In silico enzymatic digestion
After MW and pI computation, the in silico enzymatic
digestion is performed. In the “real world”, the enzy-
matic digestion is a chemical reaction that causes the
fragmentation of the protein at specific positions of the
peptide chain. There are several proteases that catalyze
this reaction. In MsPI the model of trypsin (bovine or
porcine), one of the enzymes most frequently used in
PMF, was implemented, but other proteases can be easily
added. As a rule, trypsin cleaves the protein when it
meets the C-side of the amino acid lysine (K) or arginine
(R) involved in a peptide bond. Nevertheless, there are
some cleavage exceptions due to the presence of
particular amino acids around the cleavage site (see
Table 3) [23]. A Perl regular expression was implemented
to simulate the cleavage rules.

For each peptide obtained by in silico digestion, the
theoretical monoisotopic MW is then computed as:

MW mmwpept i
N

i= + =18 01056 1. Σ

where 18.01056 is the monoisotopic weight of one water
molecule, mmwi is the monoisotopic mass of the i-th
amino acid and N is the total number of amino-acid
residues of the peptide. Additional information required
by PMF identification procedure is associated to the
peptide: a peptide identification code (ID) and its
position in the “parent” protein (i.e. start and stop

Table 1: The amino acids and their monoisotopic and average
masses used for computing the molecular weight of a protein or
a peptide are reported (source [20])

Amino acid Monoisotopic mass Average mass

Alanine A 71.04 71.08
Arginine R 156.10 156.19
Asparagine N 114.04 114.10
Aspartic acid D 115.03 115.09
Cysteine C 103.01 103.14
Glutamic acid E 129.04 129.12
Glutamine Q 128.06 128.13
Glycine G 57.02 57.05
Histidine H 137.06 137.14
Isoleucine I 113.08 113.16
Leucine L 113.08 113.16
Lysine K 128.09 128.17
Methionine M 131.04 131.19
Phenylalanine F 147.07 147.18
Proline P 97.05 97.12
Serine S 87.03 87.08
Threonine T 101.05 101.11
Tryptophan W 186.08 186.21
Tyrosine Y 163.06 163.18
Valine V 99.07 99.13
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amino acids), which will be used for computing the total
amino-acid coverage.

Missed cleavages and post-translational modifications
Being the protein digestion a stochastic process, the
protease does not cleave the peptide bond at every
occurrence of the cleavage rule and therefore some
cleavages along the protein can be randomly missed
(missed cleavage – MC). So, after the digestion process
there are some longer peptides, those which have some
MCs. They include, in a single peptide, two or more
consecutive short peptides of the protein. Therefore, the
digestion of a protein that contains n - 1 cleavage sites,
can theoretically produce n(n + 1)/2 different peptides.
Even if the database should contain all the possible
generated peptides, to avoid an uncontrolled growth of
the database size and consequently of the computa-
tional complexity of the search, it is reasonable to fix
the maximum number of admitted consecutive MCs,
considering that a great number of consecutive MCs is
hardly probable. Note that fixing this number to m, the
database grows of about a factor m instead of a factor

(n+ 1)/2. Being in general m <<n the advantage is
evident.

Furthermore, the reference protein database has to take
into account also the post-translational modifications
(PTMs), i.e. chemical modifications of specific amino
acids affecting the MW, which occur in cells (e.g.
phosphorylations) or are introduced during the sample
preparation procedure (e.g. oxidations). Usually, PTMs
can be considered either fixed or variable: in the former
case, the PTM is present at every occurrence of the
respective amino acid, whereas in the latter one the
modification occurs randomly and then may or may not
be present. A PTM causes the variation of the peptide
MW, increasing or decreasing it. For example, when the
carboxyamidomethylation of the amino acid cysteine
occurs, the MW of this amino acid increases of about
57.02 Da. Again for computational reasons, the max-
imum number of variable PTMs that can occur on the
same peptide has to be fixed a priori.

To create a database that reflects the “real world” as
much as possible, all the combinations of MCs and
PTMs have to be generated and included in the reference
protein database.

Database files
After in silico digestion of all the stored proteins, the
resulting peptides are in turn stored into a new suitable
reference protein database. To speed up the PMF
searching step, this new database is split into multiple
files grouping together the peptides with similar MWs,
following heuristic rules based on the distribution of the
peptideMWs. For example, for theMW ≤ 500, five files are
created, one for peptides whose MWs range are from 0 to
100 Da, one for peptides from 100 to 200 and so on.

This strategy allows to read during the searching step
only those files that could contain peptides matching
one of the masses of the query mass list.

Table 2: The amino acids and the terminal groups that influence the pI of a protein with their charge polarity are shown. Four pKr
values are tabulated for each of them, as defined by Lehninger [21], Solomon [22], Sillero [22], Rodwell [22]. In this work, Lehninger's
values were used

Amino acid Polarity pKr Lehninger pKr Solomon pKr Sillero pKr Rodwell

Glutamic acid (E) - 4.25 4.30 4.50 4.25
Aspartic acid (D) - 3.65 3.90 4.00 3.68
Cysteine (C) - 8.18 8.30 9.00 8.33
Tyrosine (Y) - 10.07 10.10 10.00 10.07
Histidine (H) + 6.00 6.00 6.40 6.00
Lysine (K) + 10.53 10.50 10.40 11.50
Arginine (R) + 12.48 12.50 12.00 11.50
Carboxyl terminal (COOH) - 3.10 2.40 3.20 3.10
Amino terminal (NH2) + 8.00 9.60 8.20 8.00

