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Abstract
Background: Gene expression data can be analyzed by summarizing groups of individual gene expression profiles 
based on GO annotation information. The mean expression profile per group can then be used to identify interesting 
GO categories in relation to the experimental settings. However, the expression profiles present in GO classes are often 
heterogeneous, i.e., there are several different expression profiles within one class. As a result, important experimental 
findings can be obscured because the summarizing profile does not seem to be of interest. We propose to tackle this 
problem by finding homogeneous subclasses within GO categories: preclustering.

Results: Two microarray datasets are analyzed. First, a selection of genes from a well-known Saccharomyces cerevisiae 
dataset is used. The GO class "cell wall organization and biogenesis" is shown as a specific example. After preclustering, 
this term can be associated with different phases in the cell cycle, where it could not be associated with a specific 
phase previously. Second, a dataset of differentiation of human Mesenchymal Stem Cells (MSC) into osteoblasts is used. 
For this dataset results are shown in which the GO term "skeletal development" is a specific example of a 
heterogeneous GO class for which better associations can be made after preclustering. The Intra Cluster Correlation 
(ICC), a measure of cluster tightness, is applied to identify relevant clusters.

Conclusions: We show that this method leads to an improved interpretability of results in Principal Component 
Analysis.

Background
With the advent of large gene expression experiments,
new methods of analysis have become necessary to
extract relevant information from the data. Exploratory
data analysis methods like cluster analysis are regularly
used to examine the expression profiles [1-3]. Other
methods use annotation information and look for over-
representation in sets of significantly regulated genes [4-
6]. A next step would be to associate relevant profiles
with annotation information and experimental variables
simultaneously. In this paper we will show advances in
finding associations between annotation categories and
experimental variables in microarray experiments.

One of the most extensive and systematic methods of
categorizing information about genes is the Gene Ontol-

ogy (GO) database [7]. A problem when relating GO
classes with expression profiles is the fact that the genes
in these functional classes can have diverse expression
profiles. This could mean that a class is not responding to
the experimental factors and is not related to the specific
biological settings. However, a second possibility is that
interesting subgroups are silenced by other heteroge-
neous or anti-correlated expression profiles present
within the class. This may obscure interesting relations.
To address this problem, we propose to cluster the
expression profiles of genes in every category, and select
relevant clusters before applying Principal Component
Analysis (PCA; [8]).

PCA has been applied frequently to explore the
microarray data in a low-dimensional space [9,10]. Either
genes or arrays are described with so called Principal
Components, in order to assess relations between arrays
or to identify genes with similar expression profiles. The
technique is very versatile and can easily cope with large
datasets. Work done by Alter et al. [11] is an example of
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the application of PCA to reduce the dimensionality of
microarray data. PCA was applied to the Yeast Cell Cycle
dataset of Spellman et al. [12], with each gene as an indi-
vidual object. We will use the same dataset, but will focus
on improvements in the application of PCA to find rela-
tions between specified classes of genes and phases in the
cell cycle. The work by Goeman et al. [13] is an example
of the direct association between annotation information
and data analysis. A global test is introduced, determin-
ing the relation between a global expression pattern of a
group of genes and a clinical outcome of interest. The
global expression pattern summarising a group of genes is
a method to perform research, based on previous
research stored in databases like for instance GO. A sec-
ond example of summarization of annotation categories
is from Chen and Wang [14]. In this paper, gene expres-
sion data with prior biological knowledge are integrated
by constructing "supergenes" for each gene category by
summarizing information from genes related to outcome
using a modified principal component analysis (PCA)
method. Instead of using genes, these supergenes repre-
senting information from each gene category were used
in further analysis. Both methods [13,14] indicate that
analysing the data on the level improves the results of
predictions.

Here, we show that summarizing a GO category in a
single profile or supergene can give problems for certain
classes, and can be improved. An example of a heteroge-
neous GO category is shown in Figure 1. The expression
data are from the Saccharomyces cerevisiae dataset [12]
and all the profiles belonging to the genes annotated with
GO:0007047 ("Cell wall organization and biogenesis") are
shown in Figure 1A. At first glance, there are several par-
ticular profiles distinguishable, but it would be hard to
give a suitable general description for this category. Previ-
ously, Busold et al. [15] also included GO information in
their analysis and touched upon this problem by discard-
ing of the categories like the one described here. Thus
with the criteria of Busold et al. [15] this category would
not be included in the analysis, because the whole cate-
gory has a low mean correlation over all the genes. The
fact that this category is discarded is surprising, because
organization of the cell wall is expected to be important
in the cell cycle.

