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Correcting for the effects of natural abundance
in stable isotope resolved metabolomics
experiments involving ultra-high resolution
mass spectrometry
Hunter NB Moseley

Abstract

Background: Stable isotope tracing with ultra-high resolution Fourier transform-ion cyclotron resonance-mass
spectrometry (FT-ICR-MS) can provide simultaneous determination of hundreds to thousands of metabolite
isotopologue species without the need for chromatographic separation. Therefore, this experimental metabolomics
methodology may allow the tracing of metabolic pathways starting from stable-isotope-enriched precursors, which
can improve our mechanistic understanding of cellular metabolism. However, contributions to the observed
intensities arising from the stable isotope’s natural abundance must be subtracted (deisotoped) from the raw
isotopologue peaks before interpretation. Previously posed deisotoping problems are sidestepped due to the
isotopic resolution and identification of individual isotopologue peaks. This peak resolution and identification come
from the very high mass resolution and accuracy of FT-ICR-MS and present an analytically solvable deisotoping
problem, even in the context of stable-isotope enrichment.

Results: We present both a computationally feasible analytical solution and an algorithm to this newly posed
deisotoping problem, which both work with any amount of 13C or 15N stable-isotope enrichment. We demonstrate
this algorithm and correct for the effects of 13C natural abundance on a set of raw isotopologue intensities for a
specific phosphatidylcholine lipid metabolite derived from a 13C-tracing experiment.

Conclusions: Correction for the effects of 13C natural abundance on a set of raw isotopologue intensities is
computationally feasible when the raw isotopologues are isotopically resolved and identified. Such correction
makes qualitative interpretation of stable isotope tracing easier and is required before attempting a more rigorous
quantitative interpretation of the isotopologue data. The presented implementation is very robust with increasing
metabolite size. Error analysis of the algorithm will be straightforward due to low relative error from the
implementation itself. Furthermore, the algorithm may serve as an independent quality control measure for a set of
observed isotopologue intensities.

Background
Application of mass spectrometry to stable isotope tra-
cing experiments for the elucidation of glucose dates
back to at least the early 1980’s [1,2]. The general
scheme for these experiments is to supply a labeled pre-
cursor such as uniformly-labeled 13C glucose ([U-13C]-
glucose) to a bacterial culture, tissue culture, or a whole

multicellular organism and then extract a set of cellular
or excreted metabolites for analysis [3,4]. For identified
metabolites, specific patterns of isotopologues are
usually observed, which are then interpreted within the
context of known cellular metabolic pathways [3-5].
Recently, we applied this technique to elucidate specific
aspects of lipid metabolism [6].
The ultra-high resolution capability of Fourier trans-

form-ion cyclotron resonance-mass spectrometry (FT-
ICR-MS) makes it possibility to identify simultaneously
hundreds, if not thousands, of metabolites from crude
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cell extracts without the need for chromatographic
separation [6]. The better than 1 ppm mass accuracy of
state-of-the-art FT-ICR-MS is often high enough to pro-
vide mass-to-charge ratios (m/z) down to the 3rd and
4th decimal place for metabolites less than a few thou-
sand Daltons. This is accurate enough to distinguish
relativistic mass differences between expected isotopes
of CHONPS elements and unambiguously determine
the isotope-specific molecular formula of an individual
peak. Furthermore, the FT-ICR-MS’s high mass resolu-
tion allows for the direct detection or deconvolution of
individual isotopologues or mass-equivalent sets of iso-
topomers for a given metabolite.
Isotopologue identification and quantification of thou-

sands of metabolites in these metabolomic experiments
can provide a wealth of data for modeling the flux
through metabolic networks. But before isotopologue
intensity data can be properly interpreted, the contribu-
tions from isotopic natural abundance must be factored
out (deisotoped). This is a computationally expensive
and analytically intractable problem for data from lower
mass resolution spectrometers where individual isotopi-
cally-resolved isotopologues cannot be distinguished [7].
In these instances, numerical methods have been
employed to approximate and subtract the contributions
from isotopic natural abundance [4,7-9]. Some of these
calculations are aimed at a different deisotoping pro-
blem, namely identifying the related isotopologues and
calculating the monoisotopic mass from its isotopic
mass distribution [10,11]. Fortuitously, with the isotope-
resolved isotopologue peaks from FT-ICR-MS histo-
grams, we can pose a similar but distinct problem that
allows for the derivation of a computationally tractable
analytical solution. In addition, isotopologues derived
from the same molecule (or very similar set of mole-
cules) neatly handle peak intensity referencing issues by
providing a natural internal reference.