Table 3: The exceptions to the basic cleavage rules of the trypsin
are shown: AA-1 is the amino acid immediately preceding the K or
R amino acid, AA0 is the last amino acid before the cleavage site
(K or R) and AA1 is the first amino acid after the cleavage site. In
these cases, trypsin does not easily cut the amino-acid chain
(Source [23])

AA-1 AA0 AA1

not W K P
not M R P
C K D
D K D
C K H
C K Y
C R K
R R H
R R R
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From the query mass list to the ranked candidate
protein list
To identify the proteins in the biological sample, the
masses obtained after the pre-processing and the peaks
extraction of the acquired spectrum [6] have to be
matched against those in the reference protein database.
However, the direct use of the mass list is not
appropriate, because some contaminant masses intro-
duced during sample preparation could be present. As
reported in [24] the main contaminant sources are:

• the protease used in the enzymatic digestion (for
example trypsin);
• human skin and dandruff keratins:
1. K1 – Keratin, type II cytoskeletal 1 (Cytokeratin-1);
2. K2E – Keratin, type II cytoskeletal 2 epidermal
(Cytokeratin-2e);
3. K9 – Keratin, type I cytoskeletal 9 (Cytokeratin-9);
4. K10 – Keratin, type I cytoskeletal 10 (Cytokeratin-10);
• the MALDI matrix and the electrophoresis dye.

The enzymatic contaminants come from the autolysis
process of the protease itself used to digest proteins. They
depend on the total amount of protease used and on the
reaction time. The keratins, instead, come from the
scientist(s) performing the different sample preparation
steps and often they are the most important contami-
nants. The exclusion of these contaminant masses from
the query mass list is often fundamental for a success-
fully identification.

Contaminant mass removal
The removal of contaminant masses is not a trivial task
and a well-established procedure is not yet available in
the literature. The main difficulty is that the removal step
may eliminate also an important part of the “true
signal”, sometimes leading to a worsening of the overall
identification capabilities. In fact, a contaminant mass
could be isobaric to that of a peptide of the sample.
Therefore, starting from these considerations, in this
paper the following procedure is proposed and was
implemented in the software tool. First of all, the list of
the possible contaminant masses was generated by the in
silico digestion of the considered contaminants (see
previous paragraph). To limit the risk of removing some
masses belonging to the proteins under investigation,
only those masses in the removal mass list that are not
very frequent in the reference protein database (i.e.,
those that are hardly probable to come from proteins
other than contaminants) were really removed from the
query mass list. The problem became the quantification
of this probability threshold. Even if this threshold can
be considered as a design parameter that can be tuned by
the user, a simulated analysis was performed in order to

define a reasonable value. A set of 100 simulated human
proteins was generated: each protein item was randomly
extracted from the database and the corresponding
peptides were considered. For every protein, a set of
contaminant peptides was included and, finally, a
Gaussian noise was added to each peptide mass. The
100 new proteins were then identified by applying a
mass tolerance equal to the standard deviation of the
above Gaussian noise and the frequency threshold was
varied from 10-4 to 10-7. On the basis of the simulated
analysis just described and of the experience, a reason-
able value for the threshold relevant to human protein
identification seems to be 10-5. Conversely, because
contaminant masses due to the ionization of the MALDI
matrix and electrophoresis dye are present in the
spectrum at lower values (< 900 Da), where only short
peptides are present, usually, the lower mass values are
discarded. Similarly, because long peptides (over 5000
Da) generated by trypsin are extremely rare and then the
acquired signal is mainly due to the noise, an upper
bound value (around 4000 to 5000 Da) is also fixed in
the spectrum acquisition mass range.

Scoring methods
After the contaminant mass removal, the query mass list
is ready to be compared with the masses of the reference
database (searching step). A match between the query
mass xl and the reference mass yj occurred if:

| |x yl j l− ≤ d

where δl is the mass tolerance for mass xl. For each
protein in the reference database the number of matches
is calculated and a scoring function is used to evaluate
the global similarity between the candidate protein and
the experimental data. In a probabilistic context, this
function represents the probability that the considered
protein has generated the experimental data (i.e. the
likelihood). In the literature there are many papers that
propose several scoring methods for the PMF approach.
In this work the methods proposed by Samuelsson and
colleagues have been considered and implemented [12].
They define three different scores, based on different
hypotheses on the mass tolerance and on the distribu-
tion of the peptide masses in the reference database. The
mass tolerance is assumed as either absolute (in dalton)
or relative (in ppm), whereas the mass distribution can
be either uniform or not uniform. Table 4 summarized
the hypotheses made by the three scoring methods.

Note that an implementation of Samuelsson’s scores
already exists within the Piums software tool [16].
However, as declared in [12], only the first scoring
method has been really implemented and tested. There-
fore, it is wrongly used by Piums when the relative mass
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tolerance is chosen by the user. To fill this gap and to
better explore all the possible situations, all the three
scores were implemented in the MsPI software tool.

Method 1
The probability to have at least r matches out of L query
masses can be computed by the Binomial distribution,
so that:

Prob r L
L

r
p pr L r( ; ) ( )=

⎛

⎝
⎜

⎞

⎠
⎟ − −1 (1)

p is the probability that for a given protein a mass
matches at least once in the reference database. Since
method 1 assumes an absolute tolerance (δ) and a
uniform distribution of the masses in the whole
acquisition mass range (Δ), p does not depend on the
specific query mass as required by the Binomial
assumption and it is equal to 2δ /Δ.

