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Evolutionary rates at codon sites may be used to
align sequences and infer protein domain
function
Pierre M Durand1,3*, Scott Hazelhurst4, Theresa L Coetzer2

Abstract

Background: Sequence alignments form part of many investigations in molecular biology, including the
determination of phylogenetic relationships, the prediction of protein structure and function, and the
measurement of evolutionary rates. However, to obtain meaningful results, a significant degree of sequence
similarity is required to ensure that the alignments are accurate and the inferences correct. Limitations arise when
sequence similarity is low, which is particularly problematic when working with fast-evolving genes, evolutionary
distant taxa, genomes with nucleotide biases, and cases of convergent evolution.

Results: A novel approach was conceptualized to address the “low sequence similarity” alignment problem. We
developed an alignment algorithm termed FIRE (Functional Inference using the Rates of Evolution), which aligns
sequences using the evolutionary rate at codon sites, as measured by the dN/dS ratio, rather than nucleotide or
amino acid residues. FIRE was used to test the hypotheses that evolutionary rates can be used to align sequences
and that the alignments may be used to infer protein domain function. Using a range of test data, we found that
aligning domains based on evolutionary rates was possible even when sequence similarity was very low (for
example, antibody variable regions). Furthermore, the alignment has the potential to infer protein domain function,
indicating that domains with similar functions are subject to similar evolutionary constraints. These data suggest
that an evolutionary rate-based approach to sequence analysis (particularly when combined with structural data)
may be used to study cases of convergent evolution or when sequences have very low similarity. However, when
aligning homologous gene sets with sequence similarity, FIRE did not perform as well as the best traditional
alignment algorithms indicating that the conventional approach of aligning residues as opposed to evolutionary
rates remains the method of choice in these cases.

Conclusions: FIRE provides proof of concept that it is possible to align sequences and infer domain function by
using evolutionary rates rather than residue similarity. This represents a new approach to sequence analysis with a
wide range of potential applications in molecular biology.

Background
Investigations in molecular biology frequently require
the analysis of sequence alignments and several methods
are available for this purpose. Once a correct alignment
is obtained, inferences may be made concerning phylo-
genetic relationships and putative functions [1]. A fun-
damental problem arises when accurate sequence
alignments cannot be obtained due to poor similarity,
which may occur with homologous or analogous

genes [2]. Homologous genes, comprising orthologs
(arising from speciation events) and paralogs (arising
from gene duplication events) share common ancestry;
however, sequence similarity may be low when they are
rapidly evolving, evolutionary distant, or the sequences
have significant nucleotide biases. Analogous genes have
similar functions, but arise from convergent evolution
and the absence of shared ancestry means there is little
or no sequence similarity [3].
To address the limitation of poor sequence similarity

in homologous or analogous sequences, a novel align-
ment strategy was conceptualized and the FIRE
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(Functional Inference using Rates of Evolution) algo-
rithm developed. This method uses the evolutionary rate
at codon sites, rather than individual residues, to align
sequences. Evolutionary pressures are inferred from the
parameter ω (ratio of non-synonymous (dN) to synon-
ymous (dS) substitutions, corrected for opportunity) [4],
which is typically used to investigate Darwinian selection
at the molecular level. A non-synonymous rate signifi-
cantly greater that the synonymous rate, ω (dN/dS) > 1,
reflects positive selection, while neutral and purifying
selection are inferred when ω = 1, and ω <1, respec-
tively. The evolutionary rate may vary across whole cod-
ing sequences, at individual codons within a sequence
or along branches within a phylogenetic tree and
numerous evolutionary models and software statistical
packages for performing the analyses are available. For a
recent overview of the subject see [5]. The method
reported here makes use of the evolutionary rate at
codon sites to align sequences and demonstrates the
potential to infer protein domain function in sequences
that are subject to similar evolutionary constraints.

