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Abstract

Background: Amino-terminal signal peptides (SPs) are short regions that guide the targeting of
secretory proteins to the correct subcellular compartments in the cell. They are cleaved off upon
the passenger protein reaching its destination. The explosive growth in sequencing technologies has
led to the deposition of vast numbers of protein sequences necessitating rapid functional
annotation techniques, with subcellular localization being a key feature. Of the myriad software
prediction tools developed to automate the task of assigning the SP cleavage site of these new
sequences, we review here, the performance and reliability of commonly used SP prediction tools.

Results: The available signal peptide data has been manually curated and organized into three
datasets representing eukaryotes, Gram-positive and Gram-negative bacteria. These datasets are
used to evaluate thirteen prediction tools that are publicly available. SignalP (both the HMM and
ANN versions) maintains consistency and achieves the best overall accuracy in all three
benchmarking experiments, ranging from 0.872 to 0.914 although other prediction tools are
narrowing the performance gap.

Conclusion: The majority of the tools evaluated in this study encounter no difficulty in
discriminating between secretory and non-secretory proteins. The challenge clearly remains with
pinpointing the correct SP cleavage site. The composite scoring schemes employed by SignalP may
help to explain its accuracy. Prediction task is divided into a number of separate steps, thus allowing
each score to tackle a particular aspect of the prediction.
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Background
Signal peptides (SPs) are found at the N-terminus of
precursor protein sequences [1]. Prokaryotic and eukar-
yotic cells utilize these short peptides to mediate the
targeting and translocation of the passenger protein
domains across the endoplasmic reticulum membrane in
eukaryotes or the inner and outer membranes in
prokaryotes. SPs are cleaved off from their passenger
protein by the endoprotease SPase I [2] upon reaching
their targeted destination. In sequence databases such as
UniProtKB/Swiss-Prot [3] or EMBL [4], an important
annotation task involves the identification of these SPs
and the correct identification of their cleavage sites and
the start of the mature protein sequences. However, the
staggering rate at which unprocessed sequences are being
deposited into the sequence databases easily outpaces
the results from experimental methods. This has cata-
lyzed the development of faster and more accurate
computational methods to automate the task of SP
prediction.

SP prediction is fundamentally important as it impacts
on other features such as transmembrane topology [5],
subcellular localization [6,7], structure modeling and
prediction [8], assignment of putative functions to novel
proteins and identification of putative cleavage sites in
database annotation [9], to name a few examples. Most
importantly, the systematic functional annotation of
biological sequences using Gene Ontology (GO) [10]
requires a precise knowledge of the subcellular localiza-
tion, where SP prediction has a fundamental input.
Some of these prediction tools have been applied with
varying degrees of success in genome-wide studies for the
discovery of novel secretory proteins or large-scale
analyses. Examples include the application in the large-
scale Secreted Protein Discovery Initiative (SPDI) which
sought to discover novel human secretory and trans-
membrane proteins in human [11]; identification of
secreted proteins in 225 bacterial proteomes [12] and
parasitic nematodes [13,14] and genomic analysis of the
SARS-associated Tor2 isolate coronavirus [15]. Likewise,
tools such as SignalP [16] are employed in the
annotation of database sequence entries in which
experimental evidence is lacking. SP prediction tools
can be useful for locating homologous sequences or
predicting the correct start codon since SPs are situated at
the N-terminal of proteins [17].

Additional file 1 shows a list of SP prediction tools that
are publicly available, with the year the tool was first
released, methodology and three datasets covered:
eukaryotes (Euk), Gram-positive (Gpos) and Gram-
negative (Gneg). Earlier reviews [18] and [19] on SP
prediction have focussed on comparisons of the machine
learning techniques used, rather than evaluating the

results of these methods. Except for the two benchmark
studies by Meene et al. [9] in 2000 and Zhang and
Henzel [20] in 2004, which were carried out solely to
benchmark the various SP prediction tools available at
that time, the majority of the comparison studies were
conducted during the development of their respective
prediction tool [5,16,17,21-30]. Often, such assessments
involved only a subset of the prediction tools that are
available or they were tested on a subset of sequences.
For instance, the evaluation by Klee and Ellis [31]
involved only a subset of the eukaryotic sequences
and compared mainly four of the available programs,
while Bagos et al. [32] evaluated a mix of putative and
experimentally verified archaeal SPs. Furthermore, dif-
ferent datasets were used in the evaluation of some of
these prediction tools, thus making it extremely difficult
to engage in a fair comparison. In some cases, the
performance indicators reported actually differ in the
aspects that they were investigating (e.g. discrimination
of SP or non-SP proteins OR/AND identification of the
cleavage site) [28].