Results
Derivation of the analytical solution
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Equation 1 represents the relative distribution of car-
bon isotopologues from natural abundance only, as a
sum of multinomial coefficients multiplied by the inten-
sity of IM+0, the theoretically untainted 12C monoisoto-
pic peak. The terms being summed are similar in form
to those presented in Snider, 2007. IM+i;NA is the
expected intensity of the ith isotopologue peak

representing i additional nucleons. NAxC is the frac-
tional natural abundance of the XC isotope. CMax is the
number of carbons in the molecule. The multinomial
coefficients, derived from the multinomial theorem with
3 variables represent the number of possible isotopo-
mers of identical mass for a molecule with CMax carbons
given 3 isotopes of carbon: 12C, 13C, and 14C.
Isotopologue peaks containing 14C are typically not

observed, since the isotope is very rare. Moreover, due
to the very high mass resolution in FT-ICR-MS histo-
grams, isotopologue peaks representing molecules com-
prised exclusively of the major isotope of CHONPS
elements (expected elements for biological systems)
along with 13C, are completely resolved/deconvoluted
and identified. Thus, we can ignore the contributions
from 14C and from minor isotopes of all other elements
excluding carbon. This simplifies the calculation to a
single term with a binomial coefficient (binomial term)
shown in Equation 2, where NA13C ≈ 0.01109. The
binomial coefficient represents the number of possible
isotopomers of identical mass for a molecule with CMax

carbons given only 2 isotopes of carbon: 12C and 13C.
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At natural abundance, each peak, IM+i;NA, is directly
related to the theoretically untainted 12C monoisotopic
peak, IM+0, that has a fractional intensity of 1 when
dividing by the sum of isotopologue intensities. How-
ever, once 13C is incorporated into the molecule from a
labeling source, the calculation of the contributions
from natural abundance becomes more complex [8,9].
The effects of 13C natural abundance now depend on
the amount of 13C label already present. With each 12C/
13C isotopologue resolved in the FT-ICR-MS histogram,
we can use a series of binomial terms to accurately
describe and correct for 13C natural abundance. Equa-
tion 3 shows the basic form of these binomial terms as
BC(n, k) where k represents the total number of 13C car-
bons present, n represents the number of 13C carbons
due to incorporation from a labeling source, and k-n is
the number of 13C carbons due to natural abundance.
The binomial coefficient in Equation 3 enumerates the
number of ways that k-n 13C carbons can be incorpo-
rated into the molecule when n carbons are already
labeled with 13C. Equation 4 shows the first series
needed in the correction, BCsum(n) which represents
the fraction of IM+i intensity that is converted to other
isotopologues due to the effects of natural abundance.
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Equation 5 shows the full correction as the original
isotopologue intensity minus natural abundance contri-
butions based on lower mass untainted isotopologue
intensities. Division by the fractional intensity, 1 -
BCsum(i), compensates for natural abundance effects
that lower the intensity of the given isotopologue. As
illustrated in Table 1, Equation 5 must be applied in a
sequential fashion starting with i = 0, since the results
of each step are needed in subsequent steps. In other
words, the natural abundance corrected intensities of
isotopologues with lower 13C incorporation from label-
ing are needed to calculate the natural abundance cor-
rection of isotopologues with higher 13C incorporation
from labeling.
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Since 15N incorporation can be distinguished from 13C
incorporation due to the very high mass resolution in
FT-ICR-MS histograms, it takes only a trivial conversion
of Equations 3, 4, and 5 to handle labeling in 14N/15N
isotopologues. We simply replace NMax for CMax and
NA15N for NA13C. However, handling all of the mixed
14N/15N/12C/13C isotopologues that arise from simulta-
neous 13C and 15N labeling requires a series of two
binomial terms multiplied together as shown in Equa-
tions 6 and 7. Given the peaks are isotopically resolved,
there are CMax * NMax separate observable isotopolo-
gues, whose intensities are represented by IM+i, j;NA. The
multiplied binomial terms, BC(x, i) * BN(y, j), describe
the combined effects from both carbon and nitrogen
natural abundance.
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A version of each equation in larger fonts is available
in Additional file 1.