Results and Discussion
Conceptualization
The aim of this study was to address the limitation of
poor similarity when performing sequence alignments.
The traditional approach of using the positional homol-
ogy of residues to align sequences was therefore aban-
doned and the parameter ω employed instead. The
question we asked is: can the selective pressures acting
at codon sites across coding sequences, and not residue
positional homology, be used to perform alignments? To
investigate this question, we aligned homologous
domains (orthologous and paralogous data sets), which
typically have similar functions, using ω values at codon
sites across the sequences. Next, if sequences with simi-
lar functions can be aligned using evolutionary rates, we
tested the hypothesis that this approach may be used to
infer protein domain function in the absence of signifi-
cant sequence similarity. Domains with poor sequence
similarity but similar function (such as the antibody
data sets) were employed for this purpose.

Algorithm
The FIRE algorithm was developed in order to perform
a pairwise alignment using ω MLEs (maximum likeli-
hood estimates). The ω MLEs at codon sites were
obtained from multiple sequence alignments (MSAs) of
closely related orthologous sequences (see Methods
below for details) and FIRE is therefore, in essence,
aligning two MSAs or clades. FIRE was modified from
the Needleman-Wunsch algorithm [6] and finds the
pairwise alignment using the codon alignment (based on
ω MLEs) to maximize the similarity metric. A codon

score, cs, measures the similarity between two aligned ω
values in the range [0,1]. The maximum difference
between two ω values is capped to ωmax and is parame-
terized - we chose 1.5 as a default, since it is biologically
more meaningful to identify sites under positive selec-
tion than to emphasize the absolute values of sites with
ω>1. Thus, cs(ω1, ω2) = 0, if |ω1-ω2|>ωmax and cs(ω1,
ω2) = 1-(|ω1-ω2|)/ωmax otherwise. The FIRE score is
the sum of the cs scores over all aligned codon pairs,
normalized for sequence length by dividing the FIRE
score by the number of codons in the longer sequence.
The opening and extension gap penalties are parameter-
ized and the defaults of 0.5 and 0.05, respectively, were
used for the analyses in this study. The FIRE algorithm
produces a normalized score, percentage similarity plot,
histogram listing the number of codons in the alignment
with similar scores per decile, and an alignment of the
amino acid sequences. The FIRE software and a User
Information file providing further details are freely avail-
able at http://dept.ee.wits.ac.za/~scott/fire and are
attached as additional files 1 and 2.

Testing
Data sets
The Bayes Empirical Bayes (model M2) or Naïve Empiri-
cal Bayes (model M3) posterior mean ω MLEs at codon
sites were obtained for 15 data sets using the PAML
(Phylogenetic Analysis using Maximum Likelihood) v4.0
software [7] and a FIRE alignment of each data set with
every other set was performed (225 alignments for each
model). Data sets included the following domains: (i) a
highly conserved transcription factor MYB1 DNA-bind-
ing domain (DBD) [8]; (ii) MYB2, a paralog of MYB1; (iii)
a conserved tumor suppressor p53 DBD [9]; (iv) a meta-
bolic enzyme glycerol kinase (GK) [10]; and (v) light
chain antibody variable regions [11]. Variations in the fol-
lowing parameters were present across data sets and did
not adversely affect PAML or FIRE analyses: domain
length (90-504 codons), ω MLE range (0-9), dN range
(0.2-55.0), and paralogous sequences (metazoan MYB1
and MYB2). The number of sequences per data set ran-
ged from 4-12. The data sets with low sequence number
were used to examine the effect of this on FIRE outputs,
and as expected, sets with fewer sequences produced less
accurate ω MLEs and decreased FIRE reliability.
Sequence divergence (dS value across the tree) varied
from 2.1 to 48.1, which is within PAML suggested limits
of <50 [7]. An exception was the protozoan MYB1 set
(dS = 216.1); however, it is unlikely this led to erroneous
results since high dS values falsely elevate ω values and
in this set all the ω MLEs were <0.3.
Data analysis
The results of salient examples are discussed. FIRE
scores and similarity plots are provided in Table 1 and
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Figure 1, respectively, and the corresponding FIRE align-
ments are documented in additional file 3. The results
presented were obtained for ω MLEs obtained from
PAML analyses under model M3 (NSsites = 3). In gen-
eral, FIRE results for ω MLEs with model M3 were the
same or better than M2, the likely reason being that ω
MLEs under M3 are less constrained.
Following normalization for sequence length, homolo-
gous domains with similar functions produced FIRE
scores >0.60 and FIRE plots with the majority of codon
similarities >60%. For example, alignments for two
orthologous sets (metazoan MYB1/protozoan MYB1)
and two paralogous sets (metazoan MYB1/MYB2) pro-
duced scores of 0.93 and 0.94, respectively, and similar-
ity plots nearing 100% over most of the sequence. The
metazoan GK/protozoan GK alignment provided a com-
parison of two orthologous sets with a greater range in
ω MLEs, significantly different sequence lengths (>100
codons) and non-contiguous evolutionary conserved
codons [12]. The difference in sequence length is
responsible for the relatively low score (0.62), which is
reflected by the gaps in the plot (Figure 2C). Removing
the gaps prior to performing a FIRE alignment increased
the score to 0.89.
Conserved domains with dissimilar functions pro-