The availability of large number of sequences due to the
global genome sequencing efforts and the introduction
of newer tools (described in Additional file 1) since the
previous studies [9,20] have motivated us to conduct a
large-scale study to benchmark the gamut of prediction
tools. We have carefully collected experimentally verified
SPs in a relational database, SPdb [33] (current version
5.1, using SwissProt release 55.0 dated 26 February
2008), with Euk, Gpos and Gneg signal peptide data (see
[34] for detailed analysis of SPdb data), suitable for
benchmarking prediction tools (see Methods section for
details). Using experimentally validated dataset derived
from SPdb and Zhang and Henzel [20], we now present
a comparison between the different tools that is
otherwise often encumbered by the varying accuracies
reported in different earlier studies.

Results
To benchmark the 13 SP prediction tools (Additional
file 1), we employ our previously developed pipeline
[33] to generate 2 datasets that are further curated. An
additional dataset containing experimentally verified SPs
from Zhang and Henzel [20] is also added to this study.
The contents of the datasets are tabulated in Table 1 (the
original sequences used to benchmark the tools are
provided in Additional file 2). Each dataset is main-
tained in equal number between the positive and
negative instances to ensure that there is no bias in the
assessment of the tools. Figures 1, 2, 3, 4 and Table 2
show the results from the three experiments carried out,
using the datasets in Table 1 (detailed prediction results
for each tool are available from Additional file 3).
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Overall results
Figure 1 depicts the overall accuracy values for all the
methods across the three experiments. Experiment 2 and 3
provide values for all three organism groups while Experi-
ment 1 essentially measures the accuracy for Euk alone.

Across the three experiments, SignalP is clearly the most
accurate; with the ANN version [16] achieving slightly
better results over the HMM version [17]. This is
followed by Rapid Prediction of Signal Peptides (RPSP)
[24]. It can be seen that most tools achieve accuracies

well over 80%, which is consistent with what have been
reported in many earlier studies, without complete
details of specificity and sensitivity. A breakdown of
the prediction results measured by sensitivity and
specificity for each experiment, give us a better account
of the strength and weakness of each tool.

Results from experiment 1
The first experiment uses 270 eukaryotic (human)
sequences with experimentally verified SPs, from the
study by Zhang and Henzel [20].

Table 1: Description of the three datasets developed for benchmarking the thirteen SP prediction tools. Only the first 70aa of the
sequence are retained as input. All the negative dataset are subjected to redundancy reduction. T denotes the sequence identity
threshold set for redundancy reduction. 1 From a first-pass-filtered set of 9,851 reduced to 4,989 upon redundancy reduction (T = 40%)
and atypical/spurious sequences removed; 2 From a first-pass-filtered set of 427 reduced to 230 (T = 40%); 3 From a first-pass-filtered set
of 370 reduced to 307 (T = 65%); 4 From a first-pass-filtered set of 8,930 reduced to 4,445 (T = 40%); 5 From a first-pass-filtered set of
110 reduced to 61 (T = 40%); 6 From a first-pass-filtered set of 290 reduced to 150 (T = 40%)

Dataset for Experiment #1:
Zhang and Henzel [20]

(Experimentally verified SPs)

Dataset for Experiment #2:
SPdb 5.1 [33]

(SPdb 5.1 is derived from
Swiss-Prot Release 55.0)

Dataset for Experiment #3:
UniProtKB/Swiss-Prot

Release 57.0
(excludes datasets used in
Experiment #1 and #2)

Positive 270 human secreted recombinant proteins 2,349 secretory proteins consisting of: 228 secretory proteins consisting of:
- Euk: 1874 - Euk: 199
- Gpos: 168 - Gpos: 17
- Gneg: 307 - Gneg: 12

Negative 270 human non-secretory proteins extracted
from SigHMM [26] dataset which is in turn

derived from Swiss-Prot Release 40.0.