We propose to perform clustering of expression profiles
present in individual GO classes before applying PCA.
This is a reversal of the order with respect to more com-
mon analyses, where clusters of genes with similar
expression profiles are mapped to GO terms. An indica-
tion of the improvements of GO class descriptions after
cluster analysis is given in Figure 1B, C and 1D. After
clustering with model-based clustering [16] these three
new subgroups with more distinct profiles can be formed
for this class. The new subclasses will not be discarded

because the mean correlation of each newly formed class
is higher and the role of this process will not be obscured
any longer.

The advantages of the cluster analysis will be shown by
comparing results from PCA performed with and with-
out preclustering. The Saccharomyces cerevisiae dataset
and a Mesenchymal Stem Cells (MSC) dataset will be
used. The intra-class correlation of clusters will be ana-
lyzed to identify better defined subgroups, and two spe-
cific examples of GO categories benefiting from the
clustering will be given.

Methods
All calculations are performed in R [17]. GO information
is obtained from the R data packages "Yeast" and
"hgu133a".

Datasets
Two datasets are used to show the advantages of the
method proposed here. The first dataset is the well
known Saccharomyces cerevisiae Cell Cycle dataset of
Spellman et al. [12], from here on referred to as the Yeast
Cell Cycle (YCC) dataset. The focus is on a subset of 800
genes involved in the cell cycle [12]. From this set, genes
are selected for which GO annotation information is
available. Only GO classes which contain at least 4 genes
are considered, which are members of the Biological Pro-
cess definition in GO. The 24 time points of the cdc15
synchronization method in the experiment are used. As a
result of these choices, a data matrix of 24 time points by
348 genes is obtained.

The second gene expression experiment analyzed in
this paper, was performed on human mesenchymal stem
cells, triggered to undergo osteogenic differentiation (E.
Piek et al., manuscript in preparation). This is a time
series dataset with multiple osteogenic treatments: Dex-
amethasone (DEX), Bone Morphogenetic Protein (BMP),
Vitamin D3 (VIT) and an Untreated control (UNT). The
hybridizations were performed with Affymetrix Human
Genome U133 A GeneChips [18]. The dataset was used
previously to demonstrate the advantages of applying
Principal Component Analysis (PCA) on interaction
terms from an Analysis of Variance for a large dataset
[19]. The MSC dataset has four dimensions (genes, treat-
ments, time points and replicates). Rather than focussing
on the expression values, as in the YCC dataset, we ana-
lyze the "Gene-Treatment" two-way interaction matrix
from the ANOVA model, described in de Haan et al. [19].
It represents the relations of genes with specific treat-
ments - in this case, we want to extend this to describe
the relation of specific GO (sub)classes and treatments.
Starting from the interaction matrix, genes are selected
having GO annotations, where the corresponding GO
classes contain at least 4 genes and have the definition
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Biological Process. This gives us a data matrix of 4 treat-
ments times 11974 genes. Furthermore, a subset of this
set is considered containing 50 relevant GO categories.
These categories have been defined beforehand by
domain experts.

Principal Component Analysis and biplots
Principal Component Analysis [8] can be used to give a
succinct overview of the structure in a high-dimensional

data set using a small number of Principal Components
(PCs). These PCs are linear combinations of the original
variables X1, X2, ..., Xz, chosen in such a way that PC 1
describes the largest fraction of variation in the data, and
subsequent PCs describe maximal portions of the
remaining variation. An essential requirement is that all
PCs orthogonal to each other. Thus, only the first few PCs
need to be considered to get a good overview of the data.
In our datasets, the variables X1, X2, ..., Xz represent time

