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Abstract

Background: We aim to solve the problem of determining word senses for ambiguous biomedical
terms with minimal human effort.

Methods: We build a fully automated system for Word Sense Disambiguation by designing a
system that does not require manually-constructed external resources or manually-labeled training
examples except for a single ambiguous word. The system uses a novel and efficient graph-based
algorithm to cluster words into groups that have the same meaning. Our algorithm follows the
principle of finding a maximum margin between clusters, determining a split of the data that
maximizes the minimum distance between pairs of data points belonging to two different clusters.

Results: On a test set of 21 ambiguous keywords from PubMed abstracts, our system has an
average accuracy of 78%, outperforming a state-of-the-art unsupervised system by 2% and a
baseline technique by 23%. On a standard data set from the National Library of Medicine, our
system outperforms the baseline by 6% and comes within 5% of the accuracy of a supervised
system.

Conclusion: Our system is a novel, state-of-the-art technique for efficiently finding word sense
clusters, and does not require training data or human effort for each new word to be
disambiguated.

Background and genes, and the literature is replete with acronyms that
Word sense disambiguation is a central problem for bio-  have multiple meanings. While humans find it relatively
medical text mining. A variety of applications depend on  easy to determine the correct sense of a word given its con-
it, such as biomedical information extraction [1] and lit-  text, so far automatic approaches have not met the same
erature discovery [2,3]. Certain kinds of terms are proneto  kind of success.

being especially ambiguous, such as the names of proteins
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Existing techniques include supervised systems and
knowledge-based systems, which both require extensive
manual effort per ambiguous term in order to build an
accurate system. Supervised systems require multiple
examples of each sense of a word in context, manually
labeled with the correct sense.

From this data, a supervised system can learn to predict
the correct sense of the same word in a new context. How-
ever, these data sets are labor-intensive, time-consuming,
and expensive to produce, and thus far have been pro-
duced for only several dozen ambiguous terms. It is
impractical to scale this kind of technique to all terms
used in the biomedical literature.

Knowledge-based systems use databases and dictionaries
to disambiguate words. For example, Schijvenaars et al.
[4] compare the words used in the definitions of gene
symbols with the terms surrounding a gene symbol in an
abstract to disambiguate the symbol. As with supervised
systems, knowledge-based systems require extensive man-
ual effort per ambiguous term in order to create the data-
bases and dictionaries. In practice, far more terms are
included in widely available databases than in supervised
datasets. However, new terms and new usages of existing
terms are constantly being invented, and even databases
like the Unified Medical Language System (UMLS) [5] do
not cover all senses of all terms in the biomedical litera-
ture. Thus the knowledge-based techniques have also not
scaled to every possible ambiguous term.

In response to this situation, we have developed a novel
system for disambiguating biomedical terms. Our system,
called SENSATIONAL, has only a single free parameter, and
it can be trained on only a few hundred manually-labeled
examples of one ambiguous term in context. Following
previous work in Natural Language Processing (e.g.,
[6,7]), we call this system unsupervised despite its use of
training data. This is because in contrast to existing work,
it has a very small number of parameters (in our case, just
one), which are essentially thresholds that could be cho-
sen judiciously by hand, but may also be set with a simple
training procedure. Furthermore, the parameter is not tied
to the vocabulary, so the system does not need to be
retrained when ported to a new document collection.
After being trained the system can be applied to any new
term. SENSATIONAL takes as input a set of text documents
or sections of documents that contain an ambiguous
term, and clusters the documents into groups representing
the different senses of the term.

To be effective, SENSATIONAL must be both accurate and
fast, so that it can handle large document collections with
many ambiguous terms. Its clustering algorithm is a
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promising new maximum-margin technique, and makes
the following contributions to the state of the art:

1. SENSATIONAL provides state of the art accuracy in com-
parison with other unsupervised techniques, and
approaches the accuracy of supervised techniques. On
one standard data set for biomedical word sense disam-
biguation developed by the National Institute of Stand-
ards and Technology (NIST), SENSATIONAL achieves a
precision of 0.61, within five points of Leroy and Rindfle-
sch's supervised system [8]. This is an impressive achieve-
ment, given that the supervised techniques have access to
a number of manually-labeled examples for each term in
the data set to learn from. On an extended data set that
includes a variety of acronyms, SENSATIONAL achieves a
precision of 0.76, significantly better than a baseline sys-
tem and outperforming Kulkarni and Pedersen's unsuper-
vised SenseClusters system [9,10].

2. SENSATIONAL can cluster N text segments in time O(N
log N), making it scalable to large text collections. Max-
margin clustering is typically an expensive and slow oper-
ation, but SENSATIONAL uses an algorithm based on mini-
mum spanning trees to find approximate solutions in the
max-margin framework, while remaining efficient and
accurate.