2,349 non-secretory proteins 228 non-secretory proteins

- Euk: 1874
(Cytoplasmic and nuclear)1

Euk: 199
(Cytoplasmic and nuclear)4

- Gpos: 168 (all cytoplasmic)2 - Gpos: 17 (all cytoplasmic)5

- Gneg: 307 (all cytoplasmic)3 - Gneg: 12 (all cytoplasmic)6

Figure 1
Aggregated results from all three experiments. Accuracy results from all three experiments are provided here. For
each tool, there are three bars, representing each experiment (gray bar: experiment 1; white bar: experiment 2; black bar:
experiment 3).
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Based on the results from this experiment (Figure 2 and
Table 2), Signal-BLAST predicts the highest number of
correct positive instances (i.e. best sensitivity) (0.978).
This is dramatically reversed when it scores 0.815 in
specificity upon tested with negative instances where it is
tasked to distinguish between secretory and non-secre-
tory proteins. This contrasting result is expected since
Signal-BLAST which uses a pairwise alignment algorithm
(BLAST tool [35]) at its core, needs to find a delicate
balance between the two types of datasets in order to
achieve a good discrimination. SignalP scores the second
best accuracy with the artificial neural network (ANN)
version (Acc:0.872; Sn:0.785; Spc:0.959) marginally
outperforming the hidden Markov model (HMM)
version (Acc:0.856; Sn:0.759; Spc:0.952).

Signal-CF [27] and Signal3L [29] which adopt the
“subsite-coupled model” achieve accuracies of 0.774
and 0.813 respectively. The results are lower than those
reported in the authors’ publications using the same
dataset. Manual inspection of Signal-3L revealed that
there was a mistake quoted by the authors in their
publication [29]. For the entry [Swiss-Prot: Q6UXL0], the
authors reported the cleavage site as 28aa instead of the
correct 29aa that the authors indicated in their supplied
supplementary data ("Online Supporting Information B:
Signal-CF dataset - supp-B.txt”). Thus, the tools that were
evaluated may have been wrongly penalized (SignalP
(version 3.0) and PrediSi [22]). From our examination,
Signal-CF and Signal-3L identify the cleavage site at 63aa
and 28aa respectively based on the input sequence of
length 70aa. When we reduced its evaluation length to
LENGTH(SP)+LENGTH(30aa of the mature peptide)

which is 59aa in length (the sequence being:
MQTFTMVLEEIWTSLFMWFFYALIPCLLTDEVAIL-
PAPQNLSVLSTNMKHLLMWSPVIA) as reported in their
publication, Signal-CF and Signal-3L reported SPs of
29aa and 28aa. Comparing the two tools, we noted that
selecting the correct “species” option in Signal-3L is
critical; otherwise a markedly different length of SP is
reported. Signal-CF, on the other hand, is extremely
sensitive to the different lengths. Additionally, it is
unclear whether the additional classification of
sequences into more specific groups (e.g. plant,
human, animal etc.) adopted by Signal-3L is able to
generate greater advantage over Signal-CF as we shall see
in the other experiments.

Sensitivities of SOSUIsignal (0.189) [28] and SPOCTO-
PUS [30] (0.393) are not comparable to the other
methods. This is possibly because identification of
cleavage site may not have been a priority in their
study [28] as SOSUIsignal was developed to discriminate
SPs from non-SPs containing sequences while SPOCTO-
PUS was developed as a combined predictor for SPs and
membrane protein topology.

Other methods namely Philius, Phobius, PrediSi, SigHMM,
RPSP and Signal-3L return accuracies that are above 0.800
or 80%. However, closer examination reveals that although
their specificities are impressive, their sensitivities are
modest, largely in the range of 0.630 to 0.790.

