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Abstract

Background: Combining data from different ethnic populations in a study can increase efficacy of methods
designed to identify expression quantitative trait loci (eQTL) compared to analyzing each population
independently. In such studies, however, the genetic diversity of minor allele frequencies among populations has
rarely been taken into account. Due to the fact that allele frequency diversity and population-level expression
differences are present in populations, a consensus regarding the optimal statistical approach for analysis of eQTL
in data combining different populations remains inconclusive.

Results: In this report, we explored the applicability of a constrained two-way model to identify eQTL for
combined ethnic data that might contain genetic diversity among ethnic populations. In addition, gene expression
differences resulted from ethnic allele frequency diversity between populations were directly estimated and
analyzed by the constrained two-way model. Through simulation, we investigated effects of genetic diversity on
eQTL identification by examining gene expression data pooled from normal quantile transformation of each
population. Using the constrained two-way model to reanalyze data from Caucasians and Asian individuals
available from HapMap, a large number of eQTL were identified with similar genetic effects on the gene
expression levels in these two populations. Furthermore, 19 single nucleotide polymorphisms with inter-population
differences with respect to both genotype frequency and gene expression levels directed by genotypes were
identified and reflected a clear distinction between Caucasians and Asian individuals.

Conclusions: This study illustrates the influence of minor allele frequencies on common eQTL identification using
either separate or combined population data. Our findings are important for future eQTL studies in which different
datasets are combined to increase the power of eQTL identification.

Background

Several microarray platforms and various statistical
methods have been applied in a large number of asso-
ciation studies to identify candidate genes with causative
potential. However, only a few studies have provided
insight into the functional variant(s) or mechanism(s)
underlying these diseases. Single nucleotide polymorph-
isms (SNPs) are the most common genetic inter-indivi-
dual differences in the human genome, and through
various mechanisms, they can alter the amount of
mRNA produced [1]. When individuals are subjected to
both DNA sequence polymorphism array genotyping
and microarray-based gene expression (GE) profiling,
genome-wide joint analysis for identification of
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expression quantitative trait loci (eQTL) becomes feasi-
ble [2]. Several recent investigations have surveyed
eQTL using human lymphoblastoid cell lines derived
from healthy individuals in single or multiple ethnic
populations to generate global regulatory networks in
humans [3-7]. In addition, eQTL may have an impact
on complex diseases and clinical phenotypes such as
obesity and diabetes [8-10].

Data collection for eQTL studies is two dimensional.
One dimension examines gene expression levels, which
are believed to contribute to phenotypic differences
between individuals [11]. The second dimension exam-
ines SNP genotypes in which variation in a given popu-
lation is correlated with disease; most of these variations
underlying complex traits are found in regulatory ele-
ments of the genome [12]. Therefore, understanding the
relationships between transcript abundance and specific
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genomic markers will likely uncover the molecular basis
of phenotypic diversity and improve interpretation of
patterns of expression variation in disease [13-15].

Recent studies of HapMap populations have identified
numerous eQTL [5-7,16]. However, only a fraction of
these eQTL is reproducible across populations; diversity
of SNP density between populations represents one
probable explanation for the lack of reproducibility [17].
Combining samples across populations may increase
sample size and enhance both genetic dissimilarity and
the range of variation of GE, thereby increase the statis-
tical significance of identified eQTL [18-20].

Spielman et al. (2007) used an independent approach
in which gene expression levels were regressed on SNP
genotypes for unrelated CEU (Utah pedigrees of the
Centre d’Etude du Polymorphisme Humain), and CHB
+ JPT (Han Chinese in Beijing and Japanese in Tokyo)
samples [5]. Common eQTL were identified when the
SNP-GE association was significant in both populations
[5]. This procedure may only afford limited detection of
common eQTL because the two tests are carried out
simultaneously. To increase detection, Stranger et al.
(2007) combined the data among populations and used
conditional permutations to assess the significance of
the SNP-GE associations [17]. Although conditional per-
mutation can be used to manage inflation of the associa-
tion p-value that is generated from population-level
difference, SNP-GE associations in the combining data
require appropriate adjustments for possible dissimilar
population structure in the model. Veyrieras et al.
(2008) combined samples from several populations
using the normal Quantile Transformation (QT) method
to avoid spurious eQTLs arising from differences in
population structure [21]. Unfortunately, this technique
may alter SNP-GE associations and mislead conclusions
because expression values in each population are forced
to have the same distribution. For instance, when gene
expression is directly and additively modified by a bialle-
lic SNP (e.g., A, G), those individuals homozygous for
the G allele will have high expression levels in compari-
son with those homozygous for the A allele. If a popula-
tion has a higher frequency of genotype AA, then the
mean expression level of individuals with genotype AA
will approach zero after normal quantile transformation.
Similarly, if the other population has a higher frequency
of genotype GG, the mean expression level of indivi-
duals carrying the genotype will also move toward zero.
Therefore, the SNP effect will be diminished if the ana-
lysis combines the transformed expression values to
examine SNP-GE associations. Indeed, the mean expres-
sion differences between genotypes will be minimized
owing to differences in allele frequency. Although many
studies have focused on multi-marker analyses, hot spot
identification, and type I errors, the most suitable
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statistical method for microarray-based eQTL studies
comprised of data from more than one population
remains unclear.

To address this question, we employ the meta-analysis
concept [22], a statistical implementation to synthesize
and integrate information across a number of indepen-
dent studies to estimate the associations between geno-
type and GE of a sample containing two populations.
Meta-analysis detects modest associations and has been
used extensively in genome-wide association studies
(GWAS) [23]. In the present study, we use a constrained
two-way model (CTWM), in which different populations
and different genotypes represent the two-way variables,
to jointly assess SNP-GE associations in individuals
from two populations. This model assumes that the
mechanisms of SNP regulation of GE are similar and
allows for heterogeneous non-genetic effects on expres-
sion between populations. The word “constrained” refers
to the constraint that there is no interaction between
the two variables in the CTWM. In other words, the
SNP effect sizes on GE in populations would be
regarded as identical in the CTWM. In addition, we
extend the CTWM to divide ethnic GE differences into
two parts. The first part represents baseline expression
differences, which can be affected by non-genetic factors
such as different environmental conditions across popu-
lations, and is termed baseline difference (BD). The sec-
ond part represents quantification of GE differences
between populations resulting from genotype frequency
differences (genetic), and is termed genetic score (GS).
This allows us to examine whether differentially
expressed genes between populations are caused by
genetic markers or non-genetic factors. This information
is unattainable if associations between SNPs and GE are
estimated separately for each population.