Method 2
The likelihood for an observed set of matches against a
random protein can be computed as:

L x p pl l

l

L
l l( | ) ( )Φ = − −

=
∏ f f1 1

1

(2)

where pl is defined similarly to the p of the method 1 and
jl is equal to 1 if the mass xl has at least one match in the
reference database, 0 otherwise. Note that, in this case, pl
depends on the specific query mass, so that the Binomial
distribution cannot be used. In fact, since method 2
assumes a relative tolerance (δl) and a uniform distribu-
tion of the masses, pl is equal to 2δl/Δ or equivalently
2ppm xl/Δ.

Method 3
It does not assume that the distribution of the peptide
masses in the reference database has to be uniform,
instead in general it can be a function of the peptide
masses and of the number N of peptides in the same
protein. The probability that r of the N peptides of a
protein match the query mass list can be again computed
by the Binomial distribution:

Prob r N
N

r
r N r( ; ) ( )=

⎛

⎝
⎜

⎞

⎠
⎟ − −l l1 (3)

where l is the probability that a peptide of the candidate
protein matches at least one of the L query masses and it
is given by:

l =
=
∑ pl
l

L

1

with pl equal to the probability of randomly matching
the mass xl. It can be computed by integrating the mass
density probability function r(MW|N) as:

p N dl
x

x

l l

l l

=
−

+

∫ r m m
d

d
( | ) (4)

The global similarity score on which candidate proteins
are ranked is finally computed as minus the natural
logarithm of the (1) or (2) or (3), so that a protein with a
low probability for random matches has a high score.
The higher the score, the greater is the probability that
the considered protein is really present in the sample.

Note that after defining δl and Δ, scores 1 and 2 are
immediately computable, while score 3 requires to
define r(MW|N) and to compute the integral (4). In
this paper, two strategies are proposed to this aim: the
first one assumes r(MW|N) to be uniform on all the
considered range of masses (Δ) and independent from
N, the second one tries to model the dependence of r
(MW|N) from the two variables. In the first case it is
trivial to verify that pl = 2δl/Δ, whereas in the second case
the r(MW|N) has to be learned from the reference
database, discretizing both the mass variable and N.
Therefore, a discretization grid (with N on the rows and
MW on the columns) was built up and several classes
were defined. To obtain a reasonable distribution among
the classes they were defined considering the percentiles
of each of the two variables. Then the probability of the
(i, j) class was computed as:

pi j, = number of masses in the cell ij
number of masses in thee column j th−

and then the probability density as:

d
pi j
m j Ni

i j,
,=

Δ Δ

where Δmj and ΔNi were the ranges in the (i, j) class of
the masses and of N, respectively. Given xl, δl and N, the
probability pl is given by:

Table 4: The hypotheses under the three scoring methods
proposed by Samuelsson et al. are shown

Method Mass tolerance Peptide mass distribution

1 Absolute (Da) Uniform
2 Relative (ppm) Uniform
3 Relative (ppm) Not uniform
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2d
d

l i j
l ld

x
,

if the interval  is included in

the mass interv

±
aal of j th class−

− − + + + + ++ + −( ( )) ((, , ,b x d p p xj l l i j i j i j k ld d1 1K ll j k i j k
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where bj is the mass value that separates the classes
j and j+1.

Statistical significance of the score
The protein list generated in the previous step ranks all
the proteins in the reference database that match at least
one query mass on the basis of one of the similarity score
chosen by the user. However, the score itself does not
provide a threshold in order to retrieve a reasonable
subset of candidates. Sometimes, this is done by fixing
an arbitrary threshold in order to obtain a “short” list of
the desired length. In a statistical framework, this
problem becomes to define a threshold score that is
able to reject with a desired degree of certainty the null
hypothesis that the score is not greater than the one
obtained by chance [25].

To this aim a database of random sequences can be
built up. Then, the identification process already
performed in the reference database, has to be repeated
on this random database for assigning a significance
value to each score in the ranked candidate protein list,
as proposed in [12]. Starting from probability Prnd, i.e.
the probability that a score greater than or equal to a
fixed value is obtained when the query mass list is
compared with a protein of the random database, two
indexes are defined: the p-value and the quality index.
The p-value is the probability to achieve in a random
database of the same size of the reference database a
score greater than or equal to that considered. The p-
value is given by 1 - (1 - Prnd)

D, where D is the number
of proteins of the reference database. The quality index,
instead, indicates how much the random database
should be larger than the reference database to observe
the same number of proteins with a score greater than
or equal to a fixed value. The score, the p-value and the
quality index can be computed for each of the candidate
proteins.

Given the reference database of D proteins, the random
database of Drnd sequences is generated in the following
way. First, Drnd proteins are sampled with replacement
from the reference database, then they are digested in
silico and the peptide masses derived from the protein
items having the same number of peptides are pooled
together. Finally, for each extracted protein a random
protein is built by randomly sampling with replacement
the associated pool of peptide masses. For obtaining an
accurate evaluation of the p-value, the random database
size Drnd must be chosen sufficiently large. Drnd is
another use parameter.

Results and discussion
The MsPI software tool, described in details in the
Appendix, was tested using a Sun W1100z workstation
with Linux SUSE distribution and the results have been
compared with those obtained using two other software
tools available on line.

Dataset
The dataset used for testing MsPI contains 10 gel bands
of human proteins, already analyzed in a previous work
by Troiani and colleagues [26] using both PMF and PFF
approaches. The proteins in the biological sample were
separated by a 1-D gel following a standard protocol and
the enzymatic digestion was performed with bovine
trypsin. The peptides obtained were then analyzed with a
MALDI-TOF mass spectrometer using the workstation
Voyager DE_PRO (Applied Biosystems) and the acquisi-
tion mass range was set to 900–4000 Da. The peak list of
each band of this dataset was stored in an ASCII file.

