Battke et al. BMC Bioinformatics 2010, 11:121
http://www.biomedcentral.com/1471-2105/11/121

BMC
Bioinformatics

Mayday - integrative analytics for expression data

Florian Battke, Stephan Symons, Kay Nieselt

Abstract

Background: DNA Microarrays have become the standard method for large scale analyses of gene expression and
epigenomics. The increasing complexity and inherent noisiness of the generated data makes visual data
exploration ever more important. Fast deployment of new methods as well as a combination of predefined, easy
to apply methods with programmer’s access to the data are important requirements for any analysis framework.
Mayday is an open source platform with emphasis on visual data exploration and analysis. Many built-in methods
for clustering, machine learning and classification are provided for dissecting complex datasets. Plugins can easily
be written to extend Mayday's functionality in a large number of ways. As Java program, Mayday is platform-
independent and can be used as Java WebStart application without any installation. Mayday can import data from
several file formats, database connectivity is included for efficient data organization. Numerous interactive
visualization tools, including box plots, profile plots, principal component plots and a heatmap are available, can be
enhanced with metadata and exported as publication quality vector files.

Results: We have rewritten large parts of Mayday's core to make it more efficient and ready for future
developments. Among the large number of new plugins are an automated processing framework, dynamic
filtering, new and efficient clustering methods, a machine learning module and database connectivity. Extensive
manual data analysis can be done using an inbuilt R terminal and an integrated SQL querying interface. Our
visualization framework has become more powerful, new plot types have been added and existing plots improved.

Conclusions: We present a major extension of Mayday, a very versatile open-source framework for efficient micro
array data analysis designed for biologists and bioinformaticians. Most everyday tasks are already covered. The large
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number of available plugins as well as the extension possibilities using compiled plugins and ad-hoc scripting
allow for the rapid adaption of Mayday also to very specialized data exploration. Mayday is available at http://

Background
Since their inception in the early 1990s, DNA micro-
arrays have revolutionized many areas of biological
research. They are a fast and relatively inexpensive tool
used for genome-wide studies of gene expression, epi-
genetic modifications, binding sites of DNA-binding
proteins, copy-number variation as well as for resequen-
cing projects. Their success is largely due to the ever
growing number of features that can be represented on
a single array, allowing for the simultaneous investiga-
tion of a large number of genomic loci.

Yet the large number of features, and a concomitant
increase in the number of experiments conducted (such
as fine-grained time-series experiments), also poses the
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problem of finding the data of interest. Essential to any
microarray experiment is thus the filtering of the large
data matrix, the aim is to find (full-width) submatrices
("clusters”) with common characteristics. Furthermore,
assigning statistical significance values to the features
(row-vectors of the matrix) is a very common task.
A large number of different methods have been devel-
oped for automated as well as exploration-driven analy-
sis of complex data, some of them specific to the field
of microarray analyses, others are more general in
application.

However, most of these methods are available only as
stand-alone programs or proof-of-concept implementa-
tions. During a normal microarray experiment, several
of these methods have to be used in combination.
Which methods are used and in what order depends on
the nature of the data, the experimental conditions and
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on observations made during the analysis itself. Thus,
bioinformaticians need an integrative framework com-
bining many of these methods to be able to efficiently
analyze their data. Such a framework must also allow
the quick addition of new methods and support their
development via rapid prototyping.

BRB-ArrayTools is such an integrated software system
developed by biostatisticians [1]. It is an add-in to
Microsoft Excel under the Microsoft Windows family of
operating systems. Among the tools are algorithms for
normalization, the computation of differentially
expressed genes, cluster analysis, and class prediction.
BRB-ArrayTools focuses mainly on the development of
new statistical methods for expression data analysis.

EMMA 2 provides a wide collection of algorithms and
a database to store, retrieve, and analyze genome-wide
datasets in a MIAME and MAGE-ML compliant format
[2]. For the user it features a web interface, however no
offline version is available. EMMA’s main emphasis is
the analysis of MAGE-compliant data. It is fully open-
source offering a large number of various analysis algo-
rithms encompassing preprocessing and normalization,
statistical methods for the detection of differentially
regulated genes, various cluster algorithms and visualiza-
tion features. The user can setup pipelines that allow
automatic analysis.

The Gene Expression Profile Analysis Suite (GEPAS)
offers a similar approach to the analysis of microarray
data as EMMA [3]. It also provides a web-based inter-
face. Its main strength is the multitude of tools offered
ranging from preprocessing to functional profiling.