In the following sections, we briefly describe how
common eQTL are identified between two populations
using the independent group (IG) method, in which two
one-way ANOVA are performed independently. Then,
we describe the CTWM for combining two independent
unbalanced one-way models to identify eQTL. Using
this model, the magnitude of GE differences between
populations resulting from genotype frequency diversity
can be directly estimated. Furthermore, we use the GS
obtained from CTWM to identify putative functional
SNPs, and is termed CTWM-GS method. In the simula-
tion study, we control allele frequency differences
between populations to compare the power of different
methods for identifying eQTL. Finally, we apply our
method to some authentic datasets to identify gene reg-
ulation mechanisms, examine the assumptions of homo-
geneous regulation mechanisms, and identify additive
inheritance patterns and SNPs that induce GE differ-
ences between CEU and Asian (CHB + JPT) cohorts.
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Methods

In the present study, we use conventional gene-base
mapping, such as the common technique of mapping
eQTL to determine gene expression traits one gene at a
time. Consider n unrelated individuals observed
from two different ethnic populations, i = 0, 1. Log,-
transformed gene expression values for the kth replica-
tion on the jth genotype in the ith population, denoted
by y;x (where i = 0, 1; j = 0, 1, 2, representing the num-
ber of minor alleles carried; k = 1,...,n5 X; n;; = n;) are
used to reduce the impact of outliers and to ensure
normality. The gene expression values, y; (for k = 1,...,
n;), are assumed to be independently distributed as
N(us;, c?). Although the additive model has been
frequently used in eQTL studies, many variations in
transcription levels cannot be explained by this model
[24,25]. In comparison, co-dominant genetic models, in
which three genotype effects are estimated, have good
overall performance for identification of any simple
inheritance patterns in QTL mapping [26], and is there-
fore being employed in the following analysis.

The independent group (IG) method

Because of possible heterogeneity between populations,
many studies analyze SNP-GE associations independently
for each ethnic population and summarize their results to
identify common eQTL [5,6,27,28]. Without loss of gener-
ality, we assume that three genotypes are observed for a
biallelic SNP in each population. In addition, we assign a
common genotype ¢ (where ¢ = argmax; _ o, 1,2 I1; _ ¢ 1
Py, and Pj; is the proportion of individuals carrying
genotype j in the ith population) between populations.

The cell mean model has been used extensively for
unbalanced data in which the number of observations
varies from one genotype to another. Based on the cell
means, within the ith population, the #; signals in a
given gene are decomposed into:

Yiik = Hij + eijr, where p;; is the cell mean, and e is
assumed to be independently distributed as N(0, o). If
the common genotype c is assumed to be 0, this model
can be rewritten using another parameterization as y; =
Hio + T; + ey, where i is the expression baseline in the
ith population; z;; = p;; - 4,0 when j = 0, which repre-
sents the GE difference between individuals with geno-
type j and genotype 0. This reparameterization model is
used in the subsequent analysis.

The goal of the IG analysis is to test the null hypoth-
esis Hy: 7;; = 7o = 0 in each population. It is straightfor-
ward to observe maximum likelihood estimators
through a normal equation. The estimators of y;o and 7;;
are Vo, and Vi = Vioe,

where )71.].. = ZZjl Vi / Niis and the F-statistic calcu-
lated from ANOVA can be used to test the null
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hypothesis. In the IG analysis, the parameters are esti-
mated separately in each population. This approach is free
of model assumption and allows for heterogeneity of SNP
effects (z;;) between populations. A common eQT locus is
then identified if the two hypotheses Hy: 791 = 7o, = 0 and
Hy: 711 = 715 = 0 are simultaneously rejected.

The QT method

Although the power of eQTL identification is influenced
by the magnitude of the SNP effect on gene expression, it
is clear that magnitude of test statistics may vary as a
function of sample size and allele frequency, even if the
SNP effects in the two populations are identical. On the
other hand, merging data set with proper adjustment
before statistical testing may enrich data variation and is
more effective for detection of common eQTLs com-
pared with the previous method. To avoid spurious
eQTLs in the data combined from multiple populations
due to population structure, Veyrieras et al. (2008)
applied a normal quantile transformation (QT) to each
gene, within each population before combining data [21]
(for details, see additional file 1: Supplementary material).

The constrained two-way model (CTWM) method

We use a CTWM strategy to identify common eQTLs
between populations. Because the results from the IG
method are to be compared with those obtained from
combined data, we consider ¢ = 0 as the baseline geno-
type, and individuals with the common genotype (j = 0)
in each population are assigned a different GE mean
value, y;o for i = 0, 1, to allow for heterogeneity of GE
baseline. We assume homogeneity of SNP regulatory
mechanisms across ethnicity by defining E(y;ix - yio0) = 7.;
forallj =1, 2 and i = 0, 1. Consequently, the # (where
n = ny + n;) signals can be expressed as y; = pjo + 7.; +
e;j, where the e;;’s are assumed to be independently
distributed as N(0, 6?). Because the two independent
unbalanced one-way models in the IG approach are com-
bined into a CTWM, the analysis of SNP-GE associations
can be performed by testing the null hypothesis Hy: 7.; =
7., = 0 using the partial F-statistic:

’ -1

5 mey—Lps 5
F_(B@)[B(XX) B} 39/7, where B is in the
- SSE/v
0010
0001

X is the design matrix, SSE represents the error sum of
squares, and v represents the degree of freedom for the
SSE (for details, see additional file 1: Supplementary
material).

matrix form { ] q is the rank of the matrix B,

The CTWM-GS method
The ultimate goal in the present genetic genomic study,
which incorporates data based on two phenotypes, is to
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identify not only the association between SNPs and GE
but also the relationship between SNPs and phenotypes.
In general, investigators aim to identify SNPs that are
associated with particular GE profiles and discern
whether the difference of allelic frequency of a particular
SNP induces a gene expression difference between
populations, termed eSNP [29]. Using the CTWM
described above, the gene expression differences
between populations can be directly partitioned into two
parts (genetic differences, i.e., GS, and non-genetic dif-
ferences, i.e., BD) and independently tested.