In the next section, we outline background information
and previous work in biomedical word sense disambigua-
tion. In Section we present SENSATIONAL's novel algorithm
for clustering word senses. In Section we discuss a critical
extension of the algorithm that makes it robust to data
sparsity and outliers and dramatically improves our
results. Section describes our experiments and results, and
Section concludes.

Previous work

In this section we will review Word Sense Disambiguation
(WSD) techniques proposed in the biomedical domain.
Word sense disambiguation is a challenging task in many
areas of automatic language processing, such as machine
translation [11], information retrieval [12,13], and ques-
tion answering [14]. Word sense disambiguation algo-
rithms that have been used in the biomedical domain [15-
18] in three different categories: supervised learning,
unsupervised learning, and knowledge-based systems.

A majority of WSD techniques is based on supervised
Machine Learning (ML). Hatzivassiloglou et al. [1] used
three ML techniques, namely Naive Bayesian learning,
decision trees and inductive rule training for protein, gene
and mRNA disambiguation. Ginter et al. [19] introduced
a statistical classification method and a weighted bag-of-
words representation. They weighed the context words to
assign words located closer to the ambiguous word higher
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weights and reported the SVM-based classification per-
formance in gene/protein name disambiguation was
improved from 79% to 82% accuracy. Pahikkala et al. [20]
analyzed the kernel function and constructed smoothed
word position-sensitive and smoothed word position and
distance sensitive representations of the training data
using kernel density estimation techniques. They demon-
strated with the Senseval-3 data that the kernel improved
the classification performance of SVMs compared to the
ordinary Bag-of-Words kernel.

Liu et al. [21] compared the Naive Bayes and their hybrid
supervised WSD technique combining a Naive Bayes and
an exemplar-based algorithm on a subset of the NLM-
WSD data set. They reported that their hybrid supervised
technique with Naive Bayes performed the best in the bio-
medical domain. Their evaluation results indicated that
two feature sets containing 1) all words within a window
size of three and their orientation, and 2) the three nearest
two-word collocations performed best on the NLM-WSD
subset. Joshi et al. (2005) [22] compared four different
supervised ML algorithms: Naive Bayes, Support Vector
Machines (SVM), AdaBoost and Decision Trees on a sub-
set of the NLM-WSD data set. They reported that SVM
obtained the best overall accuracy. They compared uni-
gram and bigram from the words surrounding the target
word at the sentence level.

Mohammad and Pederson [23] investigated how lexical
features and syntactic features contribute to WSD. The
results showed that simple lexical features such as words
in context and collocation used in conjunction with part
of speech information achieved better results. The results
also showed that certain pairs of features were redundant
and others complementary in which is important to deter-
mine what features to use. Leroy and Rindflesch [24] pro-
posed a supervised WSD system that maps words to their
appropriate sense (concept) in the UMLS. They split the
relations into two sets, core relations and non-core rela-
tions due to their hierarchical nature. The core relations
are hierarchical such as is-a, conceptual-part-of, and con-
sists-of. All other relations are identified as non-core rela-
tions. They also used the POS of the target word and
whether the target word is a head word.

In the second category, a number of knowledge-depend-
ent unsupervised approaches have been developed for
word sense disambiguation in general English (e.g., [10,
25-27]). In these studies the final clusters are evaluated
either by comparing them to sense distinctions made in a
general English dictionary, or by evaluating how well the
method distinguishes between unambiguous words that
were conflated together as a pseudo-word. Bhattacharya,
Getoor, and Bengio [28] introduced two knowledge-
enhanced unsupervised WSD systems: "Sense Model" and
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"Concept Model". They built probabilistic models using
parallel corpus with an unsupervised approach. They
demonstrated that the concept model improved perform-
ance on the word sense disambiguation task over the pre-
vious approaches participated in 21 Senseval-2 English All
Words competition. Savova et al. [29] extended existing
methods of unsupervised word sense discrimination to
biomedical text. It adopts the experimental framework
proposed by Purandare and Pedersen [10]. They created
three systems that follow Schtze [26] and used second
order co-occurrences as the main source of information.
They showed that the method of clustering second order
contexts in similarity space is effective in the biomedical
domain.

The third category of WSD techniques uses established
knowledge from curated terminology systems. Wren et al.
[30] presented a collection of four databases that contain
a vast list of abbreviations along with their meaning. Sch-
ijvenaars et al. [4] and Pahikkala et al. [20] developed the-
saurus-based approaches to resolve gene/protein symbols.
Schijvenaars et al. achieved 92.5% accuracy on human
gene symbols. They compared a genes definition com-
piled from a database to abstract where the gene symbol
occurs. Both definition and abstract are represented as
concept finger prints, i.e., vectors of biomedical terms.
Both vectors are compared by a similarity measure based
on cosine. Pahikkala et al. followed a similar approach
with Schijvenaars et al. But instead of using the full
abstract, they defined the context of a gene symbol as a
number of words before and after and achieved 85% accu-
racy. The experiment results showed that small datasets
and clear or fuzzy borderline between senses impact on
the classification task.

