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Abstract

Background: In many cases biomedical data sets contain outliers that make it difficult to achieve
reliable knowledge discovery. Data analysis without removing outliers could lead to wrong results
and provide misleading information.

Results: We propose a new outlier detection method based on Kullback-Leibler (KL) divergence.
The original concept of KL divergence was designed as a measure of distance between two
distributions. Stemming from that, we extend it to biological sample outlier detection by forming
sample sets composed of nearest neighbors. KL divergence is defined between two sample sets
with and without the test sample. To handle the non-linearity of sample distribution, original data
is mapped into a higher feature space. We address the singularity problem due to small sample size
during KL divergence calculation. Kernel functions are applied to avoid direct use of mapping
functions. The performance of the proposed method is demonstrated on a synthetic data set, two
public microarray data sets, and a mass spectrometry data set for liver cancer study. Comparative
studies with Mahalanobis distance based method and one-class support vector machine (SVM) are
reported showing that the proposed method performs better in finding outliers.

Conclusion: Our idea was derived from Markov blanket algorithm that is a feature selection
method based on KL divergence. That is, while Markov blanket algorithm removes redundant and
irrelevant features, our proposed method detects outliers. Compared to other algorithms, our
proposed method shows better or comparable performance for small sample and high-dimensional
biological data. This indicates that the proposed method can be used to detect outliers in biological

data sets.
Background human error in the biomedical data analysis such as
Outlier detection is an active research area that has many  biomarker selection and disease diagnosis could deeply
applications such as network intrusion detection [1],  degrade the performance of the data analysis. Therefore,

fraud detection [2] and biomedical data analysis [3]. In  prior to the analysis, during preprocessing it is imperative
particular, outliers caused from instrument error or  toremove outliers to prevent wrong results. To detect such
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anomalous observations from normal ones, data mining
techniques are widely used.

Outlier detection has been studied by researchers using a
diversity of approaches. Statistical methods often view
objects that are located relatively far from the center of the
data distribution as outliers. Several distance measures
were implemented. The Mahalanobis distance is the most
commonly used multivariate outlier criterion. Based on
Akaike's Information Criterion (AIC), Kadota et al. devel-
oped a method for detecting outliers, which is free from a
significance level [4]. Knorr and Ng introduced a distance-
based approach in which outliers are those objects for
which there are less than k points within a given threshold
in the input data set [5,6]. Angiulli et al. proposed a dis-
tance-based outlier detection method which finds the top
outliers and provides a subset of the data set, called outlier
detection solving set, that can be used to predict if new
unseen objects are outliers [7]. Distance-based strategies
are advantageous since model learning is not required. As
an alternative, clustering algorithms can be used for out-
lier detection in which objects that do not belong to any
cluster are regarded as outliers. Wang and Chiang pro-
posed an effective cluster validity measure with outlier
detection and cluster merging strategies for support vector
clustering (SVC) [8]. The validity measure is capable of
finding suitable values for the kernel parameter and soft
margin constant. Based on these parameters, SVC algo-
rithm can identify the ideal cluster number and increase
robustness to outliers and noises. Schélkopf proposed a
method of adapting support vector machine (SVM) to
one-class classification problems [9]. Manevitz and
Yousef presented two versions using the one-class SVM,
both of which can identify outliers: Schélkopf's method
and their proposed suggestion [10]. In such methods,
after mapping the original samples into a feature space
using an appropriate kernel function, the origin is referred
to as the second class. In the feature space, samples close
to the origin or lying on the standard subspace such as
axes are regarded as outliers. Bandyopadhyay and Santra
applied a genetic algorithm to the outlier detection prob-
lem in a lower dimensional space of a given data set,
dividing these spaces into grids and efficiently computing
the sparsity factor of the grid [11]. Aggarwal and Yu stud-
ied the problem of outlier detection for high-dimensional
data, which works by finding lower dimensional projec-
tions [12]. Malossini et al. proposed two methods for
detecting potential labeling errors: Classification-stability
algorithm (CL-stability) and Leave-One-Out-Error-sensi-
tivity algorithm (LOOE-sensitivity) [13]. In CL-stability,
the stability of the classification of a sample is evaluated
with a small perturbation of the other samples. LOOE-
sensitivity was derived from the fact that if a sample is
mislabeled, flipping the label of the sample should
improve the prediction power.
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In this paper, we propose a new outlier detection method
based on KL divergence [14]. Due to the possible non-lin-
earity of data structure, we deal with this problem in a
higher feature space rather than the original space. Several
issues arise after data mapping such as singularity because
of small sample size versus high feature dimension. We
address the computational issues and show the effective-
ness of the proposed approach, KL divergence for outlier
detection (KLOD).