The TM4 suite of tools consist of four major applica-
tions, Microarray Data Manager (MADAM), Spotfinder,
Microarray Data Analysis System (MI-DAS), and Multi-
experiment Viewer (MeV), as well as a Minimal Infor-
mation About a Microarray Experiment (MIAME)-
compliant MySQL database [4]. MeV is a microarray
data analysis tool written in Java. It is free, open-source
software incorporating algorithms for clustering, visuali-
zation, classification, statistical analysis and biological
theme discovery. MeV offers a number of visualizations.
However, it does not allow users to interactively explore
data through the combined use of several different
linked plots and does not offer many possibilities for
using meta information to enhance visualizations.

The importance of appropriate visualization methods
for microarray data has long been recognized. A frame-
work for the visual integration of additional meta-infor-
mation of gene expression data was introduced in [5] and
demonstrated in an application of the heat colormap.
The enhanced heatmap showed the clear advantages of
the integration of supplemental data from different
sources for the visual exploration of microarray data.
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As the raw experimental data is the biologists’ most
valuable resource, researchers want to be able to per-
form their analyses in-house, preferably on their perso-
nal computer. The size of modern datasets also makes
repeated transfers over the network infeasible.

Mayday

Mayday [6] is a platform-independent framework for
data analysis and visualization. Written in Java, it can be
installed locally or run without any installation as Web-
Start application. Mayday provides efficient core data
structures as well as a powerful plugin management sys-
tem which allows for fast extension via custom plugins.
A large number of plugins is already available, covering
such areas as clustering, classification, and visualization.
All methods presented here are implemented in Java
except for the import from Affymetrix CEL files (see
below).

Clustering is one of the most common tasks in micro-
array analyses. Mayday offers several clustering methods
with different optimization criteria. Besides the well-
established partitioning methods such as k-means and
SOM [7,8], hierarchical clustering methods such as
UPGMA, WPGMA and Neighbor-Joining are available.
All clustering methods can be performed with a wide
range of distance measures (among them Euclidean,
Minkowski, Pearson correlation distance, many more).

Offered visualization tools should be of great assis-
tance in interpreting the results of microarray experi-
ments. Among the most commonly used ones are
heatmaps, boxplots, MA scatter plots and histograms.
Thus, Mayday’s main strength lies in visualization and
visualization-driven data exploration. Data can be visua-
lized in many different ways, including profile (parallel
coordinate) plots, box plots, scatter plots and heatmaps.
All Mayday plots can be exported as publication quality
files, using different bitmap formats (JPG, PNG, TIFF)
as well as the scalable vector graphics format (SVG).
The different views on the data are linked so that inter-
action with a profile plot is reflected in a simultaneously
opened heatmap, for instance. Meta-information can be
used to enhance the plots, i.e. add additional data to the
visualizations. These can come from clusterings (cluster
ids) or external sources (e.g. Gene Ontology identifiers),
or can be the result of statistical tests applied within
Mayday, such as p-values. These can, for instance, be
used to add additional columns to Mayday’s heatmap, to
sort the heatmap’s rows, to add transparency or a sec-
ond color dimension or to change the height of rows
according to their significance. Furthermore, users can
inspect all meta information associated with the probes
in a tabular view, sort the table by any meta information
column, or use meta information to filter probes.
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Finding significantly differentially expressed genes is
one of the core functions offered by Mayday. A host of
different methods are already available (e.g. Student’s
t test, SAM [9], etc.) and can be combined with correc-
tion methods for multiple testing. ANOVA analyses are
supported as well.

Implementation

The current version of Mayday offers many enhance-
ments and new features. The core structures were opti-
mized and rewritten to improve performance and
simplify the addition of new functionality. Among the
new features are the ability to create a hierarchical
structure within datasets, a much-improved user-inter-
face with customizable profile previews, matrix opera-
tions such as merge and split, new statistical methods
for the identification of differentially expressed genes
(WAD [10], Rank Product [11]), online data transforma-
tions (e.g. z-scoring, smoothing, centering) and many
more. See figure 1 for an overview of Mayday’s user
interface. Some of the highlights will be presented in the
following sections.

Automated Processing

Since many analysis steps are common to the first-level
analysis of virtually all microarray data, Mayday offers a
powerful processing pipeline construction framework
allowing for the automation of such tasks and their
rapid application to new data sets. Pipelines can be
stored persistently and shared with other users.

