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Abstract

extended simulation study to synthesize results.

importance may result in spurious signals.

Background: Random forests (RF) have been increasingly used in applications such as genome-wide association
and microarray studies where predictor correlation is frequently observed. Recent works on permutation-based
variable importance measures (VIMs) used in RF have come to apparently contradictory conclusions. We present an

Results: In the case when both predictor correlation was present and predictors were associated with the
outcome (Ha), the unconditional RF VIM attributed a higher share of importance to correlated predictors, while
under the null hypothesis that no predictors are associated with the outcome (Hg) the unconditional RF VIM was
unbiased. Conditional VIMs showed a decrease in VIM values for correlated predictors versus the unconditional
VIMs under H, and was unbiased under Hy. Scaled VIMs were clearly biased under Hs and Hj.

Conclusions: Unconditional unscaled VIMs are a computationally tractable choice for large datasets and are
unbiased under the null hypothesis. Whether the observed increased VIMs for correlated predictors may be
considered a “bias” - because they do not directly reflect the coefficients in the generating model - or if it is a
beneficial attribute of these VIMs is dependent on the application. For example, in genetic association studies,
where correlation between markers may help to localize the functionally relevant variant, the increased importance
of correlated predictors may be an advantage. On the other hand, we show examples where this increased

Background

Random forest (RF) [1] and related methods such as
conditional inference forest (CIF) [2] are both tree-
building methods that have been found increasingly suc-
cessful in bioinformatics applications. This is especially
true in statistical genetics, microarray analysis and the
broad and rapidly expanding area of -omics studies.
However, these types of bioinformatics applications
often exhibit complex patterns of within-predictor cor-
relation. Two recent reports have examined the impact
of within-predictor correlation on RF [3,4] and have
arrived at apparently divergent conclusions. Both exam-
ined whether bias in variable selection during tree-build-
ing led to biased variable importance measures (VIMs)
when predictors were correlated. Strobl et al. [3] showed
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larger VIMs for correlated predictors under H, using
CIF was due to the preference of correlated predictors
in early splits of the trees and the particular permuta-
tion scheme employed in the computation of the per-
mutation-based VIM. They proposed a new conditional
permutation-based VIM to circumvent this inflation. In
contrast, Nicodemus and Malley [4] reported that RF
prefers uncorrelated predictors over all splits performed
in building all trees in the forest under Hy and the alter-
native hypothesis Ha (unless the effect size is large, e.g.,
an odds ratio of 5.0) because the splitting rule is based
on the Gini Index. They further reported that, under Hy,
unconditional permutation-based VIMs are unbiased
under within-predictor correlation for both RF and CIF,
although Gini Index-based VIMs in RF are biased. In a
third study, Meng et al. [5] suggest a revised tree-build-
ing algorithm and VIM that suppress the inclusion of
correlated predictors in the same tree. Their findings
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indicate that the stronger the association with the
response, the stronger the effect predictor correlation
has on the performance of RF, which is in accordance
to the findings of [3] and [4] with zero to high effects
on the response respectively. While the identification of
only those predictors associated with the response was
found to be aggravated in the presence of predictor cor-
relation, the identification of sets of predictors both
associated with the response and correlated with other
predictors might be useful, e.g., in genome-wide associa-
tion studies, where strong LD may be present between
physically proximal genetic markers.

To study the reported phenomenon in more detail
and to synthesize the results of the previous studies
[3-5], we conducted a simulation study using a simple
linear model containing twelve predictors as first studied
in [3]. This model contained a set of four strongly cor-
related predictors (r = 0.9) and eight uncorrelated pre-
dictors (r = 0) (Table 1). Three of the four correlated
predictors and three of the eight uncorrelated predictors
had non-zero coefficients. We examined the potential
bias in RF and CIF during variable selection for the first
splitting variable and across all the trees in the forest.
We studied the impact of correlated predictors on the
resulting variable importance measures generated by the
two algorithms, including unscaled, unconditional per-
mutation-based VIMs (RF and CIF), scaled permutation-
based VIMs (RF) and conditional permutation-based
VIMs (CIF).