Methods

Markov blanket

Markov blanket algorithm proposed by Koller and
Sahami is a cross-entropy based technique to identify
redundant and irrelevant features [15]. Let F be a full set
of features and M < F be a subset of features which does
not contain feature F,. Then, M is called a Markov blanket
for F;if F;is conditionally independent of F - M-{F,} given
M. Generally, the Markov blanket M, of F; is defined as a
subset of features that consists of some features that have
the highest Pearson correlation with F,. To evaluate the
closeness between F; and its Markov blanket M,, the fol-
lowing expected cross-entropy A is estimated:

A(F; [M;) = z P(M; =fy,F = f;)xD(P(c|M; =fy ,F = fi) || P(c|M; =fy,)),
o

where f,; and f; are feature values to M; and F;, respectively,
c is the class label, and D(.||.) represents the cross-entropy
(a.k.a. Kullback-Leibler divergence). For each feature, A
value is computed and a feature with the smallest A value
is eliminated from the whole feature set. With the remain-
ing features, the procedure is repeated until a predefined
number of features remains.

Kullback-Leibler (KL) divergence

KL divergence, widely used in information theory, is
adopted in Markov blanket as a core component. As
shown in Markov blanket, KL divergence represents a
measure of the distance between two probability distribu-
tions [16], i.e., for two probability densities p(x) and g(x),
the KL-divergence is defined as

Dia(pl4) = j p(x) log%dx.

Suppose that N (z ¥) is a multivariate Gaussian distribu-
tion defined as

N, 3) = LT w) )

mexp(
(2m)™[2]

where x € R™ and |Z| is the determinant of covariance

matrix X. Given two different probability density
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functions, p(x) = N (x4, £,) and q(x) = N ,(1,, X,), the
KL divergence is defined as
22|

1 _ _
Dy (N1|IN ) = E{(#l 1) 25 (- o)+ 108@ +uX, X3 1,03

Concept of KL divergence for outlier detection (KLOD)

In Markov blanket, based on KL divergence, after calculat-
ing A value of Eq. (1) for each feature, a feature with the
lowest A value is considered to be the most redundant.
Using KL divergence, our new outlier detection method,
called KLOD, employs similar strategy to the Markov
blanket, i.e., while Markov blanket algorithm detects
redundant and irrelevant features, our method identifies
outliers. In KLOD, each sample x; has a sample set that
consists of ¢ samples close to the x;. To calculate the dis-
tance between samples, Euclidean metric is used. More
specifically, we define two sample sets, i.e., S; and S,: S, is
a sample set close to x; in Euclidean distance and the other
set S, consists of x; and all samples in S,. The similarity,

Dy (5,1[S,), between S, and S, for each sample can be
measured by using KL divergence, where 1 <i<nandnis
the total number of samples in the data set. Intuitively, in
our strategy, a sample x; with the largest D is regarded as

an outlier.
0 =argmax g, Dy

Given a data set with nonlinear data structure, if we model
the linearity for the data set, it will cause our strategy to
fail. Here, we focus on modeling the nonlinearity. Accord-
ingly, with a mapping function ¢, the original space is

mapped into a higher dimensional feature space. Let S
and S denote the two sample sets in the feature space in
which we compute the similarity D(S{" ||S$) between
S? and SY. For each sample, its D(S¥ [|ST) is calcu-

lated. A sample which has the largest D(S}||SY) is

referred to as an outlier.