Figure 1 Example of heterogeneous expression profiles within a single GO class. Expression profiles for genes annotated with the term 
GO:0007047 are depicted here for the cdc15 synchronization of the Saccharomyces cerevisiae Cell Cycle dataset [12]. From the first subpicture, con-
taining all profiles simultaneously (A), it is clear that there is big variation within the profiles. More homogeneous subgroups, with shifted or even anti-
correlated profiles in time, can be identified (B, C, D).
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points or treatments. The data of n objects, each mea-
sured at m time points or treatments, can be written as an
n by m matrix X. In our case, each object represents the
mean profile of a GO category (or subgroup within a GO
category identified with preclustering). The matrix X is
then decomposed by singular value decomposition
(SVD), as follows:

where U (an n by n score matrix) and V (an m by m
loading matrix) are orthogonal and Λ is an n by m matrix
containing the so called singular values. The superscript
T means the transpose of the matrix V. For the biplot
[20], the n × 2 matrix U2 of the first 2 PCs represents the
objects in the data. The m × 2 matrix containing the first
2 loading vectors represents the variables in the data. A
biplot is then constructed by plotting U2 and V2 in the
same graph.

Combining experimental data with GO information
In order to relate GO information with experimental
data, either expression profiles or interaction effects from
ANOVA, we should combine both entities. Here, we use
matrices to represent expression information (E) and GO
category information (G). In both matrices, rows corre-
spond to genes. Columns in E indicate time points (as in
the YCC dataset) or interactions (the MSC data). In
matrix G, columns represent GO terms in a binary cod-
ing: if a gene is annotated for a specific GO term the cor-
responding value in the matrix is 1, otherwise it is 0.

By combining the E and G matrices, categorical infor-
mation about groups of genes is obtained:

The resulting data table X is then scaled column-wise
so that the sum of each column is one. The X matrix can
now be considered to contain the mean expression pro-
files - or interaction profiles - for all GO categories of
interest.

Finally, PCA is performed on the X table containing
combined information sources. The results can be visual-
ized with a biplot [20]. In the biplots the GO classes are
shown as points; cell cycle phases and treatments are
indicated as arrows. The biplot allows the GO terms to be
correlated with the treatments or the cell cycle phases.

Preclustering
In order to prevent interesting profiles within one GO
category to cancel out, we propose to perform a cluster
analysis on all GO categories of interest individually, pro-
vided they contain enough genes. The actual clustering is

performed on the submatrix of the gene expression
matrix E, that corresponds to all columns and genes
within a go cluster. Based upon the results of the gene
expression clustering, new GO groups (one per cluster)
are added to the GO matrix. This step is indicated with
the term "preclustering". In the remainder of the paper,
we will only consider GO (sub)categories containing at
least four genes. In principle, any clustering method can
be used. We have chosen to cluster the genes, present in
each GO class, with model-based clustering [16] because
this is one of the few methods giving an indication of the
optimal number of clusters automatically. When this
optimal number equals one, the category is not split; if it
is larger than one, the GO class is split into several sub-
classes. Model-based clustering is available in several R
packages, such as flexmix and mclust. Which method is
used is not very important - the main motivation is to
achieve an automatic assessment of the optimal number
of clusters. In our scripts, we have used the 2002 version
of mclust (available as mclust02). Model-based clustering
has been applied to gene expression data before (e.g., [3]).
The data are described as a mixture of (normal) distribu-
tions. The method applies a number of different models,
identified by more or less stringent constraints. Parame-
ters for these models include different variations of shape,
volume, and orientation of the clusters. Selection of the
best model is performed using the Bayesian Information
Criterion (BIC, [21]). This index corrects for several
parameters used in the clustering - for instance the num-
ber of clusters - to enable a fair comparison between the
results of different models. The clustering of the model
with the best BIC was chosen with a minimum of 1, and
maximum of 8 clusters; it is not to be expected that a
higher number of clusters is needed in practice, but one
can easily check whether the results improve upon
increasing this upper limit. The steps in the preclustering
algorithm are displayed below:
1. Construct the E matrix of expression

values and the G matrix containing GO
category information.
2. Set maximum number of clusters and

minimum number of genes in cluster (here
8 and 4 respectively)
3. For each GO class:
3a. select the submatrix from matrix
E that contains only the genes from
that particular GO class
3b. perform gene-wise clustering of
the submatrix and select the best
clustering
3c. accept only clusters with at
least the minimum number of genes

4. Define a new G matrix containing
either the original GO classes or, when

X U V T= ⋅ ⋅Λ (1)