Results and Discussion

In what follows, the results of RF VIM and estimated
coefficients of bivariate and multiple linear regression
models are compared to the coefficients that were used
to generate the data by means of a multiple linear
regression model. Under the alternative some predictors
were influential with the coefficients reported in the
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methods section. Under the null hypothesis all predic-
tors had a coefficient of zero, but the same block corre-
lation structure.

The results are reported in terms of bias in the statis-
tical sense that an estimator is unbiased if, on average, it
reproduces the coefficient of the original model used for
generating the data, and is biased if it systematically
deviates from the original coefficient. However, a key
point is whether or not machine learning algorithms,
which are by their very nature often nonlinear and non-
parametric, should be expected to approximate the lin-
ear generating model, or if they contain additional
information that may be exploited in the search for
highly influential predictors.

Predictor selection frequencies

Under H,, correlated predictors were selected more fre-
quently at the first split in trees grown with subsets of
three and eight (mtry) randomly preselected predictors
(first column of Figures 1 and 2), as reported in [3].
This was true for both algorithms. When one variable
was selected for splitting (mtry = 1), CIF selected the
four correlated predictors and the three uncorrelated
predictors with non-zero coefficients more frequently
than the uncorrelated predictors with coefficients = 0.
This suggests the p-value splitting criterion in CIF is
more sensitive to predictor association with the outcome
than the Gini Index used by RF when mtry = 1, because
CIF selected the associated predictors (or predictors
strongly correlated with associated predictors) more fre-
quently than RF at both the first split and across all
splits in the forest (first row, Figures 1 and 2).

However, the pattern of selection frequencies using all
splits showed the same pattern as reported in [4] for
both algorithms (second column of Figures 1 and 2).
Uncorrelated strongly-associated predictors (x5 and x)
were selected slightly more frequently across all trees

Table 1 Bias and 95% coverage for full and single predictor models.

Predictor True Member of Full Model: Full Model: Single Model: Single Model:
Value Correlated Group Bias 95% Coverage Bias 95% Coverage

X 5 T 9.16e-04 94.6 6.31 0.0

X2 5 T -6.09%e-04 97.2 6.31 0.0

X3 2 T -0.0014 94.6 9.02 0.0

Xy 0 T 0.0011 96.2 10.81 0.0

X5 -5 F 6.77e-04 96.0 -0.015 94.2

X6 -5 F 2.75e-04 95.2 -0.017 94.2

X7 -2 F -3.90e-04 93.8 -0.0017 95.8

Xg 0 F -5.26e-04 95.8 0.0050 934

Xo 0 F 1.86e-04 94.6 -0.012 94.6

X10 0 F 247e-04 94.4 0.012 95.8

X171 0 F -3.60e-04 952 0.0096 944

X12 0 F -3.56e-06 95.8 0.0040 95.8
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Figure 1 Histograms of selection frequencies using random forest. First row: number of variables selected at each split (mtry) = 1, 2" row.
mtry = 3, 3" row: mtry = 8. First column shows the first split selection frequencies and 2" column shows the selection frequencies across all
trees in all forests.

when the pool of potential predictor variables (mtry)
was set to greater than one because of competition
between correlated predictors for selection into a tree
(second and third rows, second column, Figures 1 and
2). Differences from results in [3] are due to different
choices in tuning parameters regulating the depth of
trees, as further discussed below.

As the number of variables to select from for splitting
increased (i.e., as mtry went from 3 to 8) this preference
for uncorrelated predictors was stronger, because the

likelihood of more than one correlated predictor being
in the pool of available predictors to choose from was
greater. Further, we observed this same preference for
uncorrelated predictors in the first split and across all
splits in the tree under Hy for both algorithms (Addi-
tional files 1 and 2). In summary, the preference for cor-
related variables as the first splitting predictor was only
induced when the correlated predictors were associated
with the outcome. In the next section we explain why
this phenomenon was observed here and in [3].
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As previously reported [3], we found both algorithms
showed increased selection of x,, which had a coefficient
of 0 in the generating model, versus the uncorrelated
predictors with coefficients of 0 (xg... x;5). Here we give
a more detailed illustration and explanation of this
effect. Tree-building uses predictors sequentially in each
tree and single predictors that are strongly correlated
with the outcome are more likely to be selected at the
first split. Statistically speaking, in the first split of each
tree the split criterion is a measure of the bivariate effect
of each predictor on the response, or of the marginal
correlation between that predictor and the response. In
the case of predictors that are strongly correlated with
influential predictors, this univariate or marginal effect

is almost as strong as that of the originally influential
predictor. In this case, as we show in detail, even though
the predictor x, has a coefficient of 0 in the generating
model, the correlation between x, and the outcome is
~0.79 because of the correlation between x, and the
correlated predictors (x;, x5, and x3) which have non-
zero coefficients.