duced poor alignments, for example the metazoan
MYB1/GK alignment (FIRE score = 0.09). The MYB1/
p53 DBD alignment provided an interesting test case.
Both are transcription factors, however, the domains are
implicated in very different biological functions and,
according to our hypothesis, this difference should result
in a poor FIRE alignment. This was indeed the case

(FIRE score = 0.45). We did, however, note that FIRE
produced false positives when two unrelated highly con-
served domains (ω MLEs <0.3 across the entire
sequence) of similar lengths were aligned (data not
shown). Including other computational methods such as
structure determination would be valuable to identify
these cases.
The effect of sites under strong positive selection on

this approach was observed from alignments that
included antibody sets. As a result of positive selection,
antibody sequences of the variable region demonstrate
poor sequence similarity. Despite this, the FIRE scores
(>0.60), plots and alignments between the two � sets,
and the � and l sets suggested that these domains are
under similar evolutionary pressures, which correlates
with their similar functions. Alignments of the � and l
antibody sets with any of the domains that are function-
ally unrelated, for example MYB1, GK or p53, produced
poor FIRE results.
FIRE performance
To compare the performance of FIRE against the more
conventional ClustalW [13], MAFFT [14] and structure-
based T-Coffee [15] algorithms for the data sets in
Table 1, we employed sequence-structure alignments
(based on known 3D molecular structures) as an inde-
pendent standard of truth. FATCAT (Flexible structure
Alignmen T by Chaining Aligned fragment pairs allow-
ing Twists) [16] and DALI (Distance matrix Alignment
program) [17] algorithms, which differ in their treat-
ments of flexible structures, were used to align data sets
1-6 (negative control data sets cannot be aligned due to
different 3D structures) based on structures extracted
from the worldwide Protein Data Bank [18]. As a mea-
sure of performance, the proportions of correctly
aligned residue pairs (including gaps) obtained by FIRE,
T-Coffee, ClustalW and MAFFT alignments were deter-
mined using FATCAT or DALI as the reference align-
ment. For example, in data set 1 FATCAT aligned 54
pairs of residues, and using this as the reference align-
ment, the proportions correctly aligned by FIRE, T-Cof-
fee, ClustalW and MAFFT were 0.87, 1.00, 0.99 and
1.00, respectively. Irrespective of whether FATCAT or
DALI was used as the reference alignment, FIRE, T-Cof-
fee, ClustalW and MAFFT produced similar perfor-
mances. Results with FATCAT as the reference
alignment are summarized in Table 2 and data set 6 is
provided as an alignment example in Figure 2.
The T-Coffee and MAFFT algorithms performed the

same or better than FIRE or ClustalW for all data sets.
The T-Coffee performance is unsurprising since (i) the
same structure files used by FATCAT and DALI were
included in the T-Coffee algorithm, and (ii) it is well
known that structure-based alignments or a combina-
tion of structural information with other approaches