Results from experiment 2
The second experiment recruits a much larger dataset
consisting of 4,704 sequences that are spilt into positive

Figure 2
Results from Experiment 1. The dataset [20] used in this experiment contains eukaryotic (human) sequences only. The
bars colored in light gray represent the specificity while the black bars represent the sensitivity of the prediction tools.
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and negative datasets of equal size. The negative set
consists of a mix of Euk cytoplasmic and nuclear
sequences. The dataset is further divided into the three
organism groups (details available in Table 1).

SignalP-ANN (Acc:0.910) and SignalP-HMM (Acc:0.903)
achieve the best overall accuracies. This is closely
followed by RPSP (Acc:0.901), an extremely fast predic-
tion tool with excellent specificity in discriminating

Figure 3
Results from Experiment 2. The datasets employed in this experiment are derived from SPdb 5.1 [33] and subjected to
manual curation. The datasets are divided into Euk (top chart), Gpos (bottom chart) and Gneg (middle chart) bacteria.
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secretory from non-secretory sequences. The results of
SigCleave (Acc:0.718; Sn:0.613; Spc:0.823) are margin-
ally lower than that of SigHMM (Acc:0.762; Sn:0.561;
Spc:0.963). When we examine their results further by

looking at the individual data groups (Figure 3), in
particular within the bacterial datasets, SigHMM
obtained lower results in the Gneg (Sn:0.420;
Spc:0.948) and Gpos (Sn:0.286; Spc:0.988) datasets

Figure 4
Results from Experiment 3. The datasets employed in this experiment are derived from Swiss-Prot Release 57.0 and
subjected to the filtering process described in [33]. However, putative SPs which have high probability of existent based on the
experiment literature are retained. The datasets are further grouped into Euk (top chart), Gpos (bottom chart) and Gneg
(middle chart) bacteria.
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compared to the Euk (Sn:0.609; Spc:0.963) dataset. A
comparable drop in both measurements for the bacterial
datasets is observed in Experiment 3 (cf. next section).
This is possibly attributed to the newer bacterial
sequences that have become available since the model
was constructed. SigCleave experiences a similar fall in
performance for the Gneg (Acc:0.585; Sn:0.746;
Spc:0.423) and Gpos (Acc:0.494; Sn:0.488; Spc: 0.500)
datasets. The other prediction tools generally maintain
similar trend as observed in the previous experiment,
though their sensitivity values are considerably lower in
the Gpos dataset compared to the Gneg and Euk
datasets.

Results from experiment 3
New sequences (details available from Table 1) have
been extracted from the Swiss-Prot database release 57.0
(totaling 412,525 entries) resulting in a dataset of 228
positive and 228 negative instances. This dataset
represents a fresh challenge for majority of the tools
except for Signal-BLAST which has been updated recently
with Swiss-Prot Release 56.6. The dataset should give us
clues for the performance of various tools given an
unseen dataset, despite its somewhat smaller size
(particularly for the bacterial sequences). The results
are presented in Table 2 and Figure 4.

Here, SignalP (both ANN and HMM versions; with
HMM scoring higher than ANN) again presents consis-
tently high results. The sensitivity values for other tools
plummet particularly when tested with the Gpos dataset.
This drop is particularly acute for Signal-BLAST, despite
its more recent update. We checked the distribution of
the data but do not note any significant differences
compared to the previous two datasets.

Discussion
This study has evaluated a variety of prediction tools
(Additional file 1) that incorporate an impressive range
of techniques spanning from simple weight matrices to
the more sophisticated approach of machine learning
algorithms or artificial intelligence approaches. Machine
learning techniques appear to be the most popular
methods and they have generally attained better accura-
cies. It was previously suggested that a non-linear feature
may be involved in the recognition of cleavage site [17],
which perhaps helps to explain the better accuracy
achieved by the machine learning-based techniques.

In the case of alignment-based approaches such as
Signal-BLAST and SigHMM, their parameters can be
tweaked to be more sensitive in identifying cleavage site,
but at the expense of its specificity or vice versa. For
instance, when we submit the sequence from human
carboxylesterase 2 isoform 1 [GenBank:37622885] to
Signal-BLAST, a markedly different entry [Swiss-Prot:
ICAM1_HUMAN] (with reported cleavage site of 27) was
returned as the top hit with an assigned cleavage site of
19. Such a method generally may not be particularly
suitable for detecting sequences that share weak homol-
ogy, since it is highly dependent on how the tool
balances sensitivity with specificity.