Thus, not only the first split of a tree, but also a
bivariate linear regression model indicated that predic-
tors that were strongly correlated with an influential
predictor - and can thus serve as a proxy for it - is pre-
dictive of the response. For example, within the context
of a genetic association study, let us suppose there are
two SNPs: SNP1 and SNP2. SNP 1 is the true causal
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variant associated with the outcome, which may be dis-
ease status or another phenotype, and SNP2 is in link-
age disequilibrium with SNP1. In this example, because
SNP 1 and SNP 2 are correlated with each other, either
predictor, considered on its own, may look associated
with the outcome.

The fact that in the first split feature selection was
only bivariate or marginal is native to tree-building and
is not related to properties of the data generating
model. However, in the case of linear models it is parti-
cularly intuitive that single features can be highly pre-
dictive when considered in isolation, even when they
appear with small or zero weights in the underlying
models having many predictors. Therefore, linear mod-
els are used both as the data generating process and as
a means of illustration here.

Bias, 95% coverage and correlation between predictors
and outcome under Hy and Hp

RF and CIF consider predictors one at a time during
tree-building. In particular, the model is a simple bivari-
ate model at the first split containing the outcome and a
single predictor. To better understand the preference for
correlated predictors at the first split, we examined the
bias, 95% coverage and correlation between the outcome
and predictors using the full twelve-predictor model and
twelve single-predictor (bivariate) regression models. We
also calculated the true (i.e., mathematically-derived
from the generating model equation) values of the coef-
ficients and true correlations for bivariate models for
each of the predictors and compared those values to the
mean value of the bivariate coefficients and correlations
observed in our simulations. We further considered a
model retaining the same correlation structure but
where all coefficients were set to 0 (Hy).

As expected, when using the full (twelve predictor)
linear regression model under H,, bias was small and
centred around 0 (Table 1), indicating that the linear
regression model can reproduce the original coefficients
despite the high correlation, as expected since the gen-
erating model was linear. Ninety-five percent coverage
ranged from 93.8% to 97.2%, and was centred around
95% for all predictors (Table 1). However, in the single
predictor (or bivariate) regression models, bias was large
for correlated predictors, ranging from 6.31 to 10.81
higher than the true value from the generating model
(Table 1). The 95% coverage for all four correlated pre-
dictors was 0 (Table 1). This effect is known in statistics
as a “spurious correlation” where a correlated predictor
serves as a proxy and appears to be influential as long
as the originally influential predictor is not included in
the model. For uncorrelated predictors, the magnitude
of the bias ranged from 0.0017 to 0.017 and the cover-
age ranged around the expected 95%.
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These results are helpful to understand the preference
for correlated variables at the first split in trees. At the
first split, RF and CIF are simply a bivariate model con-
taining the outcome and one predictor. As illustrated by
means of the bivariate regression models, from this
bivariate or marginal point of view the correlated pre-
dictors are actually more strongly associated with the
outcome than the uncorrelated predictors. This explains
why they were preferred at the first split, which we illus-
trate further below.

Another way to assess the first split preference of RF/
CIF for the correlated predictors - especially for the cor-
related predictor which had a 0 coefficient in the gener-
ating model (x,) - is to calculate the mean bivariate or
marginal correlation coefficient between each predictor
and the outcome compared with the true value (Table
2). This showed again that, from the bivariate or mar-
ginal point of view, the correlated predictors (x; - x4)
were much more strongly correlated with the outcome
(r ~ 0.80) than the uncorrelated predictors with -5 coef-
ficients (x5 and x4; r = -0.36) or the uncorrelated predic-
tor with -2 coefficient (x,; r = -0.15). The observed
values from our simulations were virtually identical to
the true values, as expected. In addition, we calculated
the true value of each coefficient using a single variable
model and compared this value with the mean observed
value from our simulations. These two values were also
nearly identical (Table 2).