Dynamic Filtering

A dynamic filtering framework has been integrated into
Mayday, to create so-called Dynamic Pro-beLists. By
chaining together any number of filter-ing modules and
logical operators, arbitrarily complex filters can be cre-
ated in an easy to use graphical editor. A large number
of modules are available for filtering on expression
values, meta data, feature names, the content of other
(dynamic) ProbeLists or similarity measures (query-by-
example). Dynamic ProbeLists react to changes in the
underlying data and are updated accordingly.

New clustering methods and visualizations

While k-means is one of the most used clustering algo-
rithms in microarray analyses, new methods have been
developed that overcome some of k-means deficits and
have been shown to give good results. One such method
is quality-threshold (QT) clustering [12], now available
in Mayday. Instead of a predefined number of clusters,
the input parameter is the desired quality (the radius) of
clusters to be found. We have implemented a graphical
interface that aids users in determining the correct para-
meter values for their dataset, depending on the distance
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measure of choice. Furthermore, a density-based cluster-
ing [13] method has been added. Clustering result qual-
ity can now be assessed using silhouette plots and
different clustering methods can be compared with each
other or with a partitioning defined by a priori
knowledge.

To speed up hierarchical clustering of large datasets,
we included an efficient implementation the rapid
neighbor-joining algorithm [14]. The trees produced by
all hierarchical clustering methods are now stored and
can be attached to heatmap plots in addition to being
displayed in separate viewers using different layout
algorithms.

We extended the idea of Sequence Logos [15] to
visualize the general direction of expression within
experiments: The ProfileLogo plot shows stacked probe
expression bins, scaled to their frequency within each
experiment. Expression bins are defined by thresholds,
e.g. for up and down-regulated genes. Histogram plots
have been implemented to gain insight into the distribu-
tions of statistical and experimental values, as well as
meta data values attached to the data.

Selected probes resp. genes in each plot can be used
as the basis for database queries in a large number of
public databases, among them NCBI, Ensembl, Gene
Ontology, KEGG, and PubMed.

Machine Learning

Training, evaluation and application of classification
models of numerous different types are further applica-
tions of Mayday. For dimensionality reduction and iden-
tification of marker genes several feature selection
methods are available. The machine learning techniques
are provided using the WEKA [16] library which has
been integrated into Mayday. In addition, the Gene
Mining plugin provides a number of methods to select
genes separating classes among the experiments.

Project management

Mayday’s ProjectDB implements central and organized
storage of datasets and can be used for data mining pur-
poses. As back-end it can either use Apache Derby [17]
(included in the Java WebStart version) or dedicated
database management systems (PostgreSQL, MySQL).
Datasets can be organized in Projects and Project States,
allowing to take snapshots of different stages of their
analysis. The graphical ProjectDB browser provides pre-
views of each object, including profile plots and boxplots
of the experimental data. The data can also be queried
directly using an interactive shell.

Alternatively, Mayday implements a snapshot file for-
mat that can be used to save the current state of a data
set including meta-information, de-fined clusters, hier-
archical clustering trees etc. The snapshot format is
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Figure 1 Main window screenshot. Mayday's main window during the analyses of the Streptomyces coelicolor dataset. Meta-information is
shown hierarchically on the left, the hierarchy of probe lists with their preview images on the right. Insets show interactive plots of hierarchical
column-wise clustering (left) as well as profile plots of selected clusters (right).
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specifically designed for fast data storage and retrieval
while still being a very space-efficient compressed repre-
sentation of the data.

Programmers’ access

Bioinformaticians will especially like our programmers’
access to the data. We have a tightly integrated efficient
R shell that integrates the full functionality of R [18]
and its wealth of available packages and thus allows the
application of third-party methods directly on Mayday’s
data. R processes can also be connected to Mayday over
the network allowing complex calculations to run on a
powerful workstation or cluster and communicating
with a Mayday instance running on the researcher’s lap-
top, for instance. Furthermore, all gene expression data
and meta information currently opened in Mayday can
be queried using standard SQL, including the possibility

to create new views and custom tables. These shells
both feature syntax-highlighting editors with persistent
history, greatly increasing programmers’ productivity
(see figure 2).

Cross-dataset analyses
Time series analyses as well as replicate studies often
require researchers to compare different datasets, e.g. to
find systematic shifts in expression over time.