The majority of the prediction tools achieve better results
for the eukaryotic datasets compared to the bacterial
datasets. This is possibly due to the larger data size that is
available to build models that are sufficiently adequate
to describe the underlying distribution. In general, most
tools encounter little difficulty in distinguishing between
secretory and non-secretory proteins. This is evident
from the high specificity achieved even with the new

Table 2: Benchmark results of the thirteen prediction tools. Equations 1-4 are used to measure the predictive performance of these
tools. (Abbreviations used: Sn = Sensitivity; Spc = Specificity; Acc = Accuracy; MCC = Matthews' Correlation Coefficient). 1 Used with
HMMER 2.3.2 with cut-off score set at -5 [26] and the updated model [20]; 2 Version 3.0; 3 Authors updated system with UniProt 14.6
(Swiss-Prot Release 57.0) [3,62]; 4 Version 1.0.1

Experiment 1 Experiment 2 Experiment 3
Methods Sn Spc Acc MCC Sn Spc Acc MCC Sn Spc Acc MCC

Philius 0.704 0.952 0.828 0.677 0.742 0.968 0.855 0.729 0.728 0.961 0.844 0.708
Phobius 0.637 0.978 0.807 0.654 0.749 0.982 0.865 0.752 0.711 0.987 0.849 0.726
PrediSi 0.726 0.974 0.850 0.723 0.768 0.986 0.877 0.773 0.750 0.974 0.862 0.742
RPSP 0.730 0.989 0.859 0.744 0.805 0.996 0.901 0.816 0.794 1.000 0.897 0.811
SigCleave 0.541 0.878 0.709 0.445 0.613 0.823 0.718 0.446 0.618 0.860 0.739 0.493
SigHMM1 0.707 0.937 0.822 0.662 0.561 0.963 0.762 0.572 0.596 0.952 0.774 0.587
SignalP2 ANN 0.785 0.959 0.872 0.756 0.856 0.965 0.910 0.826 0.842 0.987 0.914 0.838
SignalP2 HMM 0.759 0.952 0.856 0.725 0.832 0.974 0.903 0.814 0.833 0.969 0.901 0.810
Signal-BLAST3 0.978 0.815 0.896 0.803 0.881 0.809 0.845 0.692 0.825 0.794 0.809 0.619
Signal-CF 0.648 0.900 0.774 0.566 0.768 0.905 0.836 0.679 0.750 0.890 0.820 0.647
Signal-3L 0.737 0.889 0.813 0.633 0.786 0.920 0.853 0.712 0.715 0.934 0.825 0.665
SOSUIsignal 0.189 0.926 0.557 0.170 0.232 0.925 0.578 0.217 0.232 0.921 0.577 0.212
SPOCTOCUS4 0.393 0.907 0.650 0.350 0.502 0.902 0.702 0.441 0.408 0.899 0.654 0.352
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dataset provided in Experiment 3. Other studies invol-
ving discrimination between signal anchors and SPs lead
to similar conclusions [17]. The identification of the
correct cleavage site clearly remains the challenge. In fact,
it was reported that as much as one-third of the
putatively assigned cleavage sites was observed to be
inaccurate [20].

Overall, SignalP remains the leading tool, and has been
rather successful in prediction for all three organism
groups across the three experiments. The consistency we
observe in SignalP (both ANN and HMM versions) may
be attributed to its more complex models and robustness
of its method where various scoring schemes are devised
to tackle different aspects (including SP-likeness, the
probability of a segment containing the cleavage site and
so on). Also, the sequence window employed by SignalP
are also relatively wider (Euk: [-11,+2] representing
eleven residues prior to the cleavage site and two
residues after the cleavage site, Gneg: [-21,+2], Gpos:
[-15,+2]) compared to other methods, which are usually
localized to a few residues flanking the SP cleavage
location. The majority of the tools clearly require ‘active
learning’ or regular update to their underlying models to
reflect the latest data distribution. This is particular so for
alignment-based methods as evident from their steady
decline in sensitivity over the course of the three
experiments.