Table 1 FIRE scores

Set Data sets aligned #ω FIRE score

1 *metazoan MYB1 and protozoan MYB1 ω ≤ 0.2 0.93

2 *metazoan MYB1 and metazoan MYB2 ω ≤ 0.3 0.94

3 protozoan MYB1 and metazoan MYB2 ω ≤ 0.3 0.99

4 *metazoan GK and protozoan GK ω ≤ 1.3 +0.62

5 €� light chain VR and � light chain VR ω ≤ 7.0 0.66

6 *� light chain VR and l light chain VR ω ≤ 8.2 0.65

7 *metazoan MYB1 and metazoan p53 ω ≤ 1.3 0.45

8 metazoan MYB1 and metazoan GK ω ≤ 1.3 0.09

9 � light chain VR and metazoan p53 ω ≤ 7.0 0.29

10 *metazoan p53 and l light chain VR ω ≤ 8.2 0.32

The results of 10 FIRE alignments of the ω MLEs derived from two sequence
sets are shown. The range of ω MLEs at codon sites (#) includes values for
both data sets, and was taken from model M3 results. FIRE plots and
alignments for sets marked with asterisk (*) are provided in Figure 1 and
additional file 3, respectively. The two � data sets (labeled €) represent
different � sequences. Metazoan and protozoan GK data sets differed by >100
codons and therefore produced a relatively low FIRE alignment score (+).
DNA-binding domains were used for MYB and p53 alignments. Sets 7-10 are
negative controls. GK = glycerol kinase; VR = variable region.
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Figure 1 FIRE plots. Plots represent the pairwise alignment of ω MLEs at codon sites with FIRE, recorded as a percent similarity between the
two values. Corresponding FIRE scores and alignments are in TABLE 1 and additional file 3, respectively. A sliding window of 16 codons was
used and the percent similarity is the average over the window. (A) conserved orthologous metazoan and protozoan MYB1 DBDs; (B) conserved
paralogous metazoan MYB1 and MYB2 DBDs; (C) conserved metazoan and protozoan GK; (D) � and l light chain antibodies; (E) metazoan MYB1
and p53 DBDs; and (F) p53 DBD and � light chain antibody. The sequence sets used in plots E and F have no functional similarity and represent
negative controls. The 60% similarity cut-off value is indicated by a solid line. DBD = DNA-binding domain; GK = glycerol kinase.
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(such as T-Coffee which combines structural data with
homology-based methods) produce the most accurate
alignments when sequence similarity is low [19].
Although T-Coffee and MAFFT are state-of-the art
methods and known to perform well, it is worth noting
that in data sets 5 and 6, the performances of the three
homology-based algorithms (T-Coffee, MAFFT and
ClustalW) may be inflated relative to FIRE due to the

presence of short stretches of conserved residues
involved in stabilizing the tertiary structures of the anti-
body light chains. It was also observed that FIRE per-
formed better than ClustalW in these same data sets,
demonstrating the value of aligning sequences based on
evolutionary rates when sequence similarity is low. One
shortcoming of the FIRE algorithm is that the perfor-
mance may actually decrease when sequence similarity

Figure 2 FIRE, T-Coffee, ClustalW and MAFFT MSAs. The alignments generated by (A) FATCAT, (B) FIRE, (C) T-Coffee, (D) ClustalW and (E)
MAFFT algorithms for kappa and lambda antibody variable regions (data set 6 in Table 1) are displayed. Only sequences corresponding to the
two structure files in the FATCAT alignment and the representative sequences from the two clades aligned by FIRE are shown for each of the
other three MSAs. Using the FATCAT alignment as an independent standard-of-truth reference, correctly aligned residue pairs in the other four
MSAs were identified (shaded regions). Overall, T-Coffee and MAFFT produced the most accurate alignments, however, FIRE performed better
than ClustalW demonstrating the viability of using an evolutionary rates-based approach to sequence analysis when sequence similarity is low. In
addition, the short stretches of conserved amino acids (indicated by +) inflate the performances of the three homology-based methods relative
to FIRE (see text for discussion).
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is high. The likely reason is that if the two sequences
being aligned share a long stretch of very low ω MLEs,
such as occurs in highly conserved domains like the
MYB transcription factor in data set 2, there is a risk
that a gap (possibly due to an insertion/deletion else-
where in one of the sequences) is introduced causing a
misalignment over the conserved region.
The main findings from these results indicate that it is