Liu et al. [21] used UMLS as the ontology and identified
UMLS concepts in abstracts and analyzed the co-occur-
rence of these terms with the term to be disambiguated.
They achieved a precision of 93% and a recall of 47%.
Gaudan et al. [31] used SVMs on their algorithm to resolve
abbreviations in MEDLINE and obtained a precision of
98.9% and a recall of 98.2%. They simplified the disam-
biguation task by excluding rare senses (appearing in less
than 40 documents) from the test set and keeping in the
training set only the ambiguous short-forms that also had
long-forms in the documents. Humphrey et al. [32]
adopted the Journal Descriptor Indexing (JDI) methodol-
ogy to tackle the ambiguity problem to map free text to
terms from the UMLS metathesaurus. JDI combines a sta-
tistical, corpus-based method with utilization of pre-exist-
ing medical domain knowledge sources. They used the 45
ambiguities, and achieved that the overall average preci-
sion of the highest-scoring JDI method was 78.7% com-
pared to 25% for their baseline method based on the
frequency counts of MeSH terms in a document subset.
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Fast max-margin clustering

Our system is built on the principle of margin-maximiza-
tion: that is, in order to find clusters in the data, it
attempts to find a surface in the space of the data points
that separates the points in such a way that it maximizes
the smallest distance between points on opposite sides of
the surface. The minimum distance that separates the two
clusters is known as the margin. This principle has a long
history in machine learning theory and in practice in the
form of Support Vector Machines [33]. Our clustering
algorithm uses this criterion to efficiently decide among
the vast number of possible clusterings of the data, and
experiments described in the next section validate this
approach.

Exact max-margin clustering has been shown in recent
years to be a highly accurate and effective technique, but
it is computationally expensive. Approximate solutions,
such as a reduction to linear programming [34] or the use
of support vector regression and optimization techniques
for quadratic programming [35], make it more practical,
but so far have not made it scale to large data sets.

We use a novel approximation algorithm for max-margin
clustering based on minimum spanning trees, a graph
data structure that can be computed efficiently. We first
briefly review the concept of minimum spanning trees
and describe how they can be used for clustering. We then
provide a detailed algorithm, a performance analysis, and
a set of theoretical guarantees.

Minimum spanning trees for clustering

A spanning tree of an undirected graph is a subgraph that
contains all of the nodes of the original graph, but only
enough edges so that every node has exactly one path to
every other node. Naturally, if the original graph is discon-
nected, the spanning tree will be as well. In general, span-
ning trees are not unique for a graph. For a weighted graph
G, let the score of a spanning tree be the sum of the
weights on all edges in the tree. A minimum spanning tree
(MST) for G is a spanning tree such that its score is less
than or equal to the score of all other spanning trees for G.
MSTs also need not be unique in general. Given a
weighted, undirected graph G with vertices V and edges E,
the well-known Prim's algorithm can find a minimum
spanning tree of the graph in time O(E + V log V) when
implemented with Fibonacci heaps [36].

Minimum spanning trees have an important property that
makes them useful for a margin-maximization problem.
Let T be a minimum spanning tree of G, and consider the
edge e of T with the largest weight of any edge in T. e sep-
arates two parts of the tree by a distance equal to its
weight. If we remove e from T, T will be separated into two
components with no edge connecting them. The margin
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that separates these two components is exactly equal to
the weight of ¢, since e is the smallest edge in the graph G
that connects them - by definition of the minimum span-
ning tree, if there were a smaller edge than e that con-
nected the two components, it would have been part of
the MST to begin with. Thus, the largest edge of T provides
alarge margin between two components of G. This insight
forms the basis of our algorithm.

Detailed clustering algorithm

The input to our algorithm consists of the ambiguous
term of interest and a set of documents containing that
term. The objective is to group all mentions of the ambig-
uous term in the documents into clusters such that mem-
bers of the same cluster have the same meaning, and a
different meaning from that of other clusters. Note that
unlike the bulk of previous work, the algorithm assumes
essentially no inputs that require significant manual input
to construct, such as manually-labeled training examples
for supervised learning algorithms or manually-con-
structed and manually-curated databases containing
structured knowledge. This key attribute of the algorithm
makes it applicable to any ambiguous term for which
there are a significant number of mentions in text (on
average 271 in our experiments), and thus applicable in
settings like information extraction or information
retrieval where the user or application might be interested
in arbitrary terms.

