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Abstract

high-throughput datasets.

Background: Identifying candidate genes in genetic networks is important for understanding regulation and
biological function. Large gene expression datasets contain relevant information about genetic networks, but
mining the data is not a trivial task. Algorithms that infer Bayesian networks from expression data are powerful
tools for learning complex genetic networks, since they can incorporate prior knowledge and uncover higher-order
dependencies among genes. However, these algorithms are computationally demanding, so novel techniques that
allow targeted exploration for discovering new members of known pathways are essential.

Results: Here we describe a Bayesian network approach that addresses a specific network within a large dataset to
discover new components. Our algorithm draws individual genes from a large gene-expression repository, and
ranks them as potential members of a known pathway. We apply this method to discover new components of the
cAMP-dependent protein kinase (PKA) pathway, a central regulator of Dictyostelium discoideum development. The
PKA network is well studied in D. discoideum but the transcriptional networks that regulate PKA activity and the
transcriptional outcomes of PKA function are largely unknown. Most of the genes highly ranked by our method
encode either known components of the PKA pathway or are good candidates. We tested 5 uncharacterized
highly ranked genes by creating mutant strains and identified a candidate cAMP-response element-binding protein,
yet undiscovered in D. discoideum, and a histidine kinase, a candidate upstream regulator of PKA activity.
Conclusions: The single-gene expansion method is useful in identifying new components of known pathways. The

method takes advantage of the Bayesian framework to incorporate prior biological knowledge and discovers
higher-order dependencies among genes while greatly reducing the computational resources required to process

Background

Cellular function depends on the coordination of thou-
sands of genes whose expression and activities are regu-
lated by complex networks. Understanding these
networks is essential for elucidating cell function, and is
a central question in systems biology. PKA (cAMP-
dependent protein kinase) is an important regulator of
cellular function in many eukaryotes. The role of PKA
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in development has been studied extensively in the
amoeba Dictyostelium discoideum using biochemistry,
genetics and cell biology, but the underlying transcrip-
tional regulatory network remains largely unknown. For
example, one of the most important missing compo-
nents is CREB (cAMP-response element-binding pro-
tein), the bZIP transcription factor that couples cAMP
signaling with gene expression in most eukaryotes [1].
We have used gene-expression data from thousands of
experiments to improve our understanding of PKA reg-
ulation and to uncover new components in the network.

D. discoideum cells are free-living soil amoebae that
prey on bacteria and propagate as single-celled organ-
isms when food is abundant. Upon starvation, the cells

© 2010 Parikh et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:devika@rice.edu
mailto:gadi@bcm.edu
http://creativecommons.org/licenses/by/2.0

Parikh et al. BMC Bioinformatics 2010, 11:163
http://www.biomedcentral.com/1471-2105/11/163

YakA ===-{ PufA

PkaC— ?

A

Figure 1 The PKA-regulatory pathway. Biochemical, genetic and
physiological data were used to describe a pathway that regulates
PKA during Dictyostelium development. Gene expression data were
not considered in the construction of this network. PufA is an RNA-
binding protein that sequesters pkaC mRNA and prevents its
translation. YakA is a protein kinase that indirectly inhibits PufA
activity. PkaC catalytic activity is inhibited by the regulatory subunit
PkaR. An extracellular cAMP signal is integrated through various
cAMP receptors (Car), which result in the activation of the
aggregative adenylyl cyclase AcaA. AcaA activation leads to
production of cAMP, which binds PkaR and ends the inhibition of
PkaC. Two proteins that contain response regulator domains control
PkaR. The adenylyl cyclase AcrA functions after the aggregation
stage of development and produces cAMP, and the cAMP-
phosphodiesterase RegA degrades intracellular cCAMP. These two
response regulator proteins are regulated indirectly by histidine
kinases (Dhk). The components that function downstream of PkaC
are unknown (?). Nodes in the graph represent genes and edges
represent regulatory relationships: positive (arrows) and negative
(barred lines). Dashed lines indicate indirect interactions. The
proteins in black are encoded by genes used in our analysis.

aggregate, differentiate into 2 types and form fruiting
bodies that consist of balls of spores carried atop cellu-
lar stalks [2]. The control of cAMP synthesis and the
regulation of PKA are essential for the transition from
growth to development and for all subsequent develop-
mental stages (Figure 1). Mutations in genes of the PKA
pathway cause severe developmental defects. Elimination
of positive regulators results in lack of aggregation and
elimination of negative regulators causes precocious
development [3]. Genome-scale analysis of the D. discoi-
deum PKA regulatory network should help to identify
pathway components and reveal emergent properties
that may predict novel network behavior.