Conclusion
This study has critically evaluated thirteen of the most
commonly used prediction tools that are available for
testing, using identical test datasets, covering eukaryotic
sequences as well as combinations of eukaryotic and
bacterial sequences. Most of these tools are able to
distinguish secretory and non-secretory proteins with
little difficulty, although identifying the correct SP
cleavage site remains a challenge. Indeed, some tools
are more susceptible to changes in the databases, and
they are likely to require regular update to their under-
lying models to reflect the latest observations for a given
set of new sequences. This is particular so for alignment-
based and matrix-based methods, where the updates will
allow proper tuning of their model parameters. The
superior and consistent accuracies of SignalP may be
attributed to the multiple scoring functions that are used
to tackle the different aspects of the prediction task.

Methods
Preparation of datasets
Datasets preparation is a crucial step in the development
of prediction tools. Often, due to bias data (e.g. over-
representation of certain classes of data which were not
subjected to redundancy reduction; omission of certain

data points, e.g. due to atypical length), the models
constructed may not be sufficiently capable of general-
izing to new, unseen data. In other cases, inadvertent use
of erroneous data to train the predictive models can lead
to poor results when tested with new dataset due to the
‘noise’ found in the training data. To develop the test sets
for this work, we have incorporated several good
practices proposed in previous works [7,9,17,24,29,36]
with our own [33] to generate the following three
datasets:

(i) The positive set consists of 270 secreted recombi-
nant human proteins taken from http://share.gene.
com/cleavagesite/index.html[20]. As the original
study did not create the negative dataset to test the
specificity of the tools, we extract 270 human non-
secretory proteins from the dataset [26] which was
used to construct SigHMM;
(ii) This dataset is taken from SPdb5.1 [33] which is
filtered from Swiss-Prot 55.0 and covers most of the
data used to develop the majority of the prediction
methods compared here. The dataset is further
processed following the protocol described in [33].
There are 2349 positive instances (Euk:1874;
Gpos:168; Gneg:307), and this is matched by an
equal number of negative instances for each organ-
ism group. The negative dataset is a mix of
cytoplasmic and nuclear (applicable to Euk only)
proteins. Proteins from other subcellular localiza-
tions are excluded since it is difficult to state
unequivocally whether they are secreted [16]. Simi-
larly, single-pass type II membrane proteins that
contain signal anchors are skipped since the majority
of the entries are predicted http://www.expasy.org/
cgi-bin/lists?annbioch.txt and labelled “Potential”.
We use the “KW” field, instead of “SUBCELLULAR
LOCATION” phrase under the “CC” field, to locate
the cellular localization due to its more succinct
description. Organellar proteins and proteins con-
taining chloroplast or mitochondria transit peptides
are also removed. Additionally, entries with the
keyword “Secreted” appearing under the “KW” field
are removed (e.g. [Swiss-Prot:F13A_HUMAN] which
is cytoplasmic in most tissues, but it is secreted in the
blood plasma as well). Finally, visual inspection is
conducted to remove atypical sequences which
consists of only Ms and Qs in its sequence (e.g.
[Swiss-Prot:ATX8_HUMAN]). Sequences with SPs
that are shorter/longer than the average in the
positive set are not excluded, since such sequences
do exist and they have been annotated and verified.
(iii) A new set of sequences is extracted from Swiss-
Prot Release 57.0 following the protocol described in
[33] and in (ii). Sequences (both positive and
negative) which are present in (ii) are deliberately
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omitted (based on their Swiss-Prot ID and accession
number) from this dataset to create a new dataset that
is novel for the majority of the tools (except those
that have been recently updated such as Signal-
BLAST). This would minimize any advantage enjoyed
by the tools in predicting SPs from sequences similar
to those ‘seen’ before. Manual inspection of the
preliminary filtered set reveals that many of the
entries are putative despite the lack of indication in
their annotations. Unlike the previous datasets, we
are unable to comply with the filtering criteria [33] as
it would eliminate 50% of eukaryotic instances and
more than 90% of the bacterial sequences. Instead,
putative SPs with high probability of existence upon
consulting the accompanied literature are retained.
However, entries with discrepancies in their report on
the cleavage site from Swiss-Prot and the literature
such as [Swiss-Prot:CEAM5_HUMAN] and [Swiss-
Prot:FAS1_SCHAM], are removed, totalling fourteen
eukaryotic sequences. Additionally, two entries
which do not have any accompanying experimental
literature have been excluded ([Swiss-Prot:A1BG_BO-
VIN] and [Swiss-Prot:OMPC_GLUDA]).

