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Abstract

Background: The osteocyte is a type of cell that appears to be one of the key endocrine
regulators of bone metabolism and a key responder to initiate bone formation and remodeling.
Identifying the regulatory networks in osteocytes may lead to new therapies for osteoporosis and
loss of bone.

Results: Using microarray, we identified 269 genes over-expressed in osteocyte, many of which
have known functions in bone and muscle differentiation and contractility. We determined the
evolutionarily conserved and enriched TF binding sites in the 5 kb promoter regions of these genes.
Using this data, a transcriptional regulatory network was constructed and subsequently partitioned
to identify cis-regulatory modules.

Conclusion: Our results show that many osteocyte-specific genes, including two well-known
osteocyte markers DMPI| and Sost, have highly conserved clustering of muscle-related cis-
regulatory modules, thus supporting the concept that a muscle-related gene network is important
in osteocyte biology and may play a role in contractility and dynamic movements of the osteocyte.

Background mineralizes [1]. They are regarded as the mechanosen-

It is well known that bone tissue has the capacity to alter
its mass and structure in response to mechanical strain.
Osteocytes are terminally differentiated cells derived
from osteoblasts, which first become embedded and
surrounded by osteoid matrix that subsequently

sory cells that respond to mechanical loading and a
variety of hormones such as vitamin D and PTH, and
sends signals to other bone cells to initiate bone
formation and remodeling [1]. A better understanding
of the gene networks regulating osteocytes can therefore
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lead to new therapies for osteoporosis, loss of bone in
space travel and extended bed rest. However, even
though osteocytes are the most abundant cells in bone,
the regulatory pathways controlling osteocyte biology
have not been identified.

As osteocytes are embedded within the bone matrix, with
a complex network between the different stages of cells
within the osteoblast-osteocyte lineage, studies of
osteocytes have been hampered by their inaccessibility
and by the lack of molecular and cell surface markers
that could be used to isolate and characterize this cell
population [2]. Dentin matrix protein (DMP-1) has been
shown as a good marker for the osteocyte lineage and is
specifically expressed along and in the canaliculi of
osteocytes within the bone matrix, suggesting a role for
DMP1 in osteocyte function. Recently, we generated a
mouse model containing a DMP1 region, —7892 to
+4439 bp (8 kb), driving GFP and thus directing
expression to osteocytes [2]. This enables us to purify
osteocytes from osteoblast cells using fluorescence-
activated cell sorting, and compare the gene expression
profiles in these two types of cells directly using
microarray.

In this work, we developed a systems biology approach
to study osteocyte biology by integrating data from
microarray experiments, functional annotations and
comparative genomics. This type of approaches has
been shown to greatly eliminate noises contained in
individual data sources, and improve the understanding
of complex biological phenomena, such as Alzheimer’s
disease and cancer [3,4]. Typically, this type of
approaches starts with identifying a set of differentially
expressed genes, and then clusters genes according to
their expression profiles or functions, followed by an
analysis of cis-regulatory elements presented in the
promoter sequences. Our method differs from those
approaches in two important aspects. First, we only
considered cis-regulatory elements that are both over-
represented and evolutionary conserved. This signifi-
cantly reduced the effective lengths of promoter regions
when searching for cis-regulatory elements, and therefore
eliminated many spurious matches. Moreover, we
developed a graph theoretical method to identify
transcriptional regulatory modules (CRMs) [5,6], which
revealed interesting combinatorial relationships between
several transcription factors.

Briefly, from microarray experiments, we obtained 269
osteocyte-specific genes, many of which have functions
in bone or muscle development and contractility. We
then identified enriched and evolutionarily conserved
cis-regulatory elements from the 5 kb upstream promoter
regions of a subset of 98 bone- and muscle-related genes,

http://www.biomedcentral.com/1471-2105/10/S9/S5

and used these data to construct a transcriptional
regulatory network that links TFs to their putative
binding sites on these 98 genes. We further proposed a
graph-partitioning algorithm to identify possible cis-
regulatory modules [5,6]. Our results show that many
osteocyte-specific genes, including two well-known
osteocyte markers DMP1 and Sost, have highly con-
served clustering of muscle-related cis-regulatory mod-
ules, thus supporting the concept that a muscle-related
gene network is important in osteocyte biology and may
play a role in contractility and dynamic movements of
the osteocyte.

Results and discussion

Bone and muscle-related genes are over-expressed in
osteocyte cells

To identify potential regulatory networks of osteocytes,
we obtained gene expression profiles from osteocytes
purified from calvariae of 5-8 day-old mice expressing
8 kb DMP1 promoter driving GFP. As a control, we also
obtained gene expression profiles from GFP-negative
cells, which contain about 60% osteoblasts at different
stages (before DMP1 gene turns on) and some macro-
phages. The microarray data is then normalized using
GCRMA [7] and significantly differentially expressed
genes were identified. We identified 269 genes that are
over-expressed by at least 3 fold in osteocytes with a
FDR-corrected p-value < 0.05 (See Methods).