BD, by previous definition, is the GE baseline differ-
ence between populations that could be parameterized
as poo - H10- Similarly, GS, which is the GE difference
resulted by the genotype frequency differences between
two populations could be represented as (Py; - P1;) 7.1
+ (Po2 - P13) 1.5. We solve the normal equation of the
CTWM by maximum likelihood estimation and express
the estimators using the cell mean (see additional file 1:
Supplementary material). Consequently, the estimators
of GS and BD can be expressed as follows:

BD :/300_/310
2

=2 M]( Yoj —Vij )HAL cd
j=0 1#]

CS=(P01 P11)€'-1 (Poz PIZ)T-Z

2
where M; = no; n; A; = no; + ny; cd = z MiH Al
j=0 t#j
s = {0,1}\{i}, which means s is an element in {0,1} but
not in {i}, and r = {0,1,2}\{ j, t}, which means r is an ele-
ment in {0,1,2} but not in {j, t}.

These two estimators indicate that BD and GS are
invariant with respect to the baseline genotype chosen,
since they are free of index j. Because we observe a
unique solution for both BD and GS, these estimates
can be tested using the null hypotheses Hy: poo = #10
and Hy: (Po; - Pyq) 7.1 + (Poy - P1a) 7. = 0 via the partial
F-statistic described in the CTWM method with B =
(1, - 1, 0, 0) when testing BD and B = (0, 0, (Py; - P11),
(Poy - P13))when testing GS, respectively. If the null
hypothesis for GS is rejected, then the SNP-GE associa-
tion will be claimed as an eSNP.

In addition, these two quantities can be represented as
two non-overlapping scores and separated from the
arithmetic mean difference between populations as
below:
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Voos — V1ee = BD + GS
=( figo = f1o )+( (Por=Pi1) T +(Por = Pry) Ty )/

h ¥ 2 : 2 n”
where Y, = i /1
YVieo j=0 k=1 yuk ie

Simulations

To demonstrate the performance of the models for
common eQTL identification, we carried out simula-
tions using varied parameters consisting of allele fre-
quency of population 0 (Py), baseline (D) and allele
frequency (d) differences between two populations and
the magnitude of the SNP effect on GE (E). In these
simulations, we compared both the Type I error rate
and power of eQTL identification among three different
common eQTL identification methods including IG,
CTWM and QT. An additional CTWM-GS in identify-
ing eSNPs was compared for various allele frequency
differences. We further examined the precision and
accuracy of the estimates (z,;) for the CTWM and QT
method, and BD and GS for the CTWM-GS. In scenario
1, gene expression data were simulated with differential
expression resulting only from allele frequency differ-
ences between two populations. In scenario 2, the simu-
lation was performed with differential expression
resulting from both population-level and genetic-level
differences to determine whether genetic factors can be
examined independent of non-genetic factors (for
details, see additional file 1: Supplementary material).

Ethnic population data: HapMap

To validate the performance of eQTL identification
models for GWAS data, we reanalyzed the gene expres-
sion dataset from Gene Expression Omnibus (GSE6536)
using 60 unrelated CEU and 90 CHB + JPT individuals.
Recent studies have demonstrated that probe sequences
including SNPs would influence the hybridization on
microarrays and cause false cis eQTL [30]. The rationale
for this effect is that the mRNA with an identical
sequence as the probe designed would hybridize better.
To avoid false positives of such eQTL, the subset of
14,456 expression traits excluding probes that had poly-
morphisms in the probe-target sequence, as was
reported in Stranger et al.’s study [17], was thus used in
the analysis. Remapping of traits was performed using
Bioconductor software [31] with the illuminaHumanvl.
db package [32]; 4,259 expression traits lost their chro-
mosome position information and were excluded in the
subsequent analysis. The corresponding Affymetrix 500
K genotype expression data were downloaded from the
Affymetrix website http://www.affymetrix.com and SNP
genotypes of each individual were called based on the
Affymetrix BRLMM algorithm. The established
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imputation method ‘beagle’ was used to impute missing
genotypes [33].

For each expression trait, SNP-GE associations were
examined by each of the IG, CTWM and CTWM-GS
methods, provided that both the SNP and the gene were
on the same chromosome. Our previous results showed
that the QT method was highly influenced by allele fre-
quency differences between populations, the compari-
sons between the QT method and others would thus be
difficult to interpret. Therefore the QT method was not
included in the subsequent real data analysis. In the fol-
lowing analysis, a conservative threshold with a p-value
< 10 was used to identify the eQT locus for each trait.
This threshold yielded a false discovery rate (FDR) [34]
of 0.85% and 1% for the CTWM and the CTWM-GS
method, respectively, when 10,197 expression traits were
analyzed. For expression traits having more than one
significant eQT locus, the SNP with the smallest asso-
ciation p-value was selected as the putative eQT locus.
In the following analysis, local is defined as the segment
of the chromosome spanning from 100 kb upstream to
100 kb downstream of the gene sequence of interest,
and distant is defined as the region outside of local on
the same chromosome.

For significant eQTL identified by the CTWM, full-
and reduced-model strategies were performed to evalu-
ate the heterogeneous expression baseline, homogeneous
SNP effects between populations, and the assumption of
non-additive. After examining the applicability of the
CTWM, we used the CTWM-GS method to investigate
whether differential gene expression between popula-
tions is affected by genetic or non-genetic factors.
Furthermore, we evaluated the contributions of func-
tional SNPs identified by the CTWM-GS method, to GE
differences between the CEU and Asian cohorts using
the hierarchical clustering method. The analyses were
performed on the R package http://www.r-project.org.