Please see an example in Figure 1. However, the calcula-
tion leads to several important issues to be considered,
such as kernel trick, singularity problem, and calculation
of KL divergence in the feature space. In the following sec-
tions, we will describe them.

Kernel function
Suppose that {x,, x,, U x,,} are the given samples in the
original space. After mapping the samples into a higher
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feature space by a nonlinear mapping function ¢, the sam-
ples in the feature space are observed as @,,,,, = [¢(X,), @
(x,), U, ¢ (x,)] where m is the number of features. Denote
K as follows:

K = OT].

The calculation can be performed using kernel trick, i.e.,
the ijth element, ¢ (x;)T¢ (x;), of the K matrix can be com-
puted as a kernel function k(x; x;). In literatures, the pol-
ynomial kernel and the Gaussian kernel are the most
widely used kernel functions. In this study, the Gaussian
kernel function is used:

2
| x=yl|

k(x,y) = exp o)
20

where o controls the kernel width. Similar to Eq. (6), we

define Kj; as follows:

T
K; =00,

where if i # j, ®;and ®; are different sample sets in the fea-
ture space; if i = j, K;; is equivalent to the definition of K.
Indeed, the feature space and the mapping function may
not be explicitly known. However, once the kernel func-
tion is known, we can easily deal with the nonlinear map-
ping problem by replacing the mapping functions by the
kernel functions.

KL divergence equation is composed of mean and covari-
ance components. The mean and the covariance matrix in
the feature space are estimated as

. 1Y
u =n;¢(xi) = @s,

n

& 1
= @(x) - m)(9(x;) - )" =@y @,
i=1
where s, :%iT,]:ﬁ(In —sl) and 1 =[1,1, U, 1].

Then, an m x n matrix W is denoted as

w =<DI=%[W(Xl)_#):“'rw(xn)—/1)]-

Singularity problem

The covariance matrix in Eq. (10) is rank-deficient due to
the small number of samples against the number of fea-
tures. This problem, called singularity problem, makes it
impossible to calculate the inverse of the covariance
matrix. To overcome the problem, several methods have
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W

Dx1(S1]|S2) > Dx2(S1]|S2)

(a)

Dx1(S1]|S2) < Dx2(S7]|S%)
(b)

Figure |
Outlier detection in a high feature space. Suppose that the red dot is a real outlier which is the farthest one from the
majority of data. (a) in the original space, X, is regarded as an outlier. (b) in the higher feature space, x, is correctly detected as

an outlier.
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been proposed. In this study, we make use of a simple
regularized approximation in which some positive con-
stant values are added to the diagonal elements of the cov-
ariance matrix [17]. Therefore, the modified covariance
matrix is of full rank, hence nonsingular. Let C denote

c=a'o" +pI1,,
=wWww" +pI,
= ®RD" + pl,,
where R = JJT, p > 0, and I, is an identity matrix. In this

study, p = 1 is used. Then, the inversion of the matrix C
can be computed by using Woodbury formula:

c'=(pl, +0))"®")?,

= (pl, + WW1H)7,

=p7'(1, - pTW(I, + p"'WTW)IWT),

=p7(1,, - W(pl, + WTW)'wT),

=o', - oM 0"),

=pl(1,, - ®BDT),
where B = JM-1JTand M = pl, + WIW = p [, + JTOTO] = pl,,
+JTKJ.

Definition (Woodbury formula): Let A be a square r x r
invertible matrix, where U and V are two r x k matrices
with k <r. Assume that a k x k matrix 2 = I, + SVTA'IU, in
which I, denotes a k x k identity matrix and £ is an arbi-
trary scalar, is invertible. Then

(A + SUVI)1=Al- BATUSIVIA-L

Calculation of KL divergence

Suppose that S? and SCZD are two sample sets in the fea-

ture space as mentioned in section. We know that the cov-
ariance matrices for both sets are singular. Let C, and C,

denote the approximated covariance matrices for Sip and
S?, respectively, where the size of S is one larger than
that of S¥. Also, let z, and s, be mean matrices for $®
and S?, respectively. Therefore, KL divergence for S

and SY is expressed as follows:

_ C _
2Dy (NN 5) = (g = 15) " C (g — 1) + log@ +1r|C,Cy' - m.