X E GT= (2)
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clusters have been detected, the GO sub-
classes - one column is used for each
(sub)class
5. Multiply E and the new G matrix to

obtain the X matrix
6. Perform column-wise scaling of X by

dividing by the number of genes in each
subclass
7. Perform PCA on the scaled X matrix

and show the biplot
Of course, the best clustering model will not necessarily

result in interesting clusters only. From a GO class, clus-
ters which contain noise or have a less interesting profile,
can also be formed. Therefore a measure is used to assess
the cluster quality of each individual cluster. One way to
do this is to calculate the volume for each cluster, avail-
able from the model-based clustering. Small volumes
indicate tight clusterings. An alternative measure, inde-
pendent of the clustering method, is to use the mean of
all the (Pearson) correlations between the genes within a
cluster, the Intra Cluster Correlation (ICC):

Here, Ci is an element in the lower triangle of the corre-
lation matrix of the genes in a cluster. The measure is also
used by Busold et al. [15] but was not specifically given a
name. By using the ICC it is possible to assess the quality
of the newly formed subgroups from a GO class: high val-
ues indicate tight clusters. An additional advantage of the
ICC over a measure like cluster volume is that uninterest-
ing clusters around zero, which may cover a small volume
and therefore would seem interesting according to the
volume criterion, usually show only low ICC values.

The result of the preclustering stage is a new set of GO
categories, nested in the original categories. These new
categories now are used as matrix G in Equation 2 to
obtain matrix X, the focus of attention. As a consequence,
one original GO category now may have several repre-
sentatives in this matrix, and in that case will show up
multiple times in PCA plots. The matrix E containing the
expression values is not changed by the preclustering
algorithm.

Results and Discussion
In this section, we will compare the results of PCA using
the original GO categories with the results of PCA on the
preclustered GO data. Besides the restrictions mentioned
previously in paragraph 3.1, all GO classes are taken into
account, no cuts were made to exclude parts of the GO
tree. In Table 1 the number of GO terms before and after
preclustering is summarized for the datasets. Besides the

number of unchanged original GO categories, the num-
ber of original GO categories split into new subgroups
based on the clustering is shown. Furthermore the num-
ber of new subgroups containing more than 4 genes is
given - these are used for further analysis.

Clearly, for the MSC data set and the relevant subset of
50 GO categories, many GO categories are heteroge-
neous with respect to the expression data. For the subset,
for example, all GO categories are split, leading to 100
new categories. Of these 100, 79 contain more than four
genes. For the much smaller and simpler YCC data set,
there is still a group of 12 GO categories that is split, lead-
ing in total to 70 categories each containing more than
four genes.

YCC data
To investigate whether the new GO subcategories gener-
ated with preclustering show relevant cluster structure,
the ICCs of the original GO classes and the new sub-
groups are compared in Figure 2. For most classes (56, see
Table 1) the ICC has not changed. These classes lie on the
diagonal, and consist of GO terms for which the optimal
number of clusters is determined to be 1: no meaningful
subclasses are formed. However, several new subclasses
with an increased ICC can be observed above the diago-
nal line. These are examples of groups of genes having a
specific profile, which is cancelled out to some extent
when the GO category as a whole is taken into account.
In some instances, a new subclass with fewer than four
genes is found. Such a class will not be taken into account
and is not shown in the figure. Note that in this case there
is no subclass showing a decrease in ICC.

As an example of a heterogeneous GO class benefiting
from preclustering the term "cell wall organization and
biogenesis" is taken. The three subclasses are shown with
asterisks in Figure 2. The expression profiles and clusters
for this term can be seen in Figure 1 in the introduction.
The term is chosen because it is expected to be involved
in the cell cycle, where the cell wall has to be organized
and assembled during cell division. The new subclasses
generated with clustering have an increased ICC com-
pared to the ICC of the whole class. The profiles are more
specific now and will not cancel out in the analysis.

The results of PCA of the YCC dataset with the normal
GO classes, and PCA of this dataset after clustering of
profiles within GO classes can be seen in Figure 3. This
allows for a comparison of the results and shows the
advantages of preclustering GO classes in PCA. The 24
time points of the cdc15 experiment are shown as load-
ings, and are connected by lines. The fact that the cell
cycle is passed through more than once results in a large
number of time points associated with the same phase
(G1, S, G2, M or G1/M). A separation of phases can be
seen in both Figure 3A and Figure 3B. The G1 phase is

ICC
n n

Ci

i

=
− ∑2
1( )

(3)
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separated from the M and G2 phases on the x-axis and
the M phase is separated from the G2 and S phase on the
y-axis. The explained variance in the first two Principal
Components (PCs) is more than 70 percent.