Implementation of the algorithm
We implemented Equations 3, 4, and 5 as an iterative
algorithm in the Perl programming language [Additional
file 2]. Iteration allows the algorithm to partially com-
pensate for missing (zero intensity) isotopologues. The
algorithm (Figure 1) starts with CMax and the observed
12C/13C isotopologue intensities contaminated by contri-
butions from 13C natural abundance. Based on CMax,
the algorithm precalculates the binomial coefficients
needed in later steps using Equations 3 and 4. During
each iteration, the algorithm performs three steps. In
step 1, the algorithm calculates the set of uncontami-
nated 12C/13C isotopologue intensities using Equation 5
and the observed intensities supplemented with calcu-
lated contaminated intensities for missing isotopologues.
From Equation 5, it is apparent that this must be done
in ascending mass order starting with IM+0. Sometimes,
small negative uncontaminated intensities arise from
errors in the observed intensities. These negative inten-
sities are flattened to zero, since they have no basis in
reality. Next, the algorithm renormalizes the uncontami-
nated intensities based on the sum of observed intensi-
ties. This is required since missing isotopologues were
supplemented with calculated values and negative inten-
sities are flattened to zero. In step 2, the algorithm cal-
culates the set of contaminated intensities based on the
uncontaminated set by solving for IM+i;NA in Equation 5.
In step 3, the algorithm calculates the absolute differ-
ence between observed and calculated contaminated
intensities. If this difference decreases, the algorithm
performs another iteration until no more improvement
is seen. Finally, the algorithm prints the results and
ends.

Testing the implementation
We created several sets of simulated isotopologues (test
sets) with varying levels of 13C-labeling and added the
expected contributions (contamination) from 13C natural
abundance by solving for IM+i;NA in Equation 5. We
then tested the implementation with these test sets. Fig-
ure 2 shows the results for three of these test sets of a
hypothetical metabolite with 20 carbon atoms. The 13C

Table 1 Sequential correction of 13C natural abundance
effects in a four-carbon example

IM+i =
bValue = (cIM+i;NA - ΣIM+x *BC(x, i))/(1 - BCsum(i))

IM+0 = 1.00 = (0.956)/(1.00 - 4.36E-2)

IM+1 = 1.00 = (1.01 - 1.00 * 4.29E-2)/(1.00 - 3.29E-2)

IM+2 = 0.00 = (3.33E-2 - 1.00 * 7.22E-4 - 1.00 * 3.25E-2)/(1.00 - 2.21E-2)

IM+3 = 0.00 = (3.70E-4 - 1.00 * 5.40E-6 - 1.00 * 3.65E-4 - 0.00 * 2.19E-2)
/(1.00 - 1.11E-2)

IM+4 = 0.00 = (1.38E-6 - 1.00 * 1.51E-8 - 1.00 * 1.36E-6 - 0.00 * 1.23E-4
- 0.00 * 1.11E-2)/(1.00 - 0.00)

The example involves a four-carbon molecule with 13C-labeling involving a
single carbon 50% of the time. Each row represents a single application (step)
of Equation 5. All numbers rounded to three significant figures.
bCorrected isotopologue values. The use of these values in subsequent steps
is highlighted in bold.
cContaminated isotopologue values.
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natural abundance contaminated intensities are in red
and corrected intensities in green. The red bars in Fig-
ure 2A represents the expected observed isotopologue
intensities when no 13C-labeling is present. This natu-
rally collapses into a single green 12C monoisotopic
peak with correction. Figure 2B shows the contaminated
and corrected isotopologue intensities when equal
amounts of 13C-labeling for 8, 10, and 12 carbons are
present. There is a tapering phenomenon observed in
the contaminated intensities due to the fact that the
number of carbons affecting the intensities decreases

with increasing amounts of 13C-labeling. Equation 3
captures this phenomenon within its binomial coeffi-
cient where it is further demonstrated in Figure 2C with
natural abundance having no effect on a metabolite with
100% 13C-labeling.
The implementation is also quite efficient even in an

interpreted programming language like Perl. 10,000
repetitions of this algorithm for all 3 simulated test sets
took only 17 seconds on a single core of an Intel T7200
Core 2 Duo mobile processor with 2GB of RAM and
running release 5.3 of the RedHat Enterprise Linux

Figure 2 Simulated 12C/13C isotopologues of 20 carbon metabolite. In all 3 charts, the red bars represent the relative isotopologue
intensities with contributions (contamination) from 13C natural abundance. The green bars represent the corrected isotopologue intensities with
this contamination removed. Chart A shows the expected isotopologues of a metabolite with no additional 13C-labeling present. Chart B shows
the expected isotopologues of a metabolite with equal amounts of 13C-labeling for 8, 10, and 12 carbons. Chart C shows the expected
isotopologues of a metabolite with 100% 13C-labeling.