Using the DAVID functional annotation tool [8], we
found that the 269 osteocyte-specific genes are signifi-
cantly enriched in several GO terms, which are further
grouped into several functional clusters (Table 1). As
expected, the most significant clusters include GO terms
such as “extracellular region”, “ossification”, “bone
remodelling” and “system development". Interestingly,
our results also showed that osteocytes express many
genes and transcription factors (TFs) known to control
muscle differentiation and contractility. For example,
over 12 myosin-related genes are over-expressed in
osteocytes, as well as several TFs such as myogenin,
Mef2c, and Myf5.

Conserved cis-regulatory elements in osteocyte-specific
genes

To study the transcription regulation of the osteocyte-
specific genes, we combined the 98 genes in the bone-
and muscle-related functional clusters and analyzed the
cis-regulatory elements occurring on their promoters.
Using the web tool Whole Genome Vista (WGV) [9], we
searched for known TF binding motifs that are conserved
between the mouse and human genomes from the 5 kb
promoter sequence upstream to the transcription starting
site for each gene. As expected, many motifs identified
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Table I: Functional annotation clusters.
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Annotation Enrichment score SP_PIR_KEYWORD or # of genes P-value Benjamini corrected
cluster GOTERM p-value
| 12.69 GOTERM_CC: Extracellular region 83 1.6E-18 1.3E-15
SP_PIR_KEYWORD: signal 88 4.3E-18 3.7E-15
2 11.72 GOTERM_BP: ossification 21 5.0E-19 2.6E-15
GOTERM_BP: biomineral formation 21 6.3E-19 1.6E-15
3 10.37 GOTERM_BP: system development 65 5.8E-15 5.0E-12
GOTERM_BP: anatomical structure development 71 7.4E-15 5.4E-12
71
4 6.34 GOTERM_CC: proteinaceous extracellular matrix 22 9.3E-10 | .5E-07
GOTERM_CC: extracellular matrix 22 |.5E-09 2.0E-07
5 5.18 SP_PIR_KEYWORD: muscle protein 12 I.1E-11 3.1E-09
GOTERM_BP: muscle system process 9 2.8E-05 5.0E-03

269 over-expressed in osteocyte cells were input into the DAVID Bioinformatics tool for functional annotation clustering. Sample clusters and their
top two Protein Information Resource (SP_PIR) and GO terms are provided here, with Cluster 2 relating to bone and Cluster 5 relating to muscle.

are known to be related to bone and muscle functions,
including myf2, Ets family, Smad3 sites, and FoxO1/4
cis-elements. Strikingly, 67 of the 98 genes had 10 or
more conserved Mef2 binding sites in their 5 kb
promoter regions. Furthermore, Mef2c is also a direct
target of Mef2 with over 68 conserved binding sites,
suggesting that this gene regulates itself (Table 2).

Modular structure of the transcriptional
regulatory network

In order to identify possible combinatorial affects of TF
binding sites, we created a transcriptional regulatory
network including the 98 over-expressed genes and the
known TF binding sites that are not only conserved
between mouse and human, but are also determined by
WGV to be enriched in some genes (i.e., their number of
appearance on at least one of the 98 genes is statistically
more significant than the rest of the genome). This
increases the reliability of edges, while reducing the
network size to a management size. A total of 153 over-
represented TF motifs were identified for the 98 gene
set. We created a network of these genes and TFs, with
edges between genes and TFs representing an over-

Table 2: Genes with Mef2 sites

representation of that TF's binding site on that gene. We
next applied Qcut [10], a spectral-based graph clustering
algorithm for finding relatively dense subnetworks (aka
communities in social sciences), to this initial regulatory
network (see Methods). By optimizing a statistical score
called the modularity, the Qcut function can determine
by itself the most appropriate number of communities in
the network. We identified 6 communities, each contain-
ing some genes that share a large set of common TF
binding sites (Fig. 1(a)). Cluster 6 shows a strong
community between 16 genes and their common TF
binding sites, which is representative of many TFs
coordinately regulating a small set of genes (Fig. 1(b)).
Cluster 1 shows potential co-regulation of Mef2¢, Myf5
and Irx5 by a common set of TFs (Fig. 1(c)).

A putative model of the transcriptional network

A proposed regulatory network model (Fig. 2) has been
created using our network results and our prior
biological knowledge. The model demonstrates the
regulation of DMP1 and Sost, two genes highly
expressed in osteocytes, by Mef2c and Myogenin. It is
also observed that Mef2c contains a high level of Mef2c
binding sites, suggesting that this gene regulates itself.