Reference protein database
The reference protein database was generated starting
from Swiss-Prot release 56.1 (September 2008).

In accordance to [26], protein identification was carried
out imposing these conditions:

• organism: Homo sapiens;
• up to two consecutive MCs allowed;
• fixed carboxyamidomethylation of the amino acid
cysteine;
• variable oxidation of the amino acid methionine
(maximum two for peptide).

The fixed PTM at cysteine causes an increase of the
amino acid mass of about 57.02 Da. The oxidation at
methionine causes a mass increase of about 15.99 Da.

As discussed in the Methods section, the mass range
considered in the analysis was 800–5000 Da, which is
quite similar to the mass spectrometry acquisition range
set by Troiani and colleagues.

The random database generated for the validation
contains 100.000 proteins (about 5 times greater than
the reference one). These two databases take up 252 MB
and 1 GB of disk space, respectively.

Contaminant mass removing
The contaminant masses were removed from the query
mass list in accordance to the implemented procedure.
In addition to keratins K1, K2E, K9 and K10, the bovine
trypsin was included in the contaminant list. The
frequency threshold was set to 10-5. The number of
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query masses of the 10 bands before and after the
contaminant mass removing are shown in Table 5.
Results depend on the mass tolerance used, even if a
fixed tolerance of 0.3 Da or a relative tolerance of 100
ppm provide very similar results. It is interesting to note
that, when the protein identification procedure was
applied to the removed masses, keratins K1, K2E, K9 and
K10 were identified as significant. That proves the real
presence of these contaminants in the analyzed samples
as discussed in [24].

Protein identification
All the scoring methods implemented were tested and
results were compared with those achieved by Piums and
Mascot. Both absolute and relative mass tolerance were
used. In particular, they were fixed to 0.3 Da and 100
ppm, respectively. The p-value cut off imposed for the
statistical validation of the results was 0.05.

The query mass list obtained after the contaminant mass
removing was used as input for both Piums and Mascot,
because they do not implement contaminant removal
capabilities. A summary of the results of the overall
analysis is shown in Table 6, where for each band is
indicated the position in the ranked list of the “true”
protein, the number of statistical significant proteins
when the MW of the gel band was either considered or
not, the MW and the pI of the “true” protein estimated
by the software tools, the number of matched masses,
and the sequence coverage defined as the ratio of the
number of amino acids of the matched peptides to that
the whole protein. For each band, the sequence coverage
was between 25% and 50%, independently from the
considered score and tool, except for band nine that had
a higher coverage (about 75%).

Note that, since the electrophoretic gel of this study is
1-D, no information about the pI was available.

Comparison between MsPI and Piums
In Piums only the scoring method 1 was implemented. It
supposes an absolute mass tolerance and a uniform
distribution of the peptide masses, even if the imple-
mented user interface wrongly allows the user to set a
relative tolerance. In addition, Piums does not allow to
consider two MCs: only one MC can be set. Moreover,
the Swiss-Prot protein database available within the tool
is an old version (44.6) and it cannot be updated.

Using an absolute mass tolerance of 0.3 Da, MsPI with
the scoring method 1 includes in the list of the
significant proteins the “true” protein nine times over
ten, while Piums reaches the same result only for four
bands. The lower performance of Piums is probably due
to the fact that only one MC is allowed. Moreover, as
Table 6 shows, Piums does not provide the user with the
MW and the pI of the candidate proteins. This could be a
problem for the analyst that cannot use the electro-
phoretic information to better identify the band.

Comparison between MsPI and Mascot
Looking at the results obtained when the mass tolerance
was fixed to 0.3 Da, MsPI with the scoring method 1 and
Mascot (Mascot 1 in Table 6) include nine times over ten
the “true” proteins in the significant candidate protein
lists. The number of significant proteins included in the
list is in general higher for MsPI than for Mascot (overall
50 proteins against the 15 of Mascot), but if the
significant results are filtered in accordance to the MW
read from the gel, the lists shorten mainly for MsPI,
reaching an overall length of 12 and 13 for MsPI and
Mascot, respectively.

The results obtained using MsPI (MsPI 3 in the Table 6)
and Mascot (Mascot 2 in Table 6) with a relative mass
tolerance (100 ppm) show that both methods include
nine times over ten the “true” proteins in the candidate
lists and that Mascot finds less significant proteins than
MsPI. However, also in this case, when the MW is used to
reduce the size of the candidate lists, MsPI obtains less
significant proteins (14 against 15) minimizing the
number of false positives.

As a final remark, note that, at least in this study, the
significant candidate lists obtained by MsPI and Mascot
share only the “true” proteins showing that the two
identification algorithms are quite different.