The consequences of preclustering are shown by a
number of differences between Figures 3A and 3B. The
term "cell wall organization and biogenesis", represented
with a star, is used as an example showing interesting
changes. When the whole GO class is used (Figure 3A),
the term seems uninteresting and is close to the center of
the PCA biplot. It is hard to associate it with a specific
phase of the cell cycle. When the different profiles are
separated by the clustering however, the new subgroups
can be associated with phases G1, M, and between M and
G2.

MSC data
For the MSC dataset similar questions about the compar-
ison between normal PCA and PCA after preclustering of

GO classes can be asked. The corresponding ICC plot is
shown in Figure 4. The original number of 922 GO
classes has increased to 1653 subclasses after precluster-
ing, indicated with gray dots. As shown previously, not all
classes are divided into subgroups and the unchanged
classes are appearing on the diagonal. A considerable
number of newly formed classes has an increased ICC.
Many of these subclasses have a low ICC for the original
GO classification, which results in vertical band of points
at around x = 0. The plot also tells us that a number of
new subclasses are formed with a lower ICC than the
original GO classes. These subclasses arise when a group
of less related expression profiles remains after relevant
profiles are split off in the preclustering.

Because of the large number of GO terms for this data-
set we will focus on the terms involved in cell differentia-
tion and osteogenesis. Out of a list of 50 GO terms which
could be expected to be responsive to the conditions and
the setup of the experiment, 24 terms were present in our
dataset 2, taking into account our criteria for the mini-
mum number of genes in a class. For these 24 classes,
clustering of the expression profiles in the original GO
classes gives rise to 79 classes. These subclasses are
marked with black dots in Figure 4. A large number of
new subclasses show an increased ICC; they all lie in the
vertical band described above. There is also a number of
new subclasses which has a decreased ICC.

For the MSC dataset, PCA results with and without
preclustering are shown in Figures 5A and 5B. One
should remember that in contrast to the YCC dataset,
where expression values are used, here, the interaction
values from the ANOVA model are analyzed. Four load-
ings are shown as arrows, corresponding to the three
osteogenic treatments and the untreated control (DEX,
BMP, VIT and UNT). The first two PCs describe 89.4
percent of the total variation in Figure 5A, and 94.2 per-
cent in Figure 5B. A separation between GO terms asso-
ciated with the untreated control and the osteogenic
treatments can be seen in the first PC for both Figures 5A
and 5B. The direction of the UNT arrow is opposite of
the three treatments [19]. In the second PC, a separation
between VIT and the two other treatments can be
observed.

Table 1: Number of GO categories, before and after preclustering.

Dataset # genes # GO cl. # split # new # > 4 total

YCC 348 68 12 29 14 70

MSC 11,974 922 553 1,933 1,284 1,653

MSC (50 cl.) 1,252 24 24 100 79 79

Only categories containing more than four genes are considered. The header #>4 means the number of groups which contains more than 4 
genes.

Figure 2 Plot showing the relation between the ICC of the 
grouped genes from original GO classes (x-axis) and the new sub-
groups (y-axis). Each point represents a class. The GO term 
GO:0007042 is marked with three asterisks, one for each subclass.
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The number of subclasses associated with cell differen-
tiation and osteogenesis has increased from 24 original
GO classes to 79 subclasses, as mentioned before. The
GO term "skeletal development" is shown as an example
of a category which benefits from preclustering. The
group is marked with a star symbol in Figure 5A. After
preclustering, six subclasses are identified. As can be seen
in Figure 5A, the original term could not be associated
with a specific treatment and is present in the center of
the plot. This has changed dramatically after clustering,

as shown in Figure 5B. One subgroup is still in the center
of the plot, but the other subclasses can be associated
with individual treatments. Two subgroups can specifi-
cally be correlated with osteogenic treatments, one for
VIT and one for BMP. These groups are even lying on the
corresponding arrows for the loadings. A number of
genes within the subgroups corresponds with informa-
tion known from biological literature. The new subgroup
lying on the arrow of the BMP contains the gene MSX1
for instance, which has been proven to be induced by
BMP in mice [22]. An example of a gene present in the
newly formed subgroup lying on the loading of the VIT
treatment is MSX2, which is known to be regulated by
vitamin D [23]. Finally, there are two subgroups which lie
in the direction of the untreated arrow and one final class
which could possibly be correlated with DEX.