conceptually and methodologically possible to align
functionally similar domains accurately using the evolu-
tionary rate at codon sites. In addition, good alignment
scores were only obtained for sequences coding for
similar functions, indicating that domains with similar
functions are subject to similar evolutionary constraints.
This suggests that the FIRE approach may be valuable
for inferring domain function in situations such as con-
vergent evolution or when sequences are highly diver-
gent. However, it was noted that for homologous genes
where there is some sequence similarity, FIRE was not
as accurate as MAFFT or T-Coffee. In these cases, the
conventional algorithms remain the method of choice.

Implementation
The value of the FIRE approach currently lies in its abil-
ity to align sequences independent of residue similarity.
This is helpful for analyzing sequences with poor simi-
larity, which typically occurs with evolutionary distant
genes, convergent evolution and sequences with extreme
nucleotide biases [20]. It is known that structure-based
methods are also valuable in these circumstances and it
is likely, therefore, that a combination of the two
approaches will offer the best strategy. Structural infor-
mation may also be valuable for eliminating false posi-
tives and negatives produced by FIRE. Furthermore, all
components of the FIRE output: normalized scores,
plots, alignments and histograms should be evaluated in
their biological context. Further experimentation and

subsequent refinements to the FIRE algorithm will lead
to improvements in method sensitivity and specificity.

Conclusions
FIRE provides proof of concept that it is possible to
align sequences and infer domain function by using evo-
lutionary rates. It complements the arsenal of available
computational methods and represents a new approach
to sequence analyses with a wide range of potential
applications in molecular biology.

Methods
MLEs of the ω parameter
Coding sequences were extracted from NCBI http://
www.ncbi.nlm.nih.gov and PlasmoDB v5.5 http://www.
plasmodb.org databases. MSAs were performed with
MAFFT [14] and phylogenetic trees were constructed
with ClustalW2 [21] and PAUP* [22]. MSAs and phylo-
genetic guide trees were processed with PAML 4
(codeml algorithm, F3 × 4 codon model, Model = 0,
NSsites = 2 and 3) [7] to obtain ω MLEs at codon sites.
Each data set (comprising a list of ω MLEs) was aligned
with every other data set with the program FIRE, which
was specifically developed for this purpose (see “algo-
rithm“ section above). A list of accession numbers,
sequence details, and PAML sequence and tree files are
available from the corresponding author.

FIRE analysis
FIRE uses the rst output files from a PAML analysis
(using either NSsites 2 or 3) to extract the ω MLEs and
perform an alignment. Two examples of the PAML rst
and mlc raw output files of the protozoan GK and l
light chain variable regions data set are provided in
additional file 4. The rst files provide ω MLEs and mlc
files provide statistical details regarding the analysis, for
example dN, dS and kappa (transition/transversion