Mayday now offers a specialized view for this purpose
in addition to the cross-dataset analyses possible with
our R and SQL command-line interfaces.

Integrated analyses - Systems biology

For integrative pathway analyses, biochemical pathways
from several sources, including KEGG [19] and MetaCyc
[20] can be visualized as networks. The expression data
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of enzymes and concentration data of metabolites can
be summarized and visualized on the network in differ-
ent forms, including profile plots and heatmaps.

Gene annotations can be imported from external data-
bases. We currently offer direct support for the Gene
Ontology [21] and KEGG databases. Gene identifier
mapping can be done automatically using the PICR [22]
service.

Results

Application study: Dynamic architecture of the metabolic
switch in S. coelicolor

To demonstrate the new functionalities of Mayday, we
present here an analysis of a large time series in Strepto-
myces coelicolor. For streptomycetes it has proved very
difficult to identify the key regulators that control
expression of the pathway specific regulators. Mayday
was used to monitor the expression dynamics of the
bacterium in a time series dataset with unprecedented
resolution.

A custom-designed Affymetrix array containing 22,779
probe sets interrogating genes, intergenic regions, and
predicted noncoding RNAs was used to study the gene
expression in mostly hourly intervals starting at 20 h
after inoculation, up to 60 h [23]. Altogether, 32 time
points were studied. Phosphate was depleted in the
medium at 36 h.

All oligos of the probe sets were mapped to their
genomic locus on the chromosome or on one of the
two plasmids of Streptomyces coelicolor. For each probe
set the start and end genomic coordinate together with
the strand orientation were written to a tab-separated
file.

Within Mayday we imported data from 32 CEL files
using Mayday’s R interpreter. For normalization we used
the robust multi-array average method (RMA) [24] as
provided in the affy[25] package of BioConductor
[26]. We imported genomic locus information from the
tab-separated file described above for later steps in the
analysis.

Using a custom processing pipeline, we automatically
compute regularized variance for each probe and then
apply a filtering step to create a probe list of most var-
iant probesets. Of 22,779 probesets, 64 remain after fil-
tering with a regularized variance threshold of 0.3.

Based on this probelist of variant probesets, we create
a new dynamic probelist to select only those probes
that, apart from being the most variant, interrogate pro-
tein coding genes (SCOxxxx), and query the plus strand
of the Sco genome (see figure 3). 32 probesets remain.
Changing any of the filter parameters automatically
updates all plots based on the dynamic probelist.

The time series sampling reflects the development of
Streptomyces coelicolor from early growth phase to
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Figure 3 Rule editor for a dynamic probelist. Single rules can be arranged via drag & drop into a hierarchy of groups (a rule set) using
boolean operations (AND, OR). The number of probes matching the rule set is indicated in the bottom-left corner. Descriptions are

stationary phase. Accordingly, the expression differences
between the samples taken at two consecutive time
points should, in general, be smaller than those between
samples from time points that lie further apart. Further-
more, the differences between time points should reflect
the rate of change in the metabolic state of the culture.
To assess this hypothesis, we performed a hierarchical
clustering of the transposed matrix, i.e. clustering of the
experiments, using the most variant genes. We used
the Euclidean distance and MAYDAY’s implementation
of the rapid neighbour-joining algorithm [14]. The
resulting cluster tree is visualized along with a heatmap
in figure 4. As expected, the early (20 h) and late time
(60 h) points are at the outermost leaves of the tree and
consecutive time points are clustered very closely
together. The tree nicely depicts the consecutive points
of time along the growth curve of the organism. It also
shows the major expression change occurring between
35 and 36 hours after inoculation. This largest expres-
sion change coincides exactly with the time of complete
phosphate depletion in the fermenter.

Since the heatmap suggests the existence of distinct
groups of genes within the probelist, we use QT cluster-
ing with a diameter of 0.4 and use the resulting clusters
to color a profile plot showing the z-scored profiles of
the genes (figure 5). The dynamic architecture of the
metabolic switch is clearly visible with different groups
of genes being up-resp. down-regulated in a successive
order of time points (35, 39 and 43 hours in this
subset).