Results

Simulations: Comparing the probabilities of rejecting

null hypotheses

We compared the observed Type I error rate (¢g)
among three eQTL identification methods (IG, QT,
CTWM) with different d values by setting E equal to
zero (Figure 1A). Because two tests are carried out
simultaneously in the IG method, it comes as no sur-
prise that this method yielded the lowest ¢ for each
simulation. At a fixed Type I error rate of 0.05, ¢ for
the QT method conforms to this restriction only in the
case of d = 0 (Figure 1A, d = 0). For other cases, ¢ of
the QT method was affected by the allele frequency dif-
ference between populations; e.g., ¢ decreased as the d
value increased under the same P, (Figure 1A, d = 0.1
and 0.2). For both d = 0.1 and 0.2, the lowest error rate

Page 5 of 15

was observed when P, was less than 0.05. This impli-
cates that QT method is unsatisfactory when simulating
SNPs that are polymorphic only in one population. In
contrast, using the CTWM, g was stable for all cases
simulated.

For the CTWM-GS method, which incorporated allele
frequency differences between populations to identify
eSNPs, ¢ was stable for all cases simulated except for
the case of d = 0 (Figure 2, E = 0). Because for each
SNP simulated, the genotype frequencies were assumed
to follow Hardy-Weinberg Equilibrium, it was possible
that simulated genotype frequency differences drifted a
bit away from zero even with a fixed d = 0. If the geno-
type frequency differences were to be fixed at zero, the
estimates of GS would equal to zero and § of the
CTWM-GS method would therefore equal to zero
simultaneously.

The following describes simulations in which differ-
ential gene expression was allowed only as a result of
allele frequency differences between two populations.
For all methods, we compared the power of eQTL
identification with E equal to 0.3 and 0.5 and d varying
as 0, 0.1, or 0.2 with each E value. As above, the 1G
method yielded the lowest power to detect common
eQTL, and its utility was limited by the population
with the lowest allele frequency; the curves represent-
ing the power of eQTL identification were very similar
in the cases of d = 0, 0.1, and 0.2 under the same E
value (Figure 1B). When allele frequency was the same
in two populations, the QT and CTWM methods had
the same ability to detect significant associations at E
= 0.3 or 0.5 (Figure 1B, d = 0). When d value varied
from zero, however, CTWM outperformed the QT
method, and the differences of power in eQTL identifi-
cation between these two methods increased as a func-
tion of d under the same E value (Figure 1B; d = 0.1
and 0.2). When CTWM-GS was used to detect eSNP,
the power of eSNPs identification was a function of
the allele frequency differences between populations
(d) under same E and P, (Figure 2, E = 0.3, 0.5); i.e.,
when the magnitude of the SNP effect and allele fre-
quency of population 0 are fixed, SNP-GE associations
having a larger difference in allele frequency between
populations were easier to be detected by the CTWM-
GS method.

Simulations were also performed with D = 1, and
results showed that ¢ and power curves of eQTL and
eSNPs identification were very similar to those obtained
when D = 0 (see additional file 2: Simulations with base-
line differences).

Simulations: Comparing the estimates
We examined precision and accuracy of the estimates
(z.1) for the CTWM and QT methods under the null
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(i.e no SNP effect on GE, E = 0) and alternative (i.e E =
0.5) hypotheses. The simulation results showed that,
under the null hypothesis, both of these two methods
could estimate 7,; accurately; i.e., average of the esti-
mates fit the expected value given the simulation (Figure
3). The QT method provided slightly higher precision
than CTWM when P; was larger than P, especially
when allele frequencies were small (Figure 3). Under the
alternative hypothesis, however, the estimates of the QT
method were influenced by the d value; e.g., if 4 and E
were fixed at 0.2 and 0.5 respectively, the QT method
somewhat underestimated E value (Figure 3). In con-
trast, the CTWM could accurately estimate E value and
was not influenced by allele frequency differences
between populations for all scenarios.

We also explored the estimates of GS and BD in
CTWM-GS method with D = 1. Under the null hypoth-
esis, estimations of the GS and BD parameters were reli-
able despite the fact that GS variations were affected by
the allele frequency. Similar results were observed under
the alternative hypothesis (see additional file 3: Esti-
mates of BD and GS).

Analysis of HapMap populations using the IG method

Using a pair of HapMap population data sets, 349 (3.4%)
expression traits were mapped to significant eQTL
either in the CEU or Asian population by the IG
method; however, only 77 expression traits with 393
eQTL were common between the two populations (Fig-
ure 4). When examining the effects of ethnic-genotype
interactions on gene expression among the 77 traits
with common eQTL by both the full and reduced two-
way ANOVA models (the full model contains ethnic-
genotype interaction term, and the reduced model does
not), only 11 (14.3%) putative eQTL showed significant
interaction effect at a threshold of q-value < 0.05 [35].
Further investigation of the positions of the 77 putative
eQTL revealed that 61 resided in the Jocal region. These
results indicated that the IG method was able to identify
common eQTL near or in the target genes of interest
and that for most eQTL the SNP effects on gene expres-
sion levels were similar in populations. To clarify, in the
subsequent analysis, all of the FDR calculations were
based on Storey’s q-value approach [35], which is con-
sidered to be more powerful than other FDR
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approaches. However, in the whole eQTL study across
all SNP-GE association tests, the prodigious number of
p-values (~2.5 x 10°) made it computationally prohibi-
tive to run Storey’s q-value, so Benjamini and Hoch-
berg’s FDR approach [34] was used instead.