Comparison between the MsPI scoring methods
Comparing the scoring methods implemented in MsPI
on our dataset, the following considerations can be
made. First of all, scoring method 3 with a not uniform
distribution of peptide masses seems to be not very

Table 5: The number of query masses in each sample band before
and after contaminant mass removing by MsPI routine are shown

Band Number of query masses Mass tolerance

0.3 Da 100 ppm

1 121 64 65
2 111 72 72
3 123 73 74
4 106 55 55
5 164 98 99
6 172 116 116
7 123 62 62
8 71 39 38
9 175 119 120
10 52 27 28
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Table 6: For MsPI 1, Mascot 1 and Piums the mass tolerance was set to 0.3 Da; in the other cases it was set to 100 ppm. For MsPI 1, MsPI
2 and MsPI 3, score 1, 2 and 3 were respectively used with uniform distribution. For each band the position of the "true" protein in the
significant candidate list, the length of that list either using or not using the knowledge about the MW of the band, the MW and the pI of
the "true" protein, the number of matching masses and the sequence coverage are reported

Gel band (#) Software
tool

Rank (# significant proteins
without MW filtering)

Rank (# significant proteins
with MW filtering)

MW (Da) pI Matches (#) Coverage (%)

1 MsPI 1 2 (2) 1 (1) 123852 5.31 23 0.267
MsPI 2 7 (8) 1 (1) 123852 5.31 23 0.270
MsPI 3 2 (2) 1 (1) 123852 5.31 23 0.267
Mascot 1 1 (1) 1 (1) 124292 5.50 23 0.250
Mascot 2 1 (1) 1 (1) 124292 5.50 23 0.250
Piums - - (-) - - 21 0.242

2 MsPI 1 1 (2) 1 (1) 191785 5.32 36 0.252
MsPI 2 1 (4) 1 (1) 191785 5.32 35 0.252
MsPI 3 1 (2) 1 (1) 191785 5.32 35 0.252
Mascot 1 1 (1) 1 (1) 193260 5.48 36 0.250
Mascot 2 1 (3) 1 (1) 193260 5.48 35 0.250
Piums 1 (1) - - - 36 0.257

3 MsPI 1 2 (8) 1 (1) 104981 5.08 21 0.245
MsPI 2 - (4) - (-) 104981 5.08 21 0.245
MsPI 3 2 (4) 1 (1) 104981 5.08 21 0.245
Mascot 1 1 (2) 1 (1) 105245 5.27 21 0.240
Mascot 2 1 (6) 1 (2) 105245 5.27 21 0.240
Piums - (-) - - - 19 0.254

4 MsPI 1 2 (4) 1 (1) 95382 6.38 20 0.286
MsPI 2 1 (5) 1 (1) 95382 6.38 20 0.286
MsPI 3 1 (6) 1 (2) 95382 6.38 20 0.286
Mascot 1 1 (1) 1 (1) 96246 6.41 22 0.320
Mascot 2 1 (1) 1 (1) 96246 6.41 22 0.320
Piums - (-) - - - 19 0.341

5 MsPI 1 2 (8) 2 (3) 84351 4.70 28 0.418
MsPI 2 3 (3) 2 (2) 84351 4.70 28 0.418
MsPI 3 2 (12) 2 (3) 84351 4.70 28 0.418
Mascot 1 1 (2) 1 (2) 83554 4.97 35 0.480
Mascot 2 1 (3) 1 (2) 83554 4.97 34 0.480
Piums 1 (1) - - - 28 0.364

6 MsPI 1 2 (8) 1 (1) 67900 7.37 24 0.515
MsPI 2 - (1) - (-) 67900 7.37 23 0.509
MsPI 3 1 (6) 1 (1) 67900 7.37 23 0.509
Mascot 1 1 (2) 1 (1) 68519 7.58 24 0.510
Mascot 2 1 (4) 1 (2) 68519 7.58 23 0.500
Piums - (-) - - - 19 0.446

7 MsPI 1 1 (3) 1 (1) 53146 4.82 21 0.468
MsPI 2 1 (2) 1 (1) 53146 4.82 21 0.468
MsPI 3 1 (2) 1 (1) 53146 4.82 21 0.468
Mascot 1 1 (1) 1 (1) 53676 5.06 21 0.500
Mascot 2 1 (3) 1 (1) 53676 5.06 21 0.500
Piums - (-) - - - 16 0.413

8 MsPI 1 - (2) - (-) 49674 4.53 8 0.232
MsPI 2 - (1) - (-) 49674 4.53 8 0.232
MsPI 3 - (1) - (-) 49674 4.53 8 0.232
Mascot 1 - (-) - (-) 50095 4.78 8 0.230
Mascot 2 - (-) - (-) 50095 4.78 8 0.230
Piums - (-) - - - 8 0.232
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effective, because it attributes higher scores to very long
proteins. In fact, no band was correctly identified, i.e. the
“true” protein was never included in the significant
candidate lists (results not reported). Scoring method 2
shows a reasonable performance, in fact it includes seven
times over ten the “true” protein in the significant
candidate lists. In this study, score 1 and 3 show the best
performances, correctly “identifying” nine band over ten.

Note that band 8 was not identified by any of the
software tools tested (i.e., MsPI, Piums and Mascot) and
actually a more informative analysis using the PFF
approach was required to identify it [26].

For seven bands MsPI indicates only one significant
candidate when the MW information was considered,
allowing a complete determination of the unknown
protein. Conversely, in two cases (band 5 and 10) the
lists include more than one candidate. Interestingly, the
significant candidate proteins have similar characteristics
both for the MW and pI and they belong to the same
family. In fact candidate proteins, when aligned by the
Needleman-Wunsch algorithm implemented in the
Bioinformatics Toolbox of Matlab (version 2.5), showed
a high similarity: for band 5 the identity between the two
candidates was 86% and the similarity was 96%, while for
band 10 they were about 99% and 100%, respectively.

Computational performance of MsPI
The routines swiss2MsPI.pl, create_database.pl and create_-
database_random.pl, used to create the reference protein
database and the random database, took 30, 1014 and
7747 seconds, respectively (see the Appendix for a
detailed description of the MsPI routine structure). They
have to be executed once or when the main parameters of
the analysis are modified (e.g, the organisms of interest,
the considered PTMs and MCs, and so on). In fact, the
generated databases are stored in the db subfolders.