Table 2 FIRE, T-Coffee, ClustalW and MAFFT performances

Set FATCAT
residue pairs

FIRE performance T-Coffee performance ClustalW performance MAFFT performance

1 54 0.87 1.00 0.99 1.00

2 94 0.57 0.96 0.84 0.97

3 137 0.83 0.97 0.83 0.96

*4 - 0.69 1.00 0.68 0.94

5 103 0.83 0.98 0.71 0.88

6 108 0.87 0.97 0.73 0.87

Performances of the FIRE, T-Coffee, ClustalW and MAFFT algorithms were measured by determining the proportion of correctly aligned residue pairs using
FATCAT and DALI structure-based alignments as a reference. FIRE is independent of homology and performed better than ClustalW for data sets 5 and 6
(antibody variable regions), illustrating the value of using this approach when sequence similarities are low. This independence from residues in the sequence
may also lead to relatively poor FIRE performance when sequence similarity is high, for example set 2. T-Coffee and MAFFT performed best overall (although see
text for further discussion). The PDB structure files included in FATCAT, DALI and T-Coffee algorithms are set 1: 2DIM, 2K9N; set 2: 2DIM, 2DIN; set 3: 2YUM, 2K9N;
set 4: 1BO5; set 5: 5LVE, 1QP1; set 6: 1LVE, 1NC4. *Due to a lack of structural data for set 4, the FUGUE threading algorithm [23] was used to generate a
reference structure alignment from the E. histolytica sequence (XM_650121.1) using E. coli glycerol kinase (PDB IB: 1BO5) as a template. For all alignments,
FATCAT and DALI produced similar results and only the FATCAT data are shown.
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ratio) values. The FIRE results for all data sets aligned
with each other are available from the corresponding
author.

T-Coffee, ClustalW and MAFFT MSAs
T-Coffee, ClustalW and MAFFT analyses were per-
formed using online servers at the Swiss Institute of
Bioinformatics http://tcoffee.vital-it.ch/cgi-bin/Tcoffee/
tcoffee_cgi/index.cgi, the European Bioinformatics Insti-
tute http://www.ebi.ac.uk/Tools/ and the MAFFT home-
page http://align.bmr.kyushu-u.ac.jp/mafft/software,
respectively. The T-Coffee advanced algorithm com-
bined a ClustalW alignment with the available PDB
structure files, which were selected based on the corre-
sponding data set sequence files and downloaded from
the World Wide Protein Databank http://www.wwpdb.
org. The E. coli crystal structure PDB file (ID: 1BO5)
was used for a T-Coffee analysis of the glycerol kinase
set due to a lack of metazoan and protozoan structural
data. Default settings were used for ClustalW2 align-
ments. For the MAFFT analysis, the E-INS-i algorithm
was used.

FATCAT and DALI alignments
Sequence-structure alignments were performed with
FATCAT http://fatcat.burnham.org and DALI http://
ekhidna.biocenter.helsinki.fi/dali_server online servers.
The two PDB structures used for each alignment are
representative sequences taken from the two clades
being aligned with FIRE. The same structures were
included in T-Coffee alignments. Due to a lack of struc-
tural data for the GK sequence set (data set 4), the
FUGUE threading algorithm [23] was used to generate a
second structure for E. histolytica GK (XM_650121.1)
with the E. coli crystal structure (PBD ID: 1BO5) as a
template. FATCAT, DALI and FUGUE structure align-
ments were used as reference alignments to which FIRE,
T-Coffee, ClustalW and MAFFT alignments were
compared.

Note added in proof
Our results complement a recent publication by S.L.
Kosakovsky Pond et al. ("Evolutionary Fingerprinting of
Genes”, Mol Biol Evol 2010, 27:520-536), which demon-
strated that probability distributions of evolutionary
rates in coding sequences may be used as identifiers of
genes. Furthermore, using rapidly evolving RNA viruses
as test data, they found that genes within the same func-
tional group have similar evolutionary fingerprints. The
findings presented by Kosakovsky Pond et al. and the
data in this manuscript suggest that the molecular sig-
natures left behind by evolution represent a tier of infor-
mation that is untapped by current sequence analysis
methods.

Additional file 1: FIRE script. Python code for the FIRE algorithm.

Additional file 2: FIRE User Information File. Information for users of
FIRE algorithm.

Additional file 3: FIRE alignments. Alignments correspond to the plots
in Figure 1. Each alignment is presented in fasta and interleaved formats.
For interleaved format: residues are shaded as identical (black) or similar
(gray), except for (D), which is shaded as in Figure 2. (A) highly
conserved metazoan and protozoan MYB1 DBDs; (B) conserved
paralogous metazoan MYB1 and MYB2 DBDs; (C) conserved metazoan
and protozoan GK; (D) � and l light chain antibodies; (E) metazoan
MYB1 and p53 DBDs; and (F) p53 DBD and � light chain antibody. The
sequence sets used in alignments E and F have no functional similarity
and represent negative controls.

Additional file 4: PAML rst and mlc output examples. Two examples
of the raw data PAML 4.0 mlc and rst output files for the protozoan GK
and lambda light chain antibody data sets.
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