Analysis of HapMap populations using the CTWM method
Using CTWM, 1839 (18%) expression traits had at least
one SNP with a statistically significant SNP-GE

association (Figure 4). Notably, except for six 1G-specific
common eQTL, all 393 significant SNP-GE associations
identified by the IG method were also identified by
CTWM (Figure 4), although the IG method allowed for
heterogeneous SNP effects between groups. For the six
1G-specific eQTL, the p-values of the ethnic-genotype
interactions evaluated using the F-statistic ranged from
1.08 x 10'° to 1.52 x 10”; the CTWM was therefore
not able to detect significant associations for these six
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eQTL. One of the possible reasons is that, when there
are differences in the magnitude of the SNP effect on
GE, particularly for SNPs that have opposite effects in
the two populations, CTWM may fail to detect SNP-GE
associations. Nevertheless, for two of the expression
traits with IG-specific eQTL, CTWM identified other
SNPs with strong SNP-GE associations. For example,
gene SI00A8, detected using expression probe
GI_21614543-S, was mapped to the putative eQTL
rs3896232 with an association p-value of 1 x 107'¢,
Thus, the set of 77 expression traits with at least one
eQT locus detected by the IG method was a subset of
the 1839 expression traits detected by CTWM.

Analysis of HapMap populations: local and distant effects

Among the 1839 putative eQTL identified by the
CTWM, 438 (24%) were identified as local eQTL and
1401 (76%) were distant eQTL. In addition, average of
the -log;o association p-values were 12.3 and 9.7 for the
local and distant putative eQTL, respectively, and the
difference between these two means was significant (p =
1.5 x 10°° by Welch’s t-test) (see additional file 4:

Summary of putative eQTL generated using CTWM).
This result suggests that eQTL near target genes have
smaller p-values than those further away from genes as
identified by CTWM. Examination of the minor allele
frequency (MAF) for eQTL with respect to chromoso-
mal position showed that the MAF for local and distant
putative eQTL in the combined population were 0.28
and 0.1, respectively. The difference of these two fre-
quencies was significant (p < 1 x 107" by Welch’s t-
test) (see additional file 4).

Analysis of HapMap populations: justification of model
assumptions

We used full- and reduced-model strategies to justify
the assumption that the magnitude of the SNP effect is
homogeneous by examining the genotype-ethnic interac-
tion term in the model. Of the 1839 SNP-GE pairs iden-
tified by the CTWM, only 44 (2.4%) putative eQTL had
significant genotype-ethnic interaction following the
FDR correction (q-value < 0.05). In contrast, when we
investigated the heterozygous non-genetic SNP effect
assumption using full- and reduced-model strategies
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16,845 SNP-GE
(1,302 GE traits,
11,748 SNPs)

CTWM method
29,420 eQTLs identified
with 1,839 unique GE traits
and 20,155 unique SNPs

IG method
393 eQTLs identified with 77 unique GE
traits and 371 unique SNPs

6 SNP-GE
(2 GE traits, 6 SNPs)

64 SNP-GE
(15 GE traits, 58 SNPs)

323 SNP-GE
(72 GE traits,

12,188 SNP-GE
(1,408 GE ftraits,
8,908 SNPs)

Figure 4 Summary of SNP-GE data generated using the IG, CTWM and CTWM -GS methods.

1,211 SNP-GE
(629 GE traits,
1,107 SNPs)

CTWM-GS method
13,722 eSNPs identified
with 1,689 unique GE traits
and 10,073 unique SNPs

(the full model was fitted to different expression base-
lines whereas the reduced model was fitted to an identi-
cal baseline between populations) for each of the 1839
SNP-GE pairs, there were 1298 (70.6%) traits with a q-
value < 0.05.

For genome-wide identification of eQTL, researchers
often employ the additive genetic model as a basic
inheritance pattern to assess the association between
SNP genotype and GE. Using the full- and reduced-
model strategies again (the full model using a co-domi-
nant assumption whereas the reduced model using an
additive assumption), 874 (48%) out of 1839 putative
eQTL were significantly associated with co-dominant
assumption (q < 0.05). Among the 874 eQTL, only 49
were in Jocal regions. The result suggests that the addi-
tive genetic model assumption is applicable to most
local eQTL, and co-dominant genetic model assumption
seems to be more suitable to distant eQTL. Further
research is needed to confirm these results.

Analysis of HapMap populations using the CTWM-GS
method

The ultimate goal of microarray studies is to generate a
list of gene variants for further investigation. Such stu-
dies generally involve comparisons of two conditions
within a single population or of two clinically distinct

populations. We incorporated SNP diversity information
from two ethnic cohorts to identify regions of the gen-
ome where genetic diversity is associated with gene
expression differences between populations.

We have demonstrated the applicability of CTWM for
combined populations. Thus, under CTWM, GS was
substituted for SNP-GE associations to incorporate SNP
diversity information into the analysis. This generated
1689 (16.5%) expression traits that included at least one
SNP with a significant GS (threshold p-value < 107°)
(Figure 4). Out of these 1689 putative eSNPs, 914 (54%)
were included in the set of 1839 putative eQTL identi-
fied by CTWM. A high number of intersecting eQTL
was expected because both methods explored the ran-
dom aspect of the SNP effect.

Analysis of HapMap populations: genetic and non-genetic
effects

Because the CTWM method can partition mean expres-
sion differences, this allows for investigation on whether
differentially expressed genes are affected by genetic or
non-genetic factors. To avoid unnecessary cancellation,
we calculated the proportion of genetic factor by |GS|/(]
BD| + |GS|). If the denominator was considered as the
total expression bias for a particular SNP-GS pair,
Figure 5 showed that most of the eSNPs resulted in less



Hsiao et al. BMC Bioinformatics 2010, 11:111
http://www.biomedcentral.com/1471-2105/11/111

o
S -
N —
o —
©v A u ~
- -
(&) e )
< o
O o C
s 1 o
q_ -
: S 2
o _| ©
0 L
- <
L~ c =
o o

I T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

|GS| proportion

Figure 5 Summary of Genetic Score analysis. |GS| proportion was
calculated by |GS|/(IBD| + |GS)) as shown in the x-axis. The
histogram is a representation of |GS| proportion frequencies
(indicated on the left-axis in black) underlying 1,689 SNP-GE pairs
identified by CTWM-GS method. The blue line represents the
smooth correlation between |GS| proportion and MAF (minor allele
frequency) differences (indicated on the right-axis in blue) estimated
by the Lowess method underlying the same 1,689 SNP-GE pairs.