To give additional statistical evidence of the improve-
ments of preclustering, the identification of the 24 terms
mentioned previously was generalized. The generalized
procedure was used for both unclustered and preclus-
tered X matrices of the MSC dataset (containing 922 and
1653 profiles, respectively). From the first 2 PCs of the X
matrix, interesting profiles were selected from the out-
side of the scores in steps of decreasing "interestingness".
The larger the distance from the center, the more inter-
esting a profile can be. The selection was based on the
Mahalanobis distance of a group or subgroup to the cen-
ter of the data. To assess the relevance of a selection, the
set of 24 GO terms in Table 2 is used as a reference. At

Figure 3 Visual representation of PCA results for the YCC dataset. 
The PCA results without (A) and with preclustering (B) are shown. Sev-
eral categories for the preclustered PCA are more outward and at a dif-
ferent location than for the PCA without preclustering. Categories 
(PCA scores) are shown as points, which can be correlated with phases 
of the cell cycle (connected by lines). Dark points have a ICC which is 
larger than 0.2. Specifically marked is the category "cell wall organiza-
tion and biogenesis" (GO:0007047, represented by star symbols). Cell 
phases are indicated by names (G1, S, G2, M and G1/M) also used by 
[12].
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each step the selectivity and specificity of the selection
can be determined from the number of reference GO
terms, which are either present or not present in the
selection.

Now a comparison between unclustered and preclus-
tered data can be made by drawing ROC curves - see Fig-
ure 6. The preclustered method is clearly more sensitive
and specific, compared to the data where no precluster-
ing has been performed. This means that newly formed
preclustered profiles are more to the outside of the data
in the first 2 PCs, and are more readily marked to be
interesting.

Discussion
We have shown a simple and general method to relate
expression levels, either directly, or after an ANOVA, to
GO categories at all levels in the hierarchy simultane-
ously. The crucial step is the realization that genes,

Figure 5 Visual representation of PCA results for the MSC data-
set, without (A) and with preclustering (B). The dots (scores) repre-
sent GO categories or subgroups, and the arrows (loadings) are the 
treatments with which the categories can be correlated (indicated 
with DEX, BMP, VIT and UNT). Only a subset of GO classes is depicted, 
to focus on cell differentiation and osteogenesis. In Figure 5A the 24 
original GO classes are shown and in Figure 5B the 79 subclasses. The 
stars identify the GO term GO:0001501 (skeletal development).
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Table 2: Table of 24 GO terms which were used to generate 
the ROC plot.

GO term description

GO:0007050 cell cycle arrest

GO:0009653 morphogenesis

GO:0001558 regulation of cell growth

GO:0045786 negative regulation of
progression through cell

cycle

GO:0016055 Wnt receptor signaling
pathway

GO:0008284 positive regulation of cell
proliferation

GO:0016049 cell growth

GO:0009790 embryonic development

GO:0007178 transmembrane receptor
protein serine/threonine

kinase signaling pathway

GO:0001501 skeletal development

GO:0000188 inactivation of MAPK activity

GO:0030111 regulation of Wnt receptor
signaling pathway

GO:0045595 regulation of cell
differentiation

GO:0001503 ossification

GO:0000187 activation of MAPK activity

GO:0000165 MAPKKK cascade

GO:0043406 positive regulation of MAPK
activity

GO:0030198 extracellular matrix
organization and biogenesis

GO:0050793 regulation of development

GO:0007179 transforming growth factor
beta receptor signaling

pathway

GO:0042127 regulation of cell
proliferation

GO:0040007 growth

GO:0051216 cartilage development

GO:0000902 cellular morphogenesis

The terms are present in the genes which were used to generate 
the mean pro les in the X matrix, before and after preclustering. 
The terms were selected by biologists and expected to be 
relevant to the biologic context of the experiment, which is the 
development of human mesenchymal stem cells to osteoblasts.
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although they are in the same GO category, may show
different profiles. As a result, the application of preclus-
tering leads to more differentiated information. The
method is generic; we have opted to use model-based
clustering, but in principle any other clustering method
can be used, provided that it is possible to automatically
generate a reasonable estimate of the number of clusters.
The method may be adjusted in a number of ways. The
lower limit on the number of genes for a GO category to
be considered in the analysis is rather arbitrary. For other
problems and datasets this can be adjusted depending on
the questions for the specific dataset. The same is true for
the cutoff for selecting GO categories. It is possible to
inadvertently remove categories which are of interest to
your dataset, but are very small.