Like almost any clustering algorithm, our algorithm
requires a representation of the data in a feature space and
a distance function that indicates how far apart two data
points are. We use the well-known bag-of-words represen-
tation for the mentions of the ambiguous terms, with a
stop-word list of approximately 100 very common tokens.
After experimentation with a variety of distance functions,
we determined that the following function of two feature
vectors provides an efficient and effective measure of the
distance between them:

¥ vi -H}i
d(vy,v,) = 1(1712)1
>;min(vy,v5)
In principle, our algorithm will work with any feature rep-
resentation or distance function.

Our algorithm appears in Figure 1. The first five steps
build a graph that represents the set of mentions of an
ambiguous term, and how far apart each mention is from
every other one. Steps six through eight construct an MST
for the graph, and cluster the vertices of the graph using
the MST.
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t, the ambiguous term of interest
D, a set of documents containing ¢

Inputs:

Mazx, a constant

2. For each d in D:
For each word w in d
Add d to Index[w]
3. Let Vertices := {}, Edges := {}
4. For each mention m of term ¢ in D
Add m to Vertices
5. For each distinct word w in D
If 1 < |Indezx|w]| < Max
For each pair dy, dy in Index|w]

e

f(,), a real-valued function of two documents representing their distance

1. Let Index[w] := {} for each distinct word w in D

Add e = {dy,d2} to Edges with weight f(d1,d2)
Compute the minimum spanning tree T of G = (Vertices, Edges) using Prim’s algorithm
7. Remove the edge from 7' that was last added by Prim’s algorithm
(By construction, the last edge has the largest weight.)
8. Return the two disconnected sets of nodes in 71" after the largest edge has been removed

Figure |

SENSATIONAL clustering algorithm. SENSATIONAL's clustering algorithm is a fast, approximate technique for finding maxi-
mum-margin clusters in document collections. It uses minimum spanning trees to find high-weight edges connecting two com-

ponents of the graph.

The first part of this process creates a data structure, the
Index, that stores for each word a set of documents con-
taining that word. This index can be used to prune the set
of edges that are added to the eventual graph: after step
five, the set of edges contains only those pairs of docu-
ments that share at least one word in common (because
they both appeared in the same set Index|w] for some w).
Furthermore, the word that they shared must not have
appeared in more than Max documents. This restriction
prevents the comparison of documents if they share only
function words like "the" or other relatively uninforma-
tive words that appear in almost every document. This
algorithm has previously been shown to limit the number
of comparisons made between documents to O(|V] log
|V]) [37]. Limiting the number of comparisons between
documents in turn limits the number of edges in the
graph G, making further processing more efficient. In
practice, we set Max to 20.

Once the graph G is constructed, the algorithm builds a
minimum spanning tree using Prim's algorithm, and
removes the largest edge from it. Since a MST contains
exactly one path between every pair of nodes, the act of
removing the largest edge must remove every path
between nodes on opposite sides of the edge. In other

words, the MST without its largest edge contains two dis-
connected components. The algorithm returns these two
components as the clusters. Note that the weight of the
largest edge of the MST is the margin between the two
clusters, since by definition of the MST there can be no
shorter edge that connects the two clusters. By removing
the largest edge of the MST, the algorithm finds a cluster-
ing that forces a large-margin separation between the
resulting disconnected components.

Analysis and performance guarantees

Maximum-margin clustering is a computationally chal-
lenging task, especially for large document collections. Xu
et al. [34] show that it is equivalent to convex integer pro-
gramming, which is NP-hard. Our algorithm gives an
approximate answer in a highly efficient manner, making
it applicable to large document collections. It offers the
following guarantees:

1. The margin of the clustering is exactly equal to the
weight of the largest edge in the MST.

2. The margin of the clustering is greater than or equal to
the weight of every edge in the MST.
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For a graph of N vertices, there are N -1 edges in the MST,
so the margin is greater than or equal to at least N - 1 edges
of the graph.

3. For Zipf-distributed data, the clustering can be com-
puted in time O(|D| + N log N), where N is the number of
mentions of the ambiguous term of interest, and D is the
set of documents containing the term. Construction of the
index takes time O(|D|). Construction of the graph takes
time O(N log N) and produces a graph with at most O(N
log N) edges [37]. Finally, running Prim's algorithm and
computing the clustering takes time O(|E| + |V]| log |V]) =
O(N log N).