than 40% expression biases of their target genes between
the CEU and Asian cohorts (Figure 5). Furthermore, we
examined the association between these proportions and
the MAF differences using a locally weighted scatterplot
smoothing (LOWESS) [36]. These results showed that
the SNPs with higher proportions were those with
greater allele frequency differences (Figure 5). Although
the CTWM-GS method still requires the CTWM to test
the associations, it provides immediate insight into SNP
effects on the variation of GE among populations.
Among the 1689 putative eSNPs detected using the
CTWM-GS method, there were 22 SNP-GE pairs repre-
sented by 20 unique gene symbols and 19 unique SNPs
selected using a GS threshold of 0.5 (|GS|20.5) (see
additional file 5: Supplementary table). These eSNPs
contribute to more than 40% of the expression bias and
have greater MAF differences between populations,
except those genes with higher BD values. Most of the
22 pairs had significant SNP-GE association in at least
one population tested by using IG method; the non-sig-
nificant associations are likely to result from a low
MAE. For instance, the SNPs rs1419772, rs2337387 and
rs604127 have minor allele frequencies ranging from
0.01 to 0.06, and their corresponding SNP-GE associa-
tion p-values range from 0.07 to 0.7 in the Asian cohort
(see additional file 5: Supplementary table). Moreover,
the genes C3orfI4 and C8orf13 lacked sufficient evi-
dence to be considered as differentially expressed in the
case where we compared their expression levels directly
and omitted the eSNP information (see additional file 5:
Supplementary table). However, these seemingly similar
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expression levels are due to opposing effects of genetic
and non-genetic factors on these genes in the CTWM.
Therefore, it is highly important that differences in allele
frequency between populations be included in analyses
of inter-population differential gene expression.

Analysis of HapMap populations: applying the GS to
population studies

To evaluate the genetic contributions to the observed
differences in gene expression between the CEU and
Asian populations, we first clustered all individuals by
genotype relative to the 19 unique eSNPs identified
using a GS threshold of 0.5 (]GS|20.5). For each eSNP,
individuals homozygous or heterozygous for the upregu-
lated allele or homozygous for the downregulated allele
were assigned values of 2, 1 or O respectively. When the
Spearman rank correlation coefficient was used to mea-
sure the similarity between individuals, the CEU and
Asian cohorts were separated into two distinct groups
(Figure 6). The cluster also divided SNPs into two
groups, where group 1 was comprised of seven SNPs
from alleles associated with upregulated expression that
are mostly found in the CEU cohort in contrast to the
Asian cohort. Group 2 consisted of 12 SNPs from alleles
associated with upregulated expression that are mostly
found in the Asian cohort compared to the CEU cohort.
When the cluster order was fixed, the corresponding
expression pattern was visualized using an expression
heatmap. To avoid bias from non-genetic factor differ-
ences, we adjusted the population-level expression by
adding the estimated BD score to each CEU individual
for each expression trait. Similar to genotype clustering,
the expression pattern was generally divided into two
groups corresponding to regulatory SNPs, and the
majority of the individuals with genotype assignments of
2 or 1 had higher gene expression levels (Figure 6).

Discussion

Taken together, our simulation studies demonstrate that
the IG method is unsatisfactory for identifying common
eQTL. Although this method is robust and does not
require model assumptions, the power of this method is
poor even when the magnitude of the SNP effect is
large. On the other hand, we demonstrate that if two
population data are combined prior to statistical testing,
CTWM outperforms the QT method and can manage
the bias arising from allele frequency differences. In par-
ticular, if a study is focused on investigating genetic dif-
ferences between groups, CTWM-GS method can be
used regardless any possible population-level differences.
These results indicate that the CTWM and CTWM-GS
methods are effective for eQTL and eSNP identification,
respectively, regardless of baseline differences between
groups, and that these methods have the potential to
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distinguish population-level and genetic-level differences
between groups. Note that although the nominal level of
significance is fixed (say, at 0.05), the empirical type I
error rates do not always remained fixed. In the simula-
tions, the type I error rate could be inflated as the
trade-off for higher power. Therefore, when comparing
different methods, type I error and power should be
considered simultaneously.

In current eQTL studies, IG method is a conventional
technique to identify the significant eQTL commonly
presented in two populations [5,28]. The composite
hypothesis is a union of 2 sub-hypotheses in each popula-
tion, and it will be rejected only if both 2 sub-hypotheses
are rejected simultaneously. The low type I error and
power are expected. In addition, we have used IG method
with the hypothesis composed of the intersection of 2
sub-hypotheses. The hypothesis would therefore be
rejected if either of the sub-hypotheses is rejected. Our
simulation results showed that the power of this method
is still lower (about 25% to 40% lower) than that obtained
from CTWM (see additional file 6: Supplementary simu-
lation results). Possible reasons of these results include
the smaller sample size due to splitting data, the higher
significant threshold due to multiple test adjustment, etc.
In addition to CTWM, a two-way ANOVA with an inter-
action term is a comprehensive model that allows for dif-
ferent SNP effects in each population. The simulation
results based on this method still showed lower power in
detecting SNP effects on gene expressions compared to
CTWM, except when P, was zero (see additional file 6:
Supplementary simulation results). That is because the
number of parameters used in the two-way ANOVA with

interactions was the same with that in CTWM when P,
was zero.

Using the F distribution to test GS directly, our simula-
tions showed that if the null hypothesis (Hy: GS = 0) was
under the assumption of E = 0, then the probabilities of
rejecting the Hy were properly controlled around 0.05
given level o = 0.05 (Figure 2; E = 0). When a more gen-
eral null hypothesis for GS = 0 was considered as the
condition of E = 0 or d = 0, however, the rejection prob-
ability under d = 0 was inflated as E increased; e.g. the
rejection probability reached 0.2 given level o = 0.05,
when E = 0.5 and d = 0 (Figure 2). This deviation was
possibly due to the fact that the simulated difference of
genotype frequency might be drifted away from zero
even when d was fixed at 0. These estimated differences
of genotype frequency between populations had been
regarded as constants in the test statistic and therefore
higher E values produced higher rejection probabilities
for Hy. Additional permutation tests were performed to
generate empirical null distributions of the test statistic
and compare the rejection probabilities with those
observed from using the F distribution directly. The
results showed that permutation approach could partially
decrease the rejection probabilities, but the probabilities
would still be inflated as E value increased given that d =
0 (see additional file 7: Comparing F test with permuta-
tion test). Since those P;/s in the vector B = (0, 0, (Py; -
P;;), (Pys - P;,)) for testing GS need to be estimated from
the data, a further study is needed to discuss the impact
of non-constant issue of B.