IC1]

The KL divergence above is composed of three terms, i.e.,
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(1 = 15) "G (g — 12)
|C, |
|Cy |

tr[C,C5'].

log

It should be noted that as shown in Eq. (9), Eq. (12) and
Eq. (13), #, C;and C;' (i = 1 or 2) have mapping func-

tions rather than kernel functions.

Here, we will show how each term can be expressed by
kernel functions instead of mapping functions. The first
term consists of four sub-terms,

(1 = 12) "G (g = p13) = 1 C g + 13 €My — 1 Co = 3 G5y

Substituting Eq. (9) and Eq. (13) into each sub-term

,uiTC]Tluk, we have

ui'Ciluy, =5 @ p7'(1,, - @ B®])D,s),

-1,_T T
=p  (s;iKysy —s;K;BKysy),

= p_lgijk'

As a result of the effort, all mapping functions in the first
term are replaced with kernel functions. Before dealing
with the second term, we want to introduce the following
three properties of determinant that are essential in the
calculation of the second term.

Properties of determinant

(a) If A is an r-by-r matrix, det|dA| = det|dLA| = d'det|A|.

(b) If A and B are k-by-r matrices, det|I, + ABT| = det|I, +
BTA|.

(c) If A is invertible, det|A-1| = 1/det|A|.

In the second term, we should compute the determinant
of C(C, or C,). Instead of directly calculating the determi-
nant of C, we try to obtain it through the determinant of
C1. That s,

' = [p7'(1, - ®BDT),

= p "I, -®B®" |, by property (a)
= p "1, -Q@" |,
= p™"|I,-®'Q|, by property (b)
= p™"|1,-0"®B],
= p™|I,-KB|,
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where Q = ®B. Here, by property (c), we can easily calcu-
late |C|, i.e.,

1 pm
[Cl

c| lty-KB|
By taking logarithm of |C|, we have

m
log|C|= logpi

=mlogp —log |1, —KB|.
1, KB gp —log|I, |

Note that the size of S is one larger than that of SS. If

the size of §9 is k, the size of S} becomes k + 1.

Now we have the second term composed of kernel
functions:

C
tog 2l - 1og| C, | tog] €, |.
IC1l
=log |1, —Ky;By [-log |1} —K;,B, |.

The third term can be replaced with kernel functions using
properties of trace:
w[C,C;'| (@R, + pl,,)p (I, — DB,y )],
p ' tu[®R,®] - p”'tr]®R @ D,B,d; | + m — tr[®,B,d; ],
p 'R K] — p T tr[R K ,BLK |+ m — tr{B,K 5, .

Successfully, we substitute all mapping functions in the
three terms of KL divergence by kernel functions so that
we can calculate KL divergence between two sample sets in
the feature space.

Results and discussion

To evaluate the performance of KLOD method, we per-
formed several experiments using a synthetic data, two
gene expression data sets, and a high-resolution mass
spectrometry data. To obtain unbiased results, all experi-
ments were repeated 30 times with 10-fold cross valida-
tion (CV) and the performance was averaged. The
performance of KLOD was compared with one-class SVM
and Mahalanobis distance based outlier detection meth-
ods. Given n samples, the Mahalanobis distance for each
multivariate sample x; is as follows:

D; =J(x; - W) =7 (x; - )

where X and y are the sample covariance matrix and sam-
ple mean vector, respectively. Samples with a large Maha-
lanobis distance are regarded as outliers.