Handling data sparsity and outliers

While the MST-based algorithm above has proved capable
of finding maximum-margin clusterings in practice, one
property of our data has caused those clusterings to be
unusable for word sense disambiguation: outliers. In par-
ticular, document collections often have a number of doc-
uments that are very different from all other documents in
the collection and share almost no words in common
with any other document. Calling them outliers is indeed
somewhat misleading, since there are so many of them. In
fact, in one of our test collections, over 20% of the docu-
ments were outliers in the sense that they shared less than
10% of their words with the closest document in the col-
lection. This problem is related to the notions of data
sparsity and the curse of dimensionality; it plagues many
natural language processing systems.

Outliers cause our MST-based algorithm to go seriously
wrong. If we use the minimum spanning tree algorithm to
cluster a document collection with a number of outliers, it
consistently removes an edge that separates one of the
outlier points from the rest of the collection. The algo-
rithm is properly finding a large-margin clustering, since
the outlier points are very far from every other point in the
collection, so they are separated from the rest of the col-
lection by a wide margin. However, the resulting clusters
are poor results for disambiguating word senses. This
problem proved to be pervasive in our initial experiments,
making the accuracy of our system roughly the same or
slightly worse than a baseline system in which all points
are simply grouped into a single cluster (a.k.a., the All-in-
1 baseline). Thus our original algorithm has terrible per-
formance due to this one fatal flaw.

In response, we have developed an efficient mechanism
for purifying our data set into a set of points that represent
the core documents in the collection. We then apply our
clustering technique to these core points, determine a
clustering for them, and add each outlier point to the clus-
ter of core points to which it is closest. Our experiments
show that with this technique for handling outliers, the
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performance of SENSATIONAL's algorithm improves drasti-
cally.

Our algorithm for finding the core points of the graph
operates on the minimum spanning tree produced by our
clustering algorithm. It has two major steps: first, it counts
the number of nodes in every sub-tree of the MST. Second,
it finds a "backbone" of edges connecting nodes that are
the roots of large sub-trees. The backbone, which contains
only nodes that are relatively close to a number of other
documents, is then used as the core of the MST. We
explain each step in more detail below.

Counting the size of subtrees

The first step in the algorithm is to calculate the size of
each subtree in the MST. We first define a set of slots to
store the number of nodes in a subtree. Each slot stores
the number of nodes in a subtree rooted at a node x and
connected to the rest of the MST by edge (x, y). Figure 2
shows an example MST with attached slots. In this figure,
for example, slot [(V1, V0), V1] is the size of the subtree
that is rooted at V1 and is connected to the rest of the tree
along edge (V1, VO0). It includes nodes V7 through V11.
Notice that this subtree is different from the subtree
rooted at V1 and connected to the rest of the tree by edge
(V1, V10) - that subtree includes all nodes except V9,
V10, and V11.

The calculation of the subtree sizes begins by choosing a
random vertex as the root of the MST (node VO in the fig-
ure). We then perform a breadth-first traversal of the tree,
adding each node to a stack with a pointer to its parent
along the way. The direction of the tree traversal is indi-
cated by directed edges in Figure 2. After all nodes have
been added to the stack, it pops the stack one node at a
time, and calculates the slot for that node and the edge
connecting it to its parent in the breadth-first traversal. By
ordering nodes in the reverse order of the tree traversal,
the slots of every child node will be calculated before the
slots of the parent, and the parent will be able to calculate
its slot using the value of its children's slots. Specifically,
if a node x with parent y is popped from the stack, the
algorithm calculates:

Slot[(x,y), x] =1+ Slot[(c, x), c]
ceChildren(x)

So, for example, Slot [(V1, V10), V1] will be calculated as
the sum of the slots for [(V7, V1), V7], [(V8, V1), V8], and
[(VO, V1), VO], plus one for V1 itself.

After the stack has been completely popped, one slot will
have been calculated for every edge in the tree. However,
there are two slots on every edge, for each endpoint of the

Page 6 of 11

(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 3):S4

EEEn

http://www.biomedcentral.com/1471-2105/10/S3/S4

Slot[(V4,V0), V4]

| Slot | ‘Slot[(V4,V0), VO]‘

Slot[(V1,V0), VO] ° Slot[(V2,V0), V0]

Slot[(V1,V0), V1]
Slot

O~

Slot

=

Figure 2

° Slot[(V1,V7), V1]
Slot[(V1,V7), V7]

Slot[(V2,V0), V2]

Slot[(V2,V5), V2]

\ SIot[(V2,V6), V2] \ \ Slot[(V2,V5), V5] \

Slot[(V2,V6), V6] °

A minimum spanning tree with slot annotations. Our technique for handling outliers performs a breadth-first traversal
of the minimum spanning tree in order to count the number of nodes in each subtrees.

edge. The remaining slots can easily be filled, since the
two slots on each edge must add up to the total number
of nodes in the tree.