Using CTWM, we identified 29,420 common eQTL
with 1,839 expression traits with the underlying FDR
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less than 1%, and these traits included all the 77 traits
identified by the IG method. These results suggest that
CTWM has greater power to identify common eQTL
and empirically supports the assumption of homoge-
neous SNP effects between populations for common
eQTL. However, one concern with these reports is that,
the use of all SNPs on the array to model eQTL might
inflate the number of eQTL and reduce FDR due to
redundancy in the SNPs that were not taken into
account. We therefore performed a data analysis on the
163,448 tag SNPs obtained from Affymetrix 500 K array
using HapBlock program [37]. Results showed that the
number of the expression traits with at least one signifi-
cant eQTL (with p-value < 3x107®) was similar com-
pared to that obtained from using all SNPs on the
Affymetrix 500 K array (~1,800 GE traits). However, the
number of eQTL identified and SNP mapped were shar-
ply decreased (decreasing from 29,420 to 9,813 for
eQTL; from 20,155 to 6,599 for SNPs). We noted that
the number of tag SNPs was only a third of the number
of SNPs on the 500 K array and about a third of the
eQTL were identified (see additional file 8: Results from
using tag SNPs). These results suggested that the influ-
ence of redundancy in the SNPs was minor in this
study.

Further investigation of the mapping positions of the
1,839 putative eQTL revealed that most of the putative
eQTL in local regions had smaller p-values than those
in distant regions. This is because local eQTL are highly
heritable [38] and impact genes more directly in the reg-
ulatory sequences. This finding is in concordance with
previous cis eQTL studies [18,39], however, the majority
of the gene expression traits were most significantly
associated with eQTL in distant regions. This phenom-
enon could be explained partially by the criterion that
we defined as ‘most significant’; that is, for a GE trait
with multiple significant eQTL, only the SNP with the
smallest SNP-GE association p-value was selected into
the analysis. In addition, this may also have arisen
because gene correlations are inherent in the same bio-
chemical pathway [40] or because of genes that are
tightly regulated by hotspots [41]. These possibilities
should be investigated further.

Dissecting allele frequencies of the putative eQTL
showed that the eQTL at greater distances from the tar-
get genes had smaller allele frequencies than those in or
near the genes. A number of genetical genomic studies
have shown that cis eQTL were more reproducible and
were usually mapped with higher statistical significance
than those in trans eQTL [42,43]. Diversified factors
underlying the complexity of gene regulation could con-
tribute to this phenomenon, such as polygenic regula-
tion, environmental input and possibly interactions
among loci [13,25]. For example, in yeast studies, it has
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been observed that distinct trans-acting loci could exert
contrasting effects on gene expression and highly herita-
ble transcripts could exhibit transgressive segregation or
epistatic effects [44]. Therefore, our finding does not
necessarily imply causality between the allele frequencies
and the type of eQTL. However, rare minor alleles may
partially account for the incapability of the IG method
to identify common distant eQTL. That is, because the
samples were separated into two independent studies,
common distant eQTL would then be difficult to be
detected and reproduced in two populations with small
sample size and/or small allele frequency. These results
suggest that proper combination of different ethnic
datasets to increase the sample size can overcome statis-
tical barriers inherent in unbalanced genotype data and
might result in an association mapping that is more pre-
cise for identification of eQTL.

In the analysis presented, we limited the number of
association tests by only considering SNPs on the same
chromosome with the gene transcripts, so that only
within-chromosome associations were tested. The rea-
son was two fold. First, computation time was extremely
long if all chromosomes were considered. Second, a
higher threshold was needed given a huge number of
association tests performed and would cause lower
power in the study with a small sample size. Although
the trans-acting eQTL could locate on a different chro-
mosome from where the gene is located [45], recent stu-
dies have demonstrated that most of the intense
significant signals appeared in the cis region by using a
loose definition [18,38,45]. Therefore, we only consid-
ered mapping the associations by a chromosome-wide
strategy. The implications of our results are therefore
limited to the same chromosome. However, it provides
a crude picture about the characteristics of local- and
distant-acting eQTL.

As many other methods, CTWM also assumes that
SNP effects are similar between populations in the com-
bined data. This assumption presumably can largely
reduce the complexity of the model and the number of
parameters needed. After comparing the associations
found among all populations, Veyrieras et al. (2008) sug-
gested that significant SNP-GE associations were usually
shared in different populations [21]. However, whether
the magnitude of the SNP effect on GE was similar for
any particular SNP-GE association in different popula-
tions remained unclear. Our results indicate that, for the
1,839 putative common eQTL identified by CTWM,
only 2.4% had significant interaction effects following
FDR correction (g-value < 0.05). This proportion was
probably underestimated due to the rigorous inclusion
criterion on the 1,839 putative eQTL. Therefore, similar
analyses were performed using all 29,420 significant
eQTL, and results showed that 2,968 (10%) eQTL had
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significant signals (q-value < 0.05) for interaction terms.
The discrepancy between the two results could be due
to high false positives or violations of homogenous SNP
effect sizes. Because we restricted our attention to only
eQTL identified by CTWM, our results did not imply
that all SNP effects were necessarily homogeneous in
the eQTL study in multiple populations. Our results
exhibited the characters of putative eQTL identified by
the model. That is, population-level differences in GE
substantially affected eQTL identification, and SNP
effects were similar between populations. These results
may form a basis for further studies in which different
datasets are to be combined to increase the statistical
power for identifying common eQTL with similar
effects.