The heatmap also shows that there are some genes
that clearly separate the time points 46-60 from the ear-
lier ones. Using the GeneMining plugin, we search for
those genes that optimally separate these two groups of
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Figure 4 Heatmap of the clustered experiments. The heat map
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to a hierarchical clustering dendrogram. The order of genes and the
color of gene identifiers is determined by the QT clustering (for
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Figure 5 Profile plot after QT clustering. The profile colors are determined by the QT clustering (for details refer to the text). Values have

experiments (using the quartet mining algorithm, for
details see MAYDAY'’s website). Of the 32 genes in the
dynamic probelist described above, 15 belong to the list
selected by the quartet mining algorithm. These genes
all exclusively belong to the actinorhodin pathway, a
genomic cluster of genes (SCO5071-SCO5092).

The experimental data also contains optical measure-
ments of the amount of actinorhodin produced. Com-
bining ScoCyc [27] pathway information, expression
values and external measurements of actinorhodin
levels, we produce an interactive visualization of the
actinorhodin pathway (figure 6). On first glance, it is
obvious that spectrometrically measured actinorhodin
concentration rises in response to the upregulation of
several enzymes in this pathway. Interesting target com-
pounds for analysis can be selected from the pathway
image for further wet-lab investigation.

Since the dataset used here is part of a larger experi-
ment where biological replicates were produced in sepa-
rate fermentation runs, we decided to investigate
whether we could detect systematic differences between
these replicates. Figure 7 shows Mayday’s time series
alignment tool with one of the QT clusters as an

example. The genes in that cluster are up-regulated one
hour later in the second fermentation (F202) than in the
reference fermentation (F199). This time shift could be
traced to a one-hour delay in phosphate depletion in the
second fermentation.

Discussion
Mayday is a comprehensive platform for the analysis
and the visual exploration of microarray data. According
to Allison et al. [28] the most important statistical com-
ponents of a microarray experiment analysis involve the
following steps: design, preprocessing, inference or clas-
sification and validation. During the last years analysis
of microarray data has become highly sophisticated, new
methods are published almost daily. These range from
preprocessing and normalization to novel statistical and
machine learning methods. A software that wants to
keep pace with these developments has to provide possi-
bilities to enable the rapid integration of new methods
as well as making them as usable as possible.

An important focus of exploration of high-dimen-
sional data, such as microarray data, lies on visualiza-
tion. The advantage of our design is the tight
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integration of both analysis and visualization as well as
the various visualization techniques themselves.

This combination of automatic and visual analysis
leads to a visual analytics approach that provides more
insights in the structure of the data. We think that with
Mayday such a visual analytics approach for the analysis
of high-dimensional microarray data has been realized.

Conclusions

We present a very versatile open-source framework for
efficient microarray data analysis, designed for biologists
and bioinformaticians. All common tasks of microarray
analyses are already covered and the wide range of func-
tionality from the already existing plugins can swiftly be
extended with new plugins written in Java, ad-hoc

scripting interfaces facilitate rapid prototyping of new
algorithms as well as interactive specialized data
exploration. Mayday’s interactive visualization methods
in conjunction with the meta-data concept provide sig-
nificant insight into complex data and have successfully
been applied in many microarray analyses.

New methods and tools are continuously added to
Mayday’s platform to keep up with new developments.
Our coming release includes two new visualizations
based on genomic locus information: A track based
visualization and a view showing expression (or meta
information) values as colored boxes aligned to a linear
chromosome laid out continuously in stacked rows.
Both are fully interactive and integrated with all other
visualizations.
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Figure 7 Mayday's Time series Analysis Window. The alignment of two time series experiments (F199, F202) shows a time shift by one hour.
Our time series alignment tool shows the original datasets (left column), corresponding profiles of a gene in both datasets (top-right) as well as
user-defined statistics computed from the corresponding profiles (here the fold-change is used, bottom-right).

Most recently, novel ultra-high throughput DNA
sequencing technologies have been developed that
enable researchers to obtain the complete genomes of
organisms faster and at a lower cost than classical meth-
ods [29]. Moreover, these technologies can be applied to
measure gene expression (RNA-Seq) [30] and protein-
DNA interactions (ChIP-Seq) [31], and many current
studies use RNA-Seq and microarray data compara-
tively. Our new genomic plots will be especially useful
in the context of such new types of data. We're cur-
rently working on an integration of these new data types
into Mayday, separately or in multi-platform settings.

Availability and requirements
« Project name: Mayday
+ Project home page: http://microarray-analysis.org
» Operating systems: Platform independent

+ Programming languages: Java
+ Other requirements: Java 6 or higher
+ License: GNU GPL version 2
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