Pthrl 20 Myll 20
Mef2a 37 Mylk 20
Myf5 31 Myh9 32
Myoz2 24 Myolb 24

Myh8 22 DIx3 21
Myold 15 Phex 27
Myhl | 13 Mepe 21
Tnnc2 13 Myf2c 68

Example of osteocyte and muscle related genes with high levels of conserved Mef2 binding sites. The number after each gene Symbol is the number of

conserved Mef2 sites.
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Modular structures within the transcriptional
regulatory network. Yellow Triangles are the TFs and
Red Circles are the target genes. (a) Clusters in the 98-gene
and 153-TF network. (b) Cluster 6 contains 16 genes with
a large set of common TF binding sites. (c) Cluster |
showing potential co-regulation of Mef2c, Myf5, Irx5 by

a common set of TF.

These putative models can be used to generate hypoth-
eses for experimental validation. We now have an ex vivo
culture system for pure osteocytes in their proper
microenvironment in which they make appropriate
levels of osteocyte specific genes, and experiments from
this model are currently underway.

Conclusion

In this paper, we introduced a systems biology method
for identifying and analyzing transcriptional regulatory
networks in the osteocyte. We integrated data from
microarray experiments, functional annotations, com-
parative genomics, and graph-theoretic analysis to create
a putative model of the transcriptional regulatory
networks in osteocytes. Many parts of the network can
be confirmed by the literature, and more direct experi-
mental validations are underway. Our model shows that
many osteocyte-specific genes, including two well-
known osteocyte markers DMP1 and Sost, have highly
conserved clustering of muscle-related cis-regulatory
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Model of the potential role of Mef2c, Myogenin, and
Creb family of TF in regulation of Sost and DMPI.
Prostaglandins and Pth can activate the Creb family of TF and
regulate DMPI. DMPI also has several Mef2 site and three
are close to 2 myogenin sites. Myogenin and Mef2 synergize
in activating several muscle related genes and possibly DMPI.
Sost gene 5 kb region may also be regulated by Mef2 TF and
Myogenin in this 5 kb region.

modules, thus supporting the concept that a muscle-
related gene network is important in osteocyte biology
and may play a role in contractility and dynamic
movements of the osteocyte.

Methods

Microarray experimental procedures and analysis

Three independent experiments were carried out with
mice containing the DMP1-GFP transgene that marks
osteocytes by the GFP expression. Following cell separa-
tion utilizing fluorescence activated cell sorting, the RNA
was isolated from the GFP-positive and GFP negative
cells. All experiments showed enrichment of 15 to 50
fold in DMP1 mRNA expression, a measure of osteocyte
enrichment. The experiments with the 50 fold enrich-
ment of osteocytes (GFP-positive) were focused on for
this study with 3 replicate determinations of expression
levels of all genes.

Microarray experiments were conducted using the
Affymetrix 430A mouse chip with over 21,000 probes
set. These raw .cel files are then normalized by GCRMA
using Limma included in the Bioconductor package in R
[7]. In these experiments we used the B statistic with B
values greater than 3 and FDR = .05. We identified the
top 269 genes out of the 21,000 that were differentially
expressed between GFP-positive and GFP-negative cells.

Deriving the 98 gene set related to bone/muscle

The top 269 differentially expressed genes were func-
tionally clustered using the DAVID Bioinformatics tool,
which also provides enrichment scores for each cluster
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[8]. For each GO term associated with a group of genes, a
p-value is computed by the hypergeometric distribution,
and then adjusted for multiple testing using the
Benjamini method [8]. The enrichment score for a
cluster is then calculated as the negative logarithm of
the geometric mean of the individual GO p-values [8].
98 of these 269 genes are functionally enriched in the
skeletal/bone and muscle biology clusters with enrich-
ment scores of 11.72 and 5.18, respectively.

Building the transcriptional regulatory network

The 98 gene set was input into Whole Genome Vista [9]
for discovery of conserved and over-represented TF
binding sites occurring on the 5 kb upstream promoter
sequence upstream to the transcription starting site of a
gene. The motifs found by Vista are known motifs from
the TRANSFAC database [11]. The significance of a motif
found on a gene is determined by a p-value based on the
number of occurrences of the motif in the 5 kb upstream
promoter region of this gene as compared to the total
number of occurrences of the motif in the same 5 kb
region of the rest of the RefSeq genes in the genome. A
potential regulatory network was created from this data
in which an edge between a gene and a TF represents an
over-representation of that TF’s binding site on the gene’s
promoter, as according to WGV.

Detecting network modules

In order to identify modules from the transcriptional
regulatory network, we first assigned a cosine similarity
score to each pair of genes according to their shared TFs.
A weighted gene-gene network was then created in which
an edge weight between two genes corresponds to their
similarity score. This similarity matrix was then con-
verted to a sparse network by connecting each gene to its
k nearest neighbours (k = 7) with a similarity cutoff score
equals 0.5. The network is then partitioned using the
algorithm Qcut [10], resulting in gene sets that have
many common TF binding sites. The regulatory network
was input into Cytoscape [12] for visualization, along
with the gene set partition information.
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