Under Hy, the magnitude of the bias for correlated
predictors in the full model ranged from 0.00039 to
0.0015 and was similar in the single variable models. For
uncorrelated predictors the magnitudes were also simi-
lar, and 95% coverage was appropriate for all predictors
(see Additional file 3). Since the generating model did
not contain an intercept, we re-calculated bias and 95%

Table 2 True and observed values for single predictor
model coefficients and correlations with outcome.

Predictor True Mean True Mean
Bivariate Model Observed r(x;  Observed r(x;
B Bivariate y) y)

model B

X; 11.30 11.31 082 082

X5 11.30 1131 082 082

X3 11.00 11.02 080 080

Xy 10.80 10.81 078 079

Xs -50 -5.02 -036  -0.36

Xs -50 -5.02 -036 -036

X7 -20 -2.002 -0.15  -015

Xg 0.0 0.002 0.0 -3.6E-04

Xo 0.0 0.005 0.0 -84E-04

X0 0.0 -0.012 0.0 -8.7E-04

X717 0.0 0.01 0.0 7.3E-04

X12 0.0 0.004 0.0 2.9E-04
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coverage using an intercept-free model which revealed
similar results (Table 1 and Additional file 4).

Unconditional and unscaled RF variable importance
measures

Unscaled VIMs for RF under H, using one variable to
select from at each split (mtry = 1) showed behaviour
intermediate to the bivariate models and the full
regression model shown in the above section (Figure 3,
column 1). Larger VIMs were observed for the corre-
lated variables versus uncorrelated predictors, regard-
less of generating model coefficient, as in [3]. The
correlated predictors with the largest - coefficients (x;,
x,) showed larger VIMs than correlated predictors
with coefficients of 2 (x3) or 0 (x,), but the latter
showed higher VIMs than uncorrelated predictors with
the same coefficients.

As the number of variables to select from at each split
increased (mtry increased from 3 to 8), the VIMs for
the correlated predictors approached the coefficients in
the generating model (Figure 3, column 1). In other
words, the VIMs for the correlated predictors with 2 or
0 coefficients (x3, x,) were reduced relative to those with
larger coefficients (x;, x5, x5 and x4) regardless of corre-
lation. This is particularly true when eight variables
were randomly selected at each split. The VIMs for the
correlated predictors were often larger than those for
the uncorrelated due to the stronger association
between correlated variables and outcome when only a
single correlated predictor is considered. As we showed
above, this is often the case, because they are most
often selected at the first split, as in [3].

To ascertain whether RF unconditional unscaled per-
mutation-based VIMs were biased under predictor cor-
relation under Hy, we conducted the same analysis
under Hy (Figure 3, column 2). This is an important
aspect because a bias under the null hypothesis would
mean that one would be mislead to consider some pre-
dictors that are correlated as influential, even if all pre-
dictors were random noise variables. We observed a
negligible inflation in VIMs for the correlated predictors
of approximately 0.014. This inflation was relatively
invariant to the number of splitting variables used.

Unconditional scaled RF variable importance measures
As previously shown [6], in the regression case the RF
scaled variable importance measures grew larger with the
number of trees grown (data not shown). In addition, we
show here that they were also sensitive to predictor cor-
relation (Figure 4). Under Hu, VIMs for the uncorrelated
but strongly-associated predictors (xs and x4) were the
largest because these variables were selected more fre-
quently, thus their empirical standard error was smaller.
The scaled VIMs were calculated using:
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observed VIM / standard error (VIM )

for each VIM. Under H,, the scaled VIMs for the cor-
related predictors are inflated relative to the uncorre-
lated predictors, which was due to the fact that the
unscaled correlated predictors are always non-negative
(Figure 3). Thus, the magnitude of the scaled predictors
was dependent on the size of the forest [6,7] and the
correlation between predictors.