Finding the backbone

Our Backbone-Finding Algorithm takes as input all the
slots from the last algorithm and outputs the set of vertices
in the backbone. Let Backbone be initialized to an empty
set. Our algorithm first finds a vertex with some slot value
that is as close as possible to half the number of nodes in
the graph. Such a vertex is intuitively near the center of the
MST. It breaks ties randomly. It then expands the back-
bone by adding the root of the biggest subtree connected
to the starting point, as determined by the subtree's slot
value. It repeatedly adds the root of the biggest subtree
connected to either end of the backbone, until all availa-
ble subtrees have slot values lower than a threshold
parameter T. During the expansion, if it reaches a new ver-
tex whose two biggest sub-trees do not include the one
where the expansion is coming from, it just clears the pre-
vious work by setting Backbone = {}, and starts over by set-
ting the new vertex as the starting point for the
construction of the backbone.

An Example

Suppose we have T = 2. In the tree in Figure 2, vertices VO
and V1 both have slots equal to 6 and 7 (along the edge
[V1, VO]), which is close to half the total of 13 nodes. Sup-
pose the algorithm randomly chooses V1 as the starting
point for the backbone. It will then add VO to the back-
bone since the value of Slot [(VO, V1), VO] is 7, which is
greater than the size of any of V1's other subtrees. Next,
the algorithm will add V2 and V10 to the backbone,
which both have slot values equal to 3. At that point, the
Backbone-Finding algorithm stops, since none of V2 and
V10's children has a slot value > T.

After finding the backbone of this MST, our complete
algorithm operates by cutting the largest-weighted edge
on the backbone, and then clustering all other nodes
according to which part of the backbone they are con-
nected to in the backbone. Note that this procedure
accomplishes our original goal of forcing the algorithm to
cut large edges that are not simply separating outliers from
the rest of the group. Experiments below validate our intu-
itive approach.

Algorithm analysis
As with our MST algorithm, the Backbone-Finding proce-
dure is designed to operate efficiently so that it can be
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applied to large collections of documents. The calculation
of slot values requires a breadth-first traversal of the tree,
which takes O(N) time for N vertices. It then requires pop-
ping each of the nodes and adding the slot values of
incoming edges. Since there are N - 1 edges in a tree of N
vertices, and each edge is considered at most twice during
this step, it also takes O(N) time. Calculating the leftover
slots after popping the stack requires visiting each edge
again, for another O(N) steps. Determining the backbone
from the MST with slot values uses a simple, greedy expan-
sion technique that visits each node at most once. In total,
the whole Backbone-Finding procedure requires O(N)
time.

Experiments and results

We performed two experiments to test the accuracy of our
SENSATIONAL system against both unsupervised and super-
vised systems.

Experimental setup

We tested SENSATIONAL on two data sets. To compare SEN-
SATIONAL with a supervised system, we tested it on a stand-
ard data set of ambiguous biomedical terms available
from the National Library of Medicine (NLM) [3]. Leroy
and Rindflesch [8] have developed a system using a Naive
Bayes classifer on this same data set, and we show the
results for both systems below. This data set contains 100
examples of each term being used in context. Each exam-
ple is labeled with its sense in the Unified Medical Lan-
guage System (UMLS) dictionary of word senses, or with
the label "None" if no corresponding sense is found in
UMLS. Following Leroy et al., we evaluate on the subset of
15 terms for which the majority sense makes up at most
70% of the examples; this way, there is a reasonable
amount of data for the system to learn patterns identifying
the minority sense(s).

The NLM data set contains a variety of biomedical terms,
but it leaves out an important type of ambiguous key-
word: acronyms. We further evaluated SENSATIONAL on a
data set of keywords from the NLM data set, plus a set of
additional terms, including a number of acronyms. We
collected a data set of PubMed abstracts for these terms.
On average, we collected 271 documents per keyword; no
keyword had fewer than 125 documents, and the largest
collection was 503 documents. We filtered out abstracts
that were less than 15 words. We manually labeled each
occurrence of each term with an identifier indicating its
sense in the given context (e.g., sense 1, 2, or 3). We col-
lected data for a total of 21 keywords. Two of these were
used for training (described below), and the other 19 for
our tests. Most keywords had only 2 senses in the data,
with five exceptions: "BPD", "cold", "inflammation", and
"nutrition" had 3 senses each, and "MCP" had four. For
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all five cases, the largest two senses always covered at least
70% of the examples.

For the PubMed data set, we provide two unsupervised
comparison points for our system. The first is the Sense-
Clusters system by Purandare and Pedersen (available for
download at http://www.d.umn.edu/~tpederse/sense
clusters.html) [9,10]. Like our system, SenseClusters uses
no labeled data or manual resources to make its WSD
decisions. It represents the closest existing system to ours.
It differs significantly from ours, however, in that it does
not use the maximum-margin criterion to make its clus-
tering decisions.