For what concerns the third step of PMF, the time
required for the identification of a band depends on the
number of query masses and on the scoring method
adopted. In the study considered in this paper, after a
careful optimization in the implementation of the
searching procedure band identifications took about
one minute on average, whereof 2/3 of the time was used
for the evaluation of the statistical significance of the
results. Scoring method 2, which uses a variable mass
tolerance and a uniform database distribution,
employed more time than the other two methods (it
does not use the Binomial distribution). The estimation
of the peptide mass distribution made by the routine
make_grid.pl and used for the implementation of score 3
required 130 seconds for the reference database and
2420 seconds for the random database. For this reason it
is stored after its first computation.

Conclusion
In this paper, a complete procedure for protein
identification by PMF has been proposed. This proce-
dure starts from a query mass list leading to the
generation of a candidate protein list and includes the
removal of contaminant masses and the statistical
validation of the results. The procedure has been fully
implemented in a Perl software tool, called MsPI,
available for free downloading and briefly described in
this paper. The principal goal of MsPI is to implement an
exhaustive procedure that:

1. creates a reference database in which the unknown
protein is searched;
2. performs that search;
3. computes a similarity score for each protein hit
retrieved;
4. creates a random database for a statistical validation of
the results.

Table 6: For MsPI 1, Mascot 1 and Piums the mass tolerance was set to 0.3 Da; in the other cases it was set to 100 ppm. For MsPI 1, MsPI
2 and MsPI 3, score 1, 2 and 3 were respectively used with uniform distribution. For each band the position of the "true" protein in the
significant candidate list, the length of that list either using or not using the knowledge about the MW of the band, the MW and the pI of
the "true" protein, the number of matching masses and the sequence coverage are reported (Continued)

9 MsPI 1 1 (4) 1 (1) 45982 9.79 31 0.784
MsPI 2 1 (4) 1 (1) 45982 9.79 32 0.787
MsPI 3 1 (5) 1 (1) 45982 9.79 32 0.787
Mascot 1 1 (1) 1 (1) 46180 9.45 31 0.730
Mascot 2 1 (1) 1 (1) 46180 9.45 31 0.730
Piums 1 (1) - - - 27 0.715

10 MsPI 1 1 (9) 1 (2) 41611 5.10 13 0.349
MsPI 2 2 (5) 2 (2) 41611 5.10 13 0.379
MsPI 3 1 (6) 1 (4) 41611 5.10 13 0.379
Mascot 1 1 (4) 1 (4) 42052 5.29 13 0.370
Mascot 2 1 (4) 1 (4) 42052 5.29 13 0.370
Piums 2 (2) - - - 13 0.380
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Many software tools are available in the literature for
solving the problem of protein identification, however,
all of them either do not implement all the above
described steps or present some limitations in their
applicability. The software tool proposed here attempts
to provide a complete and customizable solution to
this task.

The reference protein database is created with particular
attention to the in silico reproduction of all processes that
occur during the enzymatic digestion and the sample
preparation. For example, maximum flexibility is left to
the user in the definition of PTMs and of the maximum
number of MCs.

Several scores, based on different hypotheses, were made
available in the tool for ranking the proteins that have
one or more matches with the query mass list. In
particular, both an absolute and a relative mass tolerance
can be specified for the evaluation of the matches/
mismatches between two masses. Since the problem was
formulated in a probabilistic context, it is also possible
to associate a level of statistical significance to each
protein in the candidate list.

A software tool called Piums was already present in the
literature and it implements a similar probabilistic score.
However, the comparison between MsPI and Piums has
highlighted that MsPI is more flexible, in that the
reference protein databases can be updated and more
than one consecutive MC can be considered. Moreover,
Piums does not allow to set relative mass tolerance using
a suitable score and it is not customizable by the user (e.
g. no arbitrary PTMs can be considered). Further, at
difference from Piums, MsPI provides the user with the
MW and the pI values of all the candidate proteins,
helping the analyst to identify the correct proteins in a
gel band or spot.

Some comparisons were made also with respect to
Mascot, one of the most popular softwares in this field.
The overall performance of MsPI and Mascot were very
similar, even if some differences were present in the
candidate lists. MsPI retrieves a higher number of
significant results, and consequently more false posi-
tives, than Mascot, nonetheless by exploiting the knowl-
edge about the MW of the band MsPI provides a lower
number of candidate proteins. As MsPI, Mascot also
computes the MW and the pI of the candidate proteins,
even if some slight differences were found.

Since the two softwares implement different algorithms
and their candidate lists shared in general only the “true”
protein, running both methods on the same query list
and then comparing the output could be an interesting

opportunity. The intersection of the two candidate lists
should improve the quality of the results.

While Mascot and Piums do not implement the relevant
utility, the removal of the contaminant masses from the
acquired spectra is however an important step of the
PMF analysis. In fact, by performing the protein
identification analysis on the masses removed from the
query mass list by the right MsPI algorithm we could
highlight the real presence of keratin contaminants in
the biological samples. Moreover, the analysis per-
formed with Mascot on the whole query mass list
without removing contaminants showed that many
bands were identified as mixture of keratins and other
proteins, confirming again the sample contamination.

Comparing the different scoring methods implemented
in MsPI, it turns out that scoring methods 1 and 3 with a
uniform distribution have the best performances, iden-
tifying nine bands over ten. The scoring method 2
identifies seven bands over ten, whereas the method 3
with a not uniform distribution shows some liability.