In all three datasets (both positive and negative sets), the
general criteria that we applied to determine the removal
of an entry are:

a) Annotation hinting of uncertainty or experimen-
tally unverified (e.g. “probable”, “missing”, “by
similarity”, “inferred”, “potential”, “putative” and
“conflict”)
b) Lipoprotein cleaved by SPase II ("PROKAR_LIPO-
PROTEIN” under the “DR” field)
c) Fragment sequence
d) Organellar protein (under “OG” field)
e) Mollicutes, a division of bacteria that lack cell wall
(under “OC” field)
f) Bacteria without any classification (e.g. [Swiss-Prot:
SAT_RIFPS])
g) Sequences with ambiguous characters or non-
standard amino acid code (e.g. “X”, “Z”, “U” etc.)
(e.g. [Swiss-Prot:KV3A6_MOUSE])

Duplicates are removed from the positive datasets while
negative datasets (non-secretory proteins) are subjected
to redundancy reduction using CD-HIT (version 3.1.1)
[37] to create a diverse set of sequences. Whenever
possible (either bounded by the minimal number of
sequences for testing or the lowest CD-HIT threshold
that can be set), we adopt the lowest possible threshold.

The popular datasets [9,38] are not adopted in this
evaluation since they are derived from earlier Swiss-Prot
releases (Release 27.0 and Release 38.0 respectively).
Our datasets (Swiss-Prot Release 55.0 onwards) are

inclusive of these entries and erroneous entries which
were described previously [33] have been manually
removed in our datasets.

Omission of prediction tools
A number of methods that are unavailable for testing are
omitted from this study. They include several neural
network-based approaches [39,40]; SVMs-based
approaches [41-44]; a profile HMM-based method called
CJ-SPHMM [45]; matrix-based approach that uses the
concept of information theory [46]; a BLOMAP-encod-
ing scheme to transform input sequences [47]; a hybrid
approach that uses bio-basis function NNs and decision
trees [48]; a global alignment approach based on the
Needleman-Wunsch algorithm [49,50] and several ear-
lier prediction tools [51,52]. Other tools such as those
for the prediction of subcellular localizations (e.g.
iPSORT [53], ProteinProwler [54] and N-terminus target-
ing signals (e.g. Predotar [55]), that predict the presence
of SPs but do not indicate the cleavage sites are excluded
as well. We have also omitted specialized tools such as
SecretomeP which predict non-classical SPs i.e. signal
sequences that remain uncleaved [56] and TargetP [57],
since it uses SignalP for SP prediction. SPEPlip [58] does
not support large-scale testing while SIG-Pred [59] was
unavailable for this study.

Setup of prediction tools
For PrediSi [22], we use the web server instead of the
standalone version due to the discrepancy in their
results. The standalone version reported numerous
inaccurate predictions even for the same input sequence.
The prediction results are converted to 0 if the result field
“Signal Peptide ?” indicates an “N” otherwise the
predicted cleavage site is recorded if a “Y” is shown.

For tools which use different models/matrices in their
prediction for different organism group [16,17,24-30],
the appropriate matrix is selected accordingly. Signal-3L,
in particular, allows for six selections: (i) human; (ii)
plant; (iii) animal; (iv) gram-positive; (v) gram-negative;
(vi) “other-eukaryotic”. We use the authors’ categoriza-
tion method as shown in (Online Supporting Information
B: http://www.csbio.sjtu.edu.cn/bioinf/Signal-3L/Data.
htm to classify and select the corresponding matrix for
a given input sequence.