The SenseClusters system actually represents a large col-
lection of different WSD techniques that have been devel-
oped over a number of years. In order to compare against
SenseClusters, we had to select one of these techniques.
The SenseClusters package has four different parameters,
with between 2 and 12 values for each of them, for a total
of 188 different configurations. We did not have access to
any training procedures or ways of selecting values for
these parameters from training data or by hand, so to be
as fair as possible in our comparison, we adopted the fol-
lowing procedure: we ran all configurations on our test
data, and chose the best-performing system to compare
against. Note that this is an optimistic estimate of Sense-
Clusters' performance, since we are in effect training the
four parameters of SenseClusters on the test set.

The second unsupervised comparison point for SENSA-
TIONAL is a common baseline that is well-known to be dif-
ficult for unsupervised WSD systems to beat, which we
call the All-in-1 baseline. All-in-1 works by putting all
word instances into a single cluster, and represents a sys-
tem that assumes all words have only a single meaning. Its
accuracy is equal to the fraction of examples that belong
to the largest cluster in the true clustering.

Leroy and Rindflesch train and test their algorithm using
10-fold cross validation on the NLM data set. SENSATIONAL
has one parameter, which we train on a holdout set of two
keywords ("MCP" and "white") from our PubMed data
set. The unknown parameter is the pruning threshold for
the Backbone-Finding algorithm, and we train it using a
linear search over fixed intervals. The optimal setting on
this training set turned out to be a setting where the back-
bone stops growing if the next subtree contains fewer than
one-tenth of all nodes in the graph. We use this setting for
all further experiments. As we note before, we use the test
data to optimize SenseClusters' four configuration param-
eters. SENSATIONAL and SenseClusters were both restricted
to providing at most 2 clusters during testing. As we men-
tion above, we refer to both SenseClusters and SENSA-
TIONAL as "unsupervised" systems despite the fact that we

Page 8 of 11

(page number not for citation purposes)


http://www.d.umn.edu/~tpederse/senseclusters.html
http://www.d.umn.edu/~tpederse/senseclusters.html

BMC Bioinformatics 2009, 10(Suppl 3):S4

train them on manually-labeled training data. This is
because they each have a small number of parameters that
could easily be set by hand, but it is more rigorous to set
them using a small amount of holdout data. Referring to
sysems with a small number of free parameters as "unsu-
pervised" is common practice in Natural Language
Processing literature, regardless of whether they are set by
hand or with small amounts of training data [6,7].

We measure the accuracy of our unsupervised systems as
follows. We first find the best possible alignment between
the output clusters from the system and the clusters in the
labeled data set. The "best" possible alignment is defined
to be the one which results in the highest number of ele-
ments in the output clusters being aligned with a cluster
in the labeled data that contains the same elements. This
task is a bipartite graph-matching problem, and we use
the well-known Hungarian algorithm [38] to compute the
best possible matching. We then determine the accuracy
as the number of elements that are correctly aligned with
the labeled data set, divided by the total number of ele-
ments in the labeled data set. As is the case with any com-
parison of unsupervised and supervised systems, they can
only be compared in terms of accuracy once the output of
the unsupervised system has been aligned to the labeled
test data in this manner - the unsupervised system cannot
determine the correct label for each cluster, only the mem-
bers of the clusters.

Results and discussion

On the standard NLM data set, SENSATIONAL is able to out-
perform the baseline All-in-1 system, by 6% on average
across the keywords. It does not perform as well as the
supervised system by Leroy and Rindflesch, which is to be
expected given that their system has access to training
examples as input. However, SENSATIONAL is able to come
within 5% of this supervised system without the need for
a significant amount of manual input per term. Differ-
ences in accuracy between SENSATIONAL and the other two
systems are statistically significant using the Chi-squared
test with 1 degree of freedom. See Table 1 for details.

We found that SENSATIONAL requires at least 30 documents
per sense in order to determine accurate clusters. Addi-
tional terms in the NLM data set did not meet this require-
ment, and SENSATIONAL performed below baseline on
average for these terms. This is an unsurprising result,
since Leroy and Rindflesch found that having fewer than
30 examples for a minority sense made it difficult for even
a supervised system to find discriminating patterns in the
data. Fortunately, it is much easier to add additional doc-
uments to SENSATIONAL's data set than to a supervised sys-
tem's, since the data set does not need to be manually
labeled. In future work, we plan to investigate more
closely SENSATIONAL's accuracy as a function of the
number of (unlabeled) examples it sees for each sense.
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Table I: Comparison with a supervised WSD system.