MsPI provides for each candidate protein the significance
of the score allowing a natural cut off on the candidate
list. Mascot, instead, defines a threshold on the score on
the basis of the number of sequences of the reference
database: if the score is above this threshold, the
considered protein is significant. Moreover, it optionally
provides the number of proteins over this threshold in a
randomly generated database.

When the statistical validation process is performed, four
cases could show up:

1. the protein with the best score is the only significant
one;
2. more than one significant proteins are in the list and
one of them is the “true” protein;
3. the “true” protein is not significant, but there are other
significant proteins;
4. there is no significant protein.

When case 2 occurs, the electrophoresis experiment can
be crucial for protein identification in MsPI, since often
the proteins identified as significant and yet wrong have
a high MW. So, the electrophoresis information allows to
reasonably drop some of the candidates. Conversely, in
Mascot it was observed that the hits marked as
significant often have the same MW of the “true” one,
therefore the gel information becomes less useful.

When either the “true” protein is not included in the list
of significant results or no statistically relevant results are
obtained, the failure in the identification process may be
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due to different reasons, such as issues with sample
preparation or the presence of a substantial number of
contaminant peaks in the spectrum. In order to get an
answer and preferably the right one in these cases, the
analyst can resort to a PFF experiment, which relies on
reconstructing the sequence of a defined number of
product peptides to identify the parent protein.

Availability and requirements
Project name: MsPI

Project home page: http://aimed11.unipv.it/MsPI

Operating system(s): Platform independent

Programming language: Perl

Other requirements: The following modules are
required: Cwd, Lwp, IO::ZLib, Math::BigInt, Math::Big-
Float (available via CPAN)

Any restrictions to use by non-academics: A written
authorization has to be required to the correspondent
author.

Appendix
MsPI implementation
MsPI (Mass spectrometry Protein Identification) is the
Perl software tool that implements the methodology
described in this paper. Perl was chosen to implement
the second and the third steps of PMF, for its capabilities
in alphabetic strings manipulation, which are the main
structure for representing proteins and peptides, thanks
to the power of its regular expressions. MsPI is a
collection of several Perl scripts and ASCII files dis-
tributed in several directories. The directory tree created
by MsPI is shown in Figure 2. The data folder contains
the query mass list and a configuration file specifying
some user-dependent parameters required by MsPI.
Details are reported on the MsPI web site in the README
file included in the software distribution.

The tmp folder contains some compressed temporary
files created from Perl routines, such as the protein
database downloaded from the network.

The db folder contains the subfolders within the
reference and random databases created in accordance
to the user’s choices. Several databases with different
characteristics can be present at the same time in
different subdirectories.

The results folder contains the output of the identification
procedure, that is the candidate protein list. The src folder

contains the Perl routines and some additional ASCII files
that can be complemented or modified by the users. For
example, it is possible to add some PTMs to those already
present. The additional ASCII files are the following ones:

• table_mw.txt – It contains the list of the average and
monoisotopic weights of the amino acids deprived of a
molecule of water (see Table 1);
• table_pi.txt – It contains the amino acids involved in the
computation of pI, their charge polarities and pKr values
(see Table 2 Lehninger values);
• table_ptm.txt – It contains the names of all the
considered PTMs, the involved amino acids, the MWs
(monoisotopic and average) and the typology of PTMs
(fixed or variable);
• organism.txt – It contains the complete list of
the organisms for which a reference database can be
created.

Moreover, in the src folder there is a setting file (settings.
ini) that contains some parameters necessary to run the
MsPI scripts (see the README file).

The main routines of the MsPI Perl tool are the following:
swiss2MsPI.pl, create_database.pl, create_database_random.pl,
score_PMF.pl and make_grid.pl. These routines run from the
command line and interact with the user in the command
line environment asking some parameters and options.
They are briefly described in the following paragraphs.

Swiss2MsPI.pl
The swiss2MsPI.pl script uses the lwp-download program to
download the database from a specific ftp address and

Figure 2
The directory structure created during the
installation of the MsPI tool.
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saves the downloaded compressed file in the tmp
directory. In the current version of the tool, the routine
downloads the last version of the Swiss-Prot database.
The ftp address is read from the settings.ini file and the
database downloaded is renamed as swissprot_rel.xxx.
fasta.gz, where xxx indicates the Swiss-Prot release.

Create_database.pl
The create_database.pl routine reorganizes the down-
loaded database and creates the reference database as
illustrated in the Methods section. The user-dependent
parameters necessary to create the new database are read
from the settings.ini file. This routine includes also two
subroutines for the computation of protein MW and pI.
It first reads from the tmp folder the downloaded protein
database and since it is stored in a compressed file, the
Perl package IO::Zlib is used to read it at the fly without
a preliminary decompression. The organisms to be
considered are read from the file organism.txt and
consequently proteins are selected. MWs and pIs are
computed and the in silico enzymatic digestion is
performed considering also the MCs and the PTMs as
specified in the settings.ini file. The last step of this
routine is the creation of a file containing the con-
taminant masses that should be removed from the query
mass list. The accession numbers of the contaminants to
be considered are placed in the settings.ini file. During the
reference database creation, the number of times that a
same peptide mass occurs is counted through a hash
table to compute its frequency afterwards. This informa-
tion is used by the routine score_PMF.pl to decide if to
remove or not the contaminant masses from the query
mass list on the basis of a user-defined threshold.