Other techniques have been proposed for relating mea-
surements to annotation information. An example of
relating class information and experimental factors is
shown by Jeffery et al. [24], who use transcription factor
binding sites information. These are sites in the promot-
ers of genes to which a transcription factor can bind. The
transcription factors play an important role in the regula-
tory networks of gene expression. A method called Cor-
respondence Analysis (CA; [25]) was applied to relate
classes and experimental information. CA is similar to
PCA; the algorithm can reduce the multidimensional
data matrix to a lower dimension containing the impor-
tant information from the data. In the standard way of

applying CA, the dependency of values in the rows on the
columns of a contingency table for two sets of conditions
is investigated. After scaling of both the rows and col-
umns, PCA is applied to the scaled data.

For the analysis of gene expression data, the first arti-
cles which applied CA treated the matrix with expression
values as a contingency table. The aim was then to associ-
ate genes with variables. Kishino et al. [26] applied CA to
show the relationship between genes and tissues of a
dataset which was designed to investigate colon cancer
[27]. Fellenberg et al. [28] also showed the possibility to
investigate the associations between genes and variables.
The application of CA to incorporate GO information as
class information in the visualization of results was
shown by Busold et al. [15]. Datasets investigating glu-
cose metabolism and from human pancreatic adenocarci-
nomas were used.

For our data, CA and PCA would lead to very similar
results, because of the fact that the column means and
row means, used for scaling in CA, are very similar,
something that is also true for the data used in, e.g., [28].
In Figure 6, the CA curves would completely overlap with
the PCA curves and therefore have been left out. Since
PCA is more easy to interpret, we prefer it for this case.
Preclustering of GO information as presented here could
also reveal interesting findings otherwise discarded in
methods using class information like CA.

GO information (and other annotation information) is
to some extent limited, because not all genes are anno-
tated. This will have a limiting effect on the size of clus-
ters for less well known GO categories; if a certain GO
category in the database is not described correctly, or
extensively enough, it will obviously be hard to link this
GO category with the experimental factors of interest.
However, the number of annotations will increase rapidly
so that the method will only gain in importance.

With the division of GO classes in clusters with similar
profiles, it is possible that one of the new classes gets a
high ICC, but remains in the center of the biplot. Such a
subgroup will contain relatively flat profiles; nevertheless,
it is beneficial that it is clustered separately, to prevent
other interesting subgroups to be obscured. One final
result of the preclustering is that a category can be found
more than once in the same PCA biplot. This can make it
more difficult to draw conclusions for a single GO cate-
gory as a whole. On the other hand, the results will be
more indicative of what is really happening within a GO
class.

Conclusions
The advantages of clustering heterogeneous GO classes
have been shown here for two real gene expression data-
sets, the well-known YCC dataset and the MSC dataset.
The results show that preclustering yields an increased

Figure 6 ROC plot to exemplify the improved identification of in-
teresting terms by performing preclustering. The sensitivity and 
specificity of identification of 24 relevant GO terms was calculated to 
draw the lines. The curve generated from the pleclustered data (grey 
line) is more sensitive and specific than the original data without pre-
clustering (black line).
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number of interesting groups deviating from the center of
the PCA biplot. In this center the less interesting groups
with flat profiles are present. In future, more formal
selection criteria could be used to identify interesting GO
classes and newly formed subclasses, based on statistical
significance.

These properties of preclustering allow for a better
association of GO categories with phases or treatments,
because interesting subgroups which are obscured by dif-
ferent profiles are separated from each other. New mean-
ingful relations are discovered which would not have
been found otherwise with PCA. For the GO processes
"cell wall organization and biogenesis" (GO:0007047) and
"skeletal development" (GO:0001501) this is explicitly
shown.
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