Figure 1 Flowchart of 13C natural abundance correction algorithm. Starting with isotopologue intensities and CMax given as input, the
algorithm precalculates needed binomial coefficients. Next, the algorithm calculates the corrected intensities and uses them to calculate the
natural abundance contaminated intensities. Then the algorithm compares the observed and calculated contaminated intensities and only
continues for another iteration if an improvement is made.
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operating system. The implementation is also very accu-
rate. Given the perfect data in these three simulated test
sets, the largest error was 4.12 × 10-16 seen in the IM+1

corrected intensity for the test set representing no 13C-
labeling (Figure 2A). Furthermore, the implementation
appears quite robust since the relative error actually
decreases as the number of carbons (CMax) increases. At
a CMax = 100, the relative error is 6.77 × 10-17. This
implementation does have some numerical limitations,
for example, the CMax must be less than 270 carbons
due to all numerical quantities being represented as
double precision (64 bit) floating point numbers. How-
ever, this limitation is easily overcome by using higher
precision floating point numbers.

Application to phosphatidylcholine 34:1 observed
isotopologue intensities
Figure 3 shows the two sets of 12C/13C isotopologue
intensities for phosphatidylcholine 34:1 (34 carbons in
2 fatty acid chains with only 1 double bond), with 13C
natural abundance contaminated intensities in red and
corrected intensities in green. The algorithm converged
within 8 iterations to produce the corrected intensity
results. In comparing the contaminated and corrected
intensities, the most significant changes are seen in
isotopologues 0-4 and 16-20. The drastic drop in IM+1,
IM+2, and IM+4 isotopologues make the incorporation
of 13C-labeled glycerol much clearer. Also, the drop in
IM+16, IM+18, and IM+20 isotopologues supports the
expected incorporation of 13C-labeled acetyl groups in
the fatty acid chain biosynthesis.

Discussion and Conclusions
Overall, correcting for the effects of natural abundance
makes interpretation of isotopologue intensities from
stable isotope tracing experiments easier within the con-
text of cellular metabolism. Such a correction is
required before using more quantitative methods of
interpretation. Since the relative error is virtually zero
with perfectly simulated data and the algorithm is very
robust with increasing CMax, the accuracy of this correc-
tion is really only limited by the error in the isotopolo-
gue intensities themselves. Thus, the propagation of
data error through this algorithm should be straightfor-
ward to analyze and quantify. Moreover, from Equation
5 it is evident that effects from natural abundance sig-
nificantly link together groups of observed isotopologue
intensities. This difference between calculated and
observed intensities should be highly sensitive to the
error in a set of isotopologue intensities. Therefore, this
difference should be usable as an independent check on
the quality of the observed set of isotopologue intensi-
ties. Such a quality control check would be especially
useful when it is not possible or practical to repeat
experiments or to determine whether additional experi-
ments are necessary.

Methods
Cell Culture and FT-ICR-MS
We separated glycerophospholipids from crude cell
extracts derived from MCF7-LCC2 cells in tissue culture
after 24 hours of labeling with uniformly labeled 13C-
glucose. We analyzed the sample on a hybrid linear ion

Figure 3 12 C/13 C isotopologues of phosphatidylcholine 34:1. Bar chart of 13C natural abundance contaminated (red) and corrected (green)
sets of isotopologues. The lipid metabolite contains 34 carbons in the 2 fatty acid chains, 3 carbons in the glycerol, and 5 carbons in the
choline head group.
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trap 7T FT-ICR mass spectrometer (Finnigan LTQ FT,
Thermo Electron, Bremen, Germany) equipped with a
TriVersa NanoMate ion source (Advion BioSciences,
Ithaca, NY) as described elsewhere [6].
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