Results on synthetic data
First, using a synthetic data, we evaluated KLOD to see the
ability in detecting outliers. The synthetic data consists of

http://www.biomedcentral.com/1471-2105/10/S4/S7

100 samples, denoted as N, each of which has 100 fea-
tures generated from a mixture of Gaussian N (0, I). In
addition, two sample sets called quasi-outlier set Q and
perfect outlier set P were produced, each of which has 10
samples with 100 features, which were generated from a
mixture of Gaussian N (0, I) and N (2, 1), respectively.
It is noted that Q was created from the same distribution
as N. Here, we corrupted Q by changing the values in
some features. To do so, some features from each sample
in P were randomly selected. The values of the selected
features replaced those of features randomly selected from
the corresponding sample in Q. Finally, we merged N and
Q, which were used as a synthetic data. Figure 2 illustrates
an example of generating the synthetic data. In this exper-
iment, we tested KLOD changing the number of corrupted
features from 10 to 30 increasing by 2 and the size of a set,
denoted as t, that consists of close samples of each sample
from 5 to 20 increasing by 5. With the synthetic data, we
measured how accurate our method is in identifying out-
liers in a way that the number of real outliers is counted
out of the first 10 samples detected by KLOD.

Figure 3 shows the experimental results. When the
number of noisy features increases, the accuracy shows a
tendency to increase as well. It should be noted that for all
set sizes, when the number of noisy features is 18, an accu-
racy of over 90% was obtained. Particularly, fort = 10, 15
and 20, when the number of noisy features is 30, an accu-
racy of 100% was achieved.

Performance evaluation after outlier removal

Before introducing the outlier removal for real biomedical
data, we first introduce the performance evaluation metric
we will use which is PCA (principal component analysis)
+ LDA (linear discriminant analysis). LDA maps the data
into a very low dimensionality of ¢ -1, where ¢ is the
number of classes. In the reduced space, a simple match-
ing procedure is used for classification. However, in order
to guarantee a non-degenerate result from LDA, before the
LDA task, the dimensionality of the data must be reduced
to at most n - ¢ where n is the number of samples. Princi-
pal component analysis (PCA) is often used in the analy-
sis of high dimensional data set. PCA performs a
transformation of the original space into a lower dimen-
sional space with little or no information loss while max-
imally preserving variance.

Lilien et al. used the PCA+LDA method in the analysis of
mass spectrometry data sets [18]. In this framework, the
PCA dimensionality-reduced samples are projected by
LDA onto a hyperplane in the way of maximizing the
between-class variance and minimizing the within-class
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synthetic data
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normal samples

quasi-outliers
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perfect outliers
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Figure 2

Generation of a synthetic data. This example shows a way used in this study to generate a synthetic data.

variance of the projected samples. To evaluate the per-
formance after outlier removal in our experiments, we
employed the PCA+LDA strategy.

Results on gene expression data sets
In this study, two public microarray data sets were used.

¢ The leukemia data set covers two types of acute leuke-
mia: 47 acute lymphoblastic leukemia (ALL) samples and

100
95 -
g0 -
X es| /
8 A
< e

65 1 1 I I 1 1 1 I I
10 12 14 16 18 20 22 24 26 28 30

No. of the noisy features

Figure 3

Accuracy of detecting outliers on a synthetic data.
The data consists of 100 normal samples and 10 outliers,
each having 100 features.

25 acute myeloid leukemia (AML) samples with 7,129
genes. The data set is publicly available at http://

www.broad.mit.edu/cgi-bin/cancer/datasets.cgi/[19].

¢ The colon data set contains 40 tumor and 22 normal
colon tissues with 2,000 genes. The data set is available at
http://microarray.princeton.edu/oncology/[20].