Keyword All-in-1 L&R SENSATIONAL
adjustment 0.62 0.57 0.56
blood pressure 0.54 0.46 0.49
degree 0.63 0.68 0.72
evaluation 0.50 0.57 0.57
growth 0.63 0.62 0.71
immunosuppression 0.59 0.63 0.59
man 0.58 0.80 0.51
mosaic 0.52 0.66 0.71
nutrition 0.45 0.48 0.42
radiation 0.6l 0.72 0.65
repair 0.52 0.81 0.80
scale 0.65 0.84 0.68
sensitivity 0.49 0.70 0.74
weight 0.47 0.68 0.53
white 0.49 0.62 0.52
average 0.55 0.66 0.6l

SENSATIONAL outperforms the baseline All-in-1 system by 6% on
average, and comes within 5% of a supervised system for word sense
disambiguation by Leroy & Rindflesch (L&R) on a standard NLM
dataset. Average performance across all words is statistically
significant using the Chi-square test with Yates' correction (two-tailed
test with | degree of freedom; between All-in-1 and SENSATIONAL,
Chi-square = 10.839, p = 0.0010; between SENSATIONAL and L&R,
Chi-square = 7.875, p = 0.0050).

Results for our unsupervised comparison appear in Table
2. Both SenseClusters and SENSATIONAL provide statisti-
cally significant gains over the baseline All-in-1 technique,
SENSATIONAL achieving an improvement of 25% over the
baseline on average across the keywords. Importantly,
SENSATIONAL's Max-margin technique combined with its
Backbone-Finding algorithm are also able to outperform
the state-of-the-art unsupervised WSD system, SenseClus-
ters, by a statistically significant margin of 2% (two-tailed
Chi-square test with 1 degree of freedom, p = 0.0203). The
SENSATIONAL technique not only works well on average,
but it also works consistently well, outperforming Sense-
Clusters on most keywords and outperforming the All-in-
1 technique on all but 2 keywords. On 8 of the keywords,
it achieved a 90% accuracy or more, and on two it
achieved a perfect accuracy. The data set contains a variety
of ambiguous terms, and SENSATIONAL is able to perform
well on all of these kinds of words, including the acro-
nyms. These encouraging results indicate that our system
may prove applicable to arbitrary biomedical terms, with-
out the need for manual input for each term.

Conclusion and future work

Max-margin clustering using minimum spanning trees
and our Backbone-Finding technique achieves state-of-
the-art results for unsupervised word sense disambigua-
tion without manual resources. The technique outper-
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Table 2: Comparison with two unsupervised WSD systems.

Keyword All-in-1 SenseClusters SENSATIONAL
ANA 0.63 0.99 1.0
BPD 0.40 0.65 0.53
BSA 0.50 0.99 0.95
CML 0.55 0.99 0.90
cold 0.37 0.63 0.67
culture 0.52 0.55 0.82
discharge 0.66 0.90 0.95
fat 0.51 0.55 0.53
fluid 0.64 0.88 0.99
glucose 0.51 0.69 0.51
inflammation 0.35 0.47 0.50
inhibition 0.50 0.55 0.54
MAS 0.50 1.0 1.0
mole 0.78 0.77 0.96
nutrition 0.39 0.5 0.55
pressure 0.52 0.89 0.86
single 0.50 0.87 0.99
transport 0.51 0.52 0.57
VCR 0.79 0.65 0.64
average 0.53 0.74 0.76

SENSATIONAL outperforms the All-in-1 baseline by an impressive
23% and the SenseClusters system by 2% on a task of disambiguating
terms in PubMed abstracts. Differences in performance across all
words is statistically significant using the Chi-squared test with Yates'
correction (two-tailed test with | degree of freedom; between All-in-
| and SenseClusters, Chi-square = 488.671, p < 0.0001; between
SenseClusters and SENSATIONAL, Chi-square = 5.388, p = 0.0203).

forms existing unsupervised techniques and comes close
to the performance of a supervised technique on a variety
of ambiguous biomedical terms. In addition, SENSA-
TIONAL's clustering algorithm can run in time O(N log N),
making it a highly attractive framework for large-scale
WSD.

Thus far, we have concentrated on achieving scalability
and accuracy with SENSATIONAL. Further experiments are
necessary to evaluate SENSATIONAL's performance, espe-
cially how much it can improve as we add more and more
unlabeled data. In future work, we plan to incorporate
methods to automatically determine how many clusters
exist in the data. Furthermore, we plan to incorporate
existing knowledge about particular word usages from the
UMLS and other databases to help disambiguate terms
that already have well-defined senses.
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Institute of Standards and Technology; WSD: Word Sense
Disambiguation; NLM: National Library of Medicine;
MST: minimum spanning tree; ML: Machine Learning;
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