Unconditional unscaled CIF variable importance measures
For CIF, unconditional VIMs under Hy were very
similar to those obtained using the unscaled VIM in
RF (Figure 5; compare with Figure 3). Indeed, the
rankings of the importance measures did not differ
between the two algorithms under any value of mtry.
Even the magnitude of the VIMs was similar between
the two algorithms when using three or eight variables
for splitting. In other words, under Hj,, the values of
the unconditional VIMs from both algorithms reflected
an intermediate step between single predictor linear
regression models and the full twelve-predictor linear
regression model, with the values for the correlated
associated variables larger than for the uncorrelated
associated ones.

Under Hy, CIF showed an even smaller bias in infla-
tion of VIMs for the correlated variables. The median
difference between the VIMs for correlated versus
uncorrelated variables when selecting from three predic-
tors to split on at each node was 6.54-10"° and with
eight predictors it was 4.75-10"%. Therefore, we did not
observe substantial bias in unconditional permutation-
based VIMs for either algorithm under H,.

Conditional unscaled CIF variable importance measures

Using the conditional VIM from CIF and randomly
selecting a single variable to split on at each node (mtry
= 1) we observed a similar pattern to the unscaled
unconditional VIMs from both CIF and RF (Figure 6).
When the number of variables to randomly split on was
larger (mtry = 3 or 8) we observed an inflation in the
median VIMs for the uncorrelated strongly-associated
variables (xs, x¢) relative to those observed for the corre-
lated variables that were strongly-associated (x;, x5). The
inflation in the median VIMs for the uncorrelated
strongly-associated variables (x5, x¢) is contrary to the
inflation found for the correlated strongly-associated
variables (x;, x,) for the unconditional unscaled VIMs.
However, neither pattern is consistent with the full gen-
erating model. It should be noted that the variability of
the conditional VIMs for the uncorrelated strongly-asso-
ciated variables (xs, x4) is very high (Figure 6), so that
the inflation is less pronounced than for the correlated
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strongly-associated variables (x;, x,) using the uncondi-
tional VIMs. This increased variability, which was not
found in [3], may be attributable to the use of larger
trees in the present study and is currently the topic of
further research. Under H,, the conditional VIMs
showed a negligible bias similar to the unconditional
permutation-based variable importance measure from
CIF: with mtry = 3 it was 3.78.10” and with mtry = 8 it
was 1.52:10™

Conclusions

Both algorithms, RF and CIF, more frequently selected
correlated predictors at the first split in the tree, as pre-
viously reported [3]. As we showed, these predictors
were more strongly associated at the bivariate or first-
split level than the uncorrelated predictors associated
with the outcome (here, x5 - x,). Across all splits in the
forest under Hy, CIF and RF showed variable selection
frequencies relatively proportional to the effect size of
the predictors. However, we observed a slight preference
for selection of uncorrelated predictors as shown in [4],
and this was true under both H, and H,,.

Unscaled permutation-based VIMs were found to
reflect an intermediate step between the bivariate and
multivariate linear regression model coefficients. We did
observe a very slight inflation in these VIMs for corre-
lated variables under H,. However, the difference
between the median VIM for correlated versus uncorre-
lated predictors was less than 0.014. These results high-
light the importance of using Monte Carlo simulation to
assess the size of observed VIMs relative to those
obtained under Hy in applied studies. Further, the selec-
tion of the numbers of variables to randomly use at
each split (mtry) should be empirically assessed when
correlation between predictors is present, as we show
that a large value can lead to inflation for the correlated
predictors using unconditional VIMs (Figures 3 and 5)
whereas the opposite was observed for the conditional
VIMs (Figure 6).

Our results regarding the scaled VIM from RF agree
with those of [6], who recommended the use of the
unscaled VIM for regression. We also found the scaled
VIM was dependent on forest size [6,7] and, as shown
here, also dependent on predictor correlation. This was
the only VIM showing substantial bias under Ho.