In experiments with the two microarray data sets, specifi-
city, sensitivity, and accuracy were measured using
PCA+LDA classification strategy after removing outliers
detected by KLOD with t = 10, Mahalanobis distance
based method, and one-class SVM. We define the specifi-
city as the ratio of correctly classified negatives to the
actual number of negatives. For leukemia and colon
microarray data sets, negatives are ALL and normal sam-
ples, respectively. For KLOD and Mahalanobis distance
based method, the performance was measured after
removing a sample having the largest distance from each
class at each iteration. If the prediction rate (specificity or
sensitivity) decreases more than a threshold y compared
to the prediction rate before the outlier removal, we stop
the outlier detection in the corresponding class. In this
study, we used y = 0.5%. In contrast, for one-class SVM,
after excluding all samples regarded as outliers in each
class, the performance was assessed.

Table 1 shows the experimental results obtained using
leukemia and colon microarray data sets. For the leuke-
mia data set, KLOD achieved the best accuracy with 9 out-
liers (2 ALL and 7 AML samples).
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Table I: Performance after outlier detection in leukemia and colon data sets.

Data set Measurements Without outlier removal After outlier removal
KLOD Mahalanobis One-class SVM
Leukemia Specificity (%) 96.17 99.00 97.37 100
Sensitivity (%) 95.60 99.44 100 95.24
Accuracy (%) 95.97 99.13 98.28 98.33
No. of the outliers ALL 2 9 8
AML 7 5 4
Colon Specificity (%) 82.50 85.95 83.25 85.26
Sensitivity (%) 88.25 94.43 85.90 94.17
Accuracy (%) 86.21 91.25 85.00 91.09
No. of the outliers normal | 2 3
tumor 5 | 4

Mahalanobis distance based method and one-class SVM
found 14 and 12 outliers, respectively. For the colon data
set, KLOD found 6 outliers (1 normal and 5 tumor sam-
ples) with 84.95% specificity, 94.43% sensitivity, and
91.25% accuracy. It should be noted that the performance
of Mahalanobis distance based method was degraded in
terms of sensitivity and accuracy compared to the per-
formance obtained using all samples without outlier
removal, suggesting that outliers detected by Mahalanobis
distance based method are unlikely to be real ones.

Results on mass spectrometry data

To evaluate the effectiveness of KLOD, we also used a pub-
lic mass spectrometry data for liver cancer study that con-
sists of 201 spectra containing hepatocellular carcinoma
(HCC) (78), cirrhosis (51), and health (72) [3]. From
http://microarray.georgetown.edu/ressomlab/, we down-
loaded the binned spectra that have 23,846 peaks for each
spectrum. To test outlier detection methods, only cirrhosis
and HCC spectra were used as in [3]. By using t-test with
the significance level of 0.05 in cirrhosis and HCC spectra,
we selected 10,682 peaks. That is, the top 10,682 peaks
selected by t-test with cirrhosis and HCC spectra were used
in outlier detection methods. The same way as performed

with the microarray data sets was employed. Here cirrho-
sis samples are regarded as negatives. As shown in Table 2,
KLOD obtained slightly higher performance with the
smallest number of outliers than Mahalanobis distance
based method and one-class SVM. From the results in
experiments using mass spectrometry and microarray data
sets, it seems that one-class SVM detects more outliers
than KLOD and Mahalanobis distance based method.

Conclusion

We proposed a new outlier detection method based on KL
divergence called KLOD. Our idea was derived from
Markov blanket algorithm where redundant and irrele-
vant features are removed based on KL divergence. We
tackled the outlier detection problem in a higher feature
space after mapping the original data. The mapping leads
to several issues. In particular, we showed how to calculate
KL divergence in the higher feature space by using the
properties of determinant and trace of matrix. To asses the
usefulness of KLOD, we used a synthetic data and real life
data sets. Compared to Mahalanobis distance based
method and one-class SVM, KLOD achieved higher or
comparable performance.

Table 2: Performance after outlier detection in liver cancer mass spectrometry data.

Measurements Without outlier removal

After outlier removal

KLOD Mahalanobis One-class SYM
Specificity (%) 93.63 94.69 94.29 94.35
Sensitivity (%) 92.82 93.95 93.51 93.89
Accuracy (%) 93.14 94.23 93.82 94.07
No. of the outliers Cirrhosis 3 2 5
HCC 4 6
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