In microarray-based GWAS, mapping regulatory varia-
tions on gene expression data is more promising than
mapping regulatory variations on complex clinical phe-
notypes [24,46]. By using combined data and CTWM-
GS, our goal is to detect associations between SNP and
GE and further explore whether the discrepancy
between allele frequencies causes the different levels of
GE in different populations. It is possible to compare
allelic frequencies of SNPs between populations and
then test the association of these SNPs with GE data.
However, the association between GE and populations
can not be directly implied given associations between
populations and SNPs which are correlated with GE
[10]. For example, a transcript C8orfl3 was associated
with a putative eQTL ‘rs998683 (p-value < 5 x 10™**
tested by CTWM) and showed high discrepancy in alle-
lic frequencies (p-value < 10 tested by chi-square)
between CEU and Asian cohorts. However, the overall
expression level of that transcript was non-differentially
expressed between the two cohorts as shown in the
additional file 5. This phenomenon was in agreement
with the previous genetic genomic study of the child-
hood asthma, where Moffatt et al. (2007) found the
expression level of ORMDL3 to be strongly associated
with a disease-associated marker ‘rs7216389’. However,
the overall GE difference between non-asthmatics and
asthmatics cohorts was not significant. The advantage of
using CTWM-GS is that gene expression differences
between populations can be partitioned into two parts—
genetic differences (i.e., GS) and non-genetic differences
(i.e., BD)—and both are tested independently.

We have demonstrated that genetic effects on gene
expression between populations can be calculated by the
GS from data with three dimensions: GE level, SNP geno-
type, and ethnicity. The GS combines two effects of a
particular SNP-GE combination—the genotype frequency
differences between populations and the differences in
the gene expression levels directed by genotypes. Thus, a
smaller GS p-value does not necessarily imply a greater
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allele frequency difference or a substantial SNP effect. To
prioritize candidate eSNPs, it is more advantageous to
rank the GS among a significant eSNP set rather than to
rank their p-values directly. Using this strategy, we
demonstrated that a large set of eSNPs contributes to a
significant GS, and identified a small subset of 19 unique
eSNPs that generated significant absolute GS values
(>0.5) between CEU and Asian cohorts. Using this subset
of eSNPs, the CEU and Asian cohorts can be easily dis-
tinguished. These results indicated that GS not only
assisted in filtering functional SNPs but also improved
identification of those SNPs with causal potential.

Conclusions

We investigated the statistical issues associated with
common eQTL identification using data combined from
different populations. Because differentially expressed
genes and SNPs with divergent allele frequencies are
common among ethnic populations [47,48], it is believed
that combining genetic genomic datasets across popula-
tions improves identification of common eQTL. We
have demonstrated the impact of MAFs on identification
of common eQTL using either separate or combined
population data. Quantile transformation to a standard
normal distribution is a useful strategy for normalizing
gene expression data derived from different populations;
however, it did not explicitly take into account the
diversity of MAFs among populations and may result in
misled statistical conclusions in eQTL study. Instead of
transforming ethnic expression data, we showed that
application of CTWM to model SNP-GE associations
directly onto the original expression data might correct
the expression bias arouse from genetic diversity among
populations.

We further explored the applicability of CTWM to
HapMap populations. As a result, CTWM was shown to
be comprehensive and was highly effective in identifying
common eQTL in either local or distant regions with
similar SNP effects on GE levels between populations.
Further extension of the CTWM to estimate the GS
between populations provided an additional statistical
test (CTWM-GS method) for identifying eSNPs. This
method can also be used to examine genetic genomic
data containing both case and control individuals. Such
studies can provide new insights into disease etiology by
identifying potential eSNPs with allele frequency differ-
ences or that are associated with different gene expres-
sion levels in the populations.

Additional file 1: Supplementary material. This PDF contains the
details of methods for QT, CTWM, CTWM-GS and simulations.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
111-S1.PDF]
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Additional file 2: Simulations with baseline differences. This PDF
contains the graphs of simulation results at D = 1. (A) depicts Type |
error (upper panel, E =0 for d =0, 0.1, 0.2) and power (lower panel, E =
0.5 for d =0, 0.1, 0.2) versus different allele frequency of group 0 (Py).
The three color bars are as explained in the legend of Figure 1. (B)
depicts Type | error rate (E = 0) and power (E = 0.5) versus different
allele frequency of group 0 for CTWM-GS. The three color bars are as
explained in the legend of Figure 2.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2105-11-
111-S2.PDF]

Additional file 3: Estimates of BD and GS. This PDF summarizes the
estimates of BD and GS under the null (upper panel, E = 0) and
alternative (lower panel, E = 0.5) hypotheses, respectively, in the
simulation studies. The dots are means of the baseline difference (BD, in
red) and genetic score (GS, in blue) estimated by CTWM-GS. Arrows of
each dot represent the 95% confidence interval calculated from 10,000
simulations. Dash lines are the true values of BD (black) and GS (gray)
derived from parameters used in the simulations.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2105-11-
111-S3.PDF]

Additional file 4: Summary of putative eQTL generated using
CTWM. This PDF summarizes (A) -log10 p-values or (B) allele frequencies
with respect to local (blue) and distant (red) eQTL by histogram and
boxplot underlying the 1,839 putative eQTL identified by CTWM. The
histogram is a representation of probability densities (indicated on the x-
axis).

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2105-11-
111-S4.PDF]

Additional file 5: Supplementary table. This PDF summarizes the 19
eSNPs selected using a GS threshold of 0.5.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2105-11-
111-S5.PDF]

Additional file 6: Supplementary simulation results. This PDF
contains the graphs of simulation results as explained in the legend to
Figure 1 with three different testing methods as follows: blue, CTWM;
yellow, IG method with hypothesis composed of the intersection of 2
sub-hypothesis; brown, two-way ANOVA with interaction term.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2105-11-
111-S6.PDF ]

Additional file 7: Comparing F test with permutation test. This PDF
describes methods and results for comparing F test with permutation
test.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2105-11-
111-S7.PDF]

Additional file 8: Results from using tag SNPs. This PDF summarizes
the eQTL data generated by IC and CTWM method, and eSNPs identified
by CTWM-GS method underlying 163,448 tag SNPs.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2105-11-
111-S8.PDF]
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