The conditional VIM from CIF appeared to inflate the
uncorrelated, strongly-associated (x5 and x4) predictor esti-
mates of importance (both the median values and in the
variability) relative to that of the correlated, strongly-asso-
ciated predictors (x; and x,). However, we found it, at pre-
sent, computationally intractable for large datasets: we
calculated the other VIMs on the full set of observations
(n = 2,000) whereas we were only able to calculate the
conditional VIM on a subset (n = 500) of observations.
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One of the key aims of the study was whether the ori-
ginal RF VIM, whose behaviour in the presence of cor-
relation is situated between that of bivariate and
multivariate regression models, may be preferable to the
conditional VIM, whose behaviour is situated closer to
that of multiple regression models. The latter may be
preferable in small studies where the aim is to uncover
spurious correlations and identify a set of truly influen-
tial predictors among a set of correlated ones. However,
in large-scale screening studies, such as genome wide
association studies, the original RF VIM may be better
suited to identify regions of markers containing influen-
tial predictors, because in this case correlation is usually
a consequence of physical proximity of loci and thus
may help localise causal variants. Since RF and CIF are
nonlinear and nonparametric methods they may not be
expected to exactly reproduce inferences drawn from
linear regression models. In fact, we would argue that
these algorithms may provide a more effective first stage
information-gathering scheme than a traditional regres-
sion model. This would be especially true as the number
of predictors increase, such as in the current era of gen-
ome-wide association studies or microarray studies [8].

Methods

We investigated the behaviour of RF/CIF under predic-
tor correlation using the same model studied in [3],
which was of the form:

y=5(x)+5(x)+2() +0(x4) - 5(x5)
+0(x9)+0(x19)+0(xp,)+0(xp,)+¢

All predictor variables were ~N(0,1) and ¢ ~N(0, 0.5).
As in the original model [3], our generating model con-
tained no intercept. The first 4 predictors (x;... x;) were
block correlated at 0.9 and all other predictors were
uncorrelated with the correlated predictors and one
another. Predictor variables were simulated using the R
package mvtnorm version 0.9-5, and MLAs were per-
formed using the R packages randomForest version 4.5-
25 [9] and party version 0.9-996. All additional analyses
and simulations were conducted using R version 2.7.0
[10]. We simulated 2,000 observations per 500 replicates
for all conditions and constructed forests containing
5,000 trees. Because of the computational burden in
CIF, we adopted the approach of Strobl et al. [3] and
calculated the conditional variable importance measure
using a forest size of 500 trees and a randomly selected
subset of 500 observations from each replicate.

The VIMs evaluated were all permutation-based. In
RF and CIF, the unconditional VIM is calculated as the
difference in mean square error (MSE) on the out-of-
bag data and the MSE, also using the out-of-bag data,
calculated after permuting observed values for a
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predictor. The differences between these two quantities
are averaged across all the trees in the forest for a parti-
cular predictor. RF provides a scaled VIM where the
scaling function used was:

observed VIM/empirical standard error (VIM).

The conditional VIM in CIF differs from the uncondi-
tional VIM by permuting one predictor within strata of
sets of predictors that are correlated with that predictor
[3]. RF and CIF used subsampling of 63.2% of the obser-
vations, and used a randomly-selected subset of variables
for splitting (mtry) set to 1, 3 and 8 to be consistent with
[3]. The minimum node size for both algorithms was set
to 20, as small terminal node sizes are more sensitive to
correlations between predictors [4].

We compared the frequency of variable selection in
RF and CIF for both the first split and across all splits
in the forest. We computed bias and 95% coverage
using linear regression models for the full model con-
taining all 12 predictors and additionally for models
containing one predictor at a time. Because the generat-
ing model did not include an intercept, we calculated
bias and 95% coverage using a model containing an
intercept, and a model where the intercept was forced
through the origin. Bias was calculated as the mean dif-
ference between the estimated coefficients for a particu-
lar predictor and the true value. Coverage was
calculated as the total number of 95% confidence inter-
vals for the estimated coefficients from the linear regres-
sion model that contained the true value, thus should be
in the range of 95%. Correlation between individual pre-
dictors and outcome was calculated using Pearson’s cor-
relation coefficient. Calculating true values of the
correlation between the outcome y and the predictors in
the single-predictor models begins by letting

m=Vb

where V is the correlation matrix of the predictors
and b is the vector of coefficients for each variable [11].
Then, the true correlations are found from

cor(y,x)=m/var(y)l/2
where

var(y)=b'm+1/2.
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