For SigCleave [25], the default threshold (-minweight) of
3.5 is used to filter the results.

For SigHMM [26], a returned score below -5 is deemed to
indicate a non-secretory sequence, otherwise the cleavage
site is reported since the sequence is considered as a
secretory protein.
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For Signal-Blast [21], the detection mode is set to
“SP4 - Only Detect Cleavage Site”.

For all other tools not specifically mentioned, we have
used their default system settings with no additional
parameter changes made except selecting the corre-
sponding organism matrices, where available. All para-
meters for each tool are maintained the same in all three
experiments, and the experiments are carried out on 32-
bit Intel-based desktop computers equipped with 2 GB
of memory.

Evaluation of prediction tools
Our objective is to benchmark the thirteen SP prediction
tools in their ability to identify the correct cleavage sites
based on newly generated datasets. All results from the
different tools are standardized to the following:

Results
, if predicted as non-secretory protein

position o
=

0

ff cleavage site, if predicted as secretory protein

⎧
⎨
⎩

It should be noted that for the case when the returned
value is 0, it is possible that the tool may be unable to
predict the cleavage site although they may detect the
protein as being secretory (e.g. Signal-BLAST for the entry
[Swiss-Prot:IGF2_ONCMY]). In the case of non-secretory
proteins, the effect of this assignment is negligible since
most prediction tools can discriminate extremely well for
non-secretory proteins.

To evaluate the predictive performance of the prediction
tools, we compute sensitivity (Sn), specificity (Spc),
accuracy (Acc) and Matthews’ Correlation Coefficient
(MCC) (Matthews, 1975). The equations are given by:

Sensitivity Sn
TP

TP FN
( ) =

+
(1)

Specificity Spc
TN

TN FP
( ) =

+
(2)

Accuracy Acc
TP TN

TP TN FP FN
( ) = +

+ + +
(3)

MCC
TP TN FP FN

TP FN TP FP TN FP TN FN
= ⋅ − ⋅

+ + + +( )( )( )( )
(4)

where Sn and Spc measure the fraction of positive
instances and fraction of negative instances respectively
which have been correctly predicted. Acc computes the
fraction of positive and negatives instances predicted
correctly. Mcc returns a value that is between 1 (perfect
prediction) and -1 (inverse prediction) where 0 denotes
a random prediction. Briefly, sequences which possess
cleavable SPs that are subsequently predicted with the
correct cleavage sites are designated as true positives

(TP). Those that are predicted with the wrong cleavage
sites are treated as false negatives (FN). Conversely,
sequences without cleavable SPs that are predicted with
one are classified as false positives (FP) whereas
predictions specifying an absence of SP are considered
as true negatives (TN).
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Additional file 1
A list of the publicly available SP prediction tools. Software tools that
are publicly available for the prediction of SPs (includes the detection of
SP and its cleavage site) are listed here. Tools that have been
discontinued from development or unavailable for testing are omitted.
Abbreviations used in this table (HMM = Hidden Markov model;
ANN = Artificial neural network; OET-KNN: Optimized evidence-
theoretic K nearest neighbour; PWMs = Position weight matrices;
SVMs = Support vector machines).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-S15-S2-S1.doc]

Additional file 2
The three datasets used in this study. Text files providing the details of
the datasets used in this study are provided. Each file is named as
follows: X_Y_Z where X is the experiment number (1, 2 or 3); Y is the
organism group (Euk, Gneg or Gpos); Z is the type of dataset [P
(positive) or N (negative)]. In the positive set, each entry is formatted as
Swiss-Prot ID<space>Cleavage site<space>First 70 amino acid residues.
In the negative sets, each entry is formatted as Swiss-Prot
ID<space>First 70 amino acid residues.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-S15-S2-S2.zip]
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Additional file 3
Detailed prediction results from the thirteen tools evaluated. Each
worksheet of the 14 worksheets is labelled in the format: X_Y_Z where X
is the experiment number (1, 2 or 3); Y ss the organism group (Euk,
Gneg or Gpos); Z is the type of dataset [P (positive) or N (negative)].
The overall results are listed at the bottom of worksheets with green tabs.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-S15-S2-S3.xls]
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