Create_database_random.pl
The create_database_random.pl routine creates the random
database for the statistical validation of the ranked
protein list obtained by the identification procedure. On
the basis of the number of proteins in the reference
database, the routine suggests to the user the “optimal”
size of the random database supporting the choice of the
Drnd parameter.

Score_PMF.pl and make_grid.pl
The score_PMF.pl script reproduces the third step of PMF,
i.e. the search of the acquired spectrum in the reference
protein database. The Perl packages used by this script
are IO::Zlib, Math::BigInt and Math::BigFloat. The two
latter allow to limit overflow and underflow problems.
They are used in the computation of the similarity score
when Binomial coefficients are too large.

First, the m/z contained in the input peak list are
transformed into masses to be comparable with those of

the peptides in the reference database and then, if the
analyst wants to remove contaminants, the algorithm
proceeds with the removal step. The list of the
contaminant proteins is stored in the contaminants.txt
file. The script selects which masses to remove from the
query mass list on the basis of the protein accession
number and of the peptide mass frequency in the
reference database. Note that if a query mass matches
that of a contaminant, it is removed from the query mass
list and consequently the list shortens affecting the L
parameter of the scores (see the Methods section).

If the mass range chosen by the user for a specific
analysis is not equal to that stored in the settings.ini file
and used to build the reference database, the identifica-
tion takes longer because the number of peptides of each
protein in the new mass range must be re-evaluated.
Conversely, the routine directly reads this information in
a suitable file created during the reference database
building step.

In the searching step, the routine compares the query
masses with the theoretical peptides which have an ID
that satisfies the PTMs and MCs conditions imposed by
the user, opening the right database files. When a match
occurs, a hash table storing the total number of matches
for that protein is updated. Moreover, further hash tables
are created for computing the protein sequence coverage
and for updating the protein MW on the basis of the
MCs and PTMs that occur in its peptides. When all the
database files are examined, MW and pI information on
the unknown protein are used, if provided, to select the
candidate proteins to be scored. They can be derived, for
example, from the electrophoresis experiment. The
tolerance window for MW is fixed to ± 20% while for
pI it is fixed to ± 1. Both tolerances can be modified by
the user.

On the basis of the scoring method chosen by the user
(1, 2, or 3) a different algorithm is used to score each
selected protein. In particular, in score 1 and 3 the
Binomial coefficient is computed using a specific
subroutine and if required and possible the Binomial
distribution is approximated with a Gaussian distribu-
tion using a subroutine that evaluates the complemen-
tary error function as described in [27] and reported here
in the next paragraph. If score 3 is chosen, the peptide
mass distribution in the reference database is estimated
if it is not assumed to be uniform. To this aim the
routine uses the script make_grid.pl which creates the
discretization grid described in the Methods section. If a
grid file already exists in the database subfolder, the
routine score_PMF.pl directly reads it and computes the
parameter l. When all the proteins have a score, they are
ranked according to this score and the ranked candidate
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protein list is generated. If required, the p-value is
computed thanks to the random database. This list is
written in an output file, whose name is chosen by the
user, and stored in the results folder. This file contains for
all the candidate proteins the accession number, the ID,
the organism, a description, the MW, the pI, the total
number of amino acids, the number of query masses, the
number of matches, the score, the p-value (if computed),
the quality index (if computed), the protein sequence
coverage and the list of matched peptides.

The Gaussian approximation
The computation of scores 1 and 3 required the
evaluation of the Binomial coefficient that, in some
cases, can become so big to cause overflow. This problem
can be overcome implementing the Gaussian approx-
imation of the Binomial distribution. A Binomial
distribution can be well-approximated with a Gaussian
distribution of mean μ = Lp and variance s2 = Lp(1 - p)
(N.B. for the score 3, p = l) if:

Lp

L p

> ÷
− > ÷

⎧
⎨
⎩

5 10

1 5 10( )

This approximation is correct from a statistical point of
view, because for L tending to infinite, the Binomial
distribution is asymptotically Gaussian.

The cumulative Gaussian distribution probability is:

P X x f x dx e
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x x

( ) ( )
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2
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Being to Binomial distribution a discrete distribution
and the Gaussian distribution a continuous distribution,
to approximate the Binomial distribution with the
Gaussian distribution it is suitable to apply the so called
Continuity Correction defining:

P X z f x dx P X z P X z z Z
z

z
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.
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= = = < + − < − ∀ ∈

−

+

∫ 0 5
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(6)

This correction is less accurate in the tails of the Gaussian
distribution and it introduces some numerical errors in
the evaluation of (6), being the Gaussian cumulative
probability distribution not available in closed form by
elementary functions. Nevertheless, the integral at the
second member of the (5) can be computed by a
numeric way through the error function erf(x):

erf x e dtt
x

( ) = −∫2 2

0p

There is a connection between the error function and the
standard Gaussian cumulative distribution P(X <x),
because they differ only for translation and scaling [28]:

P X x erf
x

( ) [ ( )]< = +1
2

1
2

The probability can be computed using the error
function, but typically the complementary error function
is used, because it is more accurate for x values greater
than 0.5, especially in the Gaussian tails and, moreover,
it is reported in the literature [29]:
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From a computational point of view, the probability of a
Gaussian random variable is calculated by the rational
Chebyshev approximation for the erfc(x) [27]. The erfc(x)
approximation is made considering three intervals and
using rational polynomial on the basis of the interval
where x falls. In particular:
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where the random Gaussian variable x is standardized
and the coefficients pj e qj are reported in the literature. In
this work, the maximum polynomial degree was used.
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