Recently, many techniques to analyze gene-expression
patterns have been suggested. Methods using clustering
or correlation [4-6] have fallen short of uncovering the
complex dependences governing regulatory networks.
Many probabilistic graphical approaches, using probabil-
istic Boolean networks, information theory, and Bayesian
networks, have been used to model the connectivity of
regulatory networks. In a probabilistic Boolean network,
a gene state is predicted from the state of several other
genes by a set of probabilistic functions [7]. Information
theory approaches, such as ARACNE, compare expres-
sion profiles between all genes using mutual information
as a generalized measure of correlation [8]. Bayesian
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networks are useful because they can model higher than
pairwise orders of dependences between genes and can
incorporate existing knowledge [9-11]. They have been
used to learn direct, causal dependencies among genes
from expression data, distinguishing them from simple
correlations [12]. Unfortunately, a major limitation of
Bayesian network algorithms is their inability to model
cyclic networks. Furthermore algorithms that infer net-
work structure ab initio from experimental data scale
super-exponentially with the number of variables
(genes), so restrictive assumptions must be made for
computational feasibility. State-of-the-art algorithms that
provide exact results can only handle networks with 30-
50 genes [13], while heuristic approaches often require
strong assumptions [14], and rely on the availability of
very large, high quality datasets that represent a wide
range of states for each gene in the network. The pau-
city of such datasets in biology makes network structure
inference challenging.

Methods

Microarray data

We created a microarray data management system for
2,495 experiments that consists of gene-expression data
from various strains and mutants grown under many
different conditions. The microarrays represent 4,053 D.
discoideum genes [15]. Our data management and ana-
lysis pipeline incorporates the LIMMA package [16] in
R/BioConductor for quality control and normalization.
Since these data are derived from different experiments
under different conditions, we implemented a normali-
zation algorithm, which accounts for variation within
and between experiments [17], and a filtering schema to
reject low quality data (data with low correlation
between on-chip replications). Individual chips with low
correlation between duplicate spots and duplicate spots
with low correlation across all chips were removed.
Chips passing the quality filter were normalized using
the “printtip loess” normalization function in LIMMA,
followed by median scaling. Print tip normalization
accounts for signal intensity biases introduced during
the array printing process, while loess normalization
removes the biases introduced by different labeling dyes
[18]. Next the data are median-scaled to account for dif-
ferences in hybridization kinetics across experiments.
Finally the expression data are merged into a unified
dataset to allow meta-analysis. To deal with the inherent
noise in gene expression data, the expression values
were discretized into three categories: under-expressed,
normal and over-expressed, as compared to the average
across all experiments [19]. We tested multiple discreti-
zation strategies and found they made little difference to
the final Bayesian analysis. The entire dataset is available
at http://www.ailab.si/dictyexpress/data.htm.
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Bayesian networks

We used Bayesian networks [20] to model the core PKA
pathway (Figure 1). A Bayesian network encodes a path-
way as a joint probability distribution over variables
denoting the expression levels of all the genes in that
pathway. The network is a factored, graphical represen-
tation of the full joint distribution over the expression
levels. The graph structure of the network encodes con-
ditional independence relationships between the genes.
More formally, a Bayesian network over a set V = {Vy,..,,
V.} of n genes is a pair (G, 0), where G is a directed
acyclic graph whose vertices represent the variables
V1., Vy, and whose edges represent direct dependen-
cies between the variables and 6 represents the set of
conditional probability distributions of the form P(Vj]
Parents(V;, GQ)), for all i = 1,..., n. The qualitative part of
the model is the topology of the G, while the quantita-
tive part is the set 0 of local conditional probability dis-
tributions. The full joint probability distribution P(Vy,...,
V,) can be reconstructed as the product of the indivi-
dual conditional probability distributions in 6.

Learning Bayesian networks and the Single-gene
expansion strategy

The problem of learning a Bayesian network from data
is posed as an optimization problem: given a data set D
= {v]v € R" } of m joint measurements of n genes, find a
network B* = (G*, 6*) which maximizes the posterior
probability of the network given the data.

B*

argmaxG P(G|D)
argmaxG P(D|G)P(G)
argmaxG |P(D|G,0)P(0]G)doP(G)

The first term P(D|G, @) is the likelihood of the
expression data D given the network (G, 0), the second
term is the probability of the parameters ® given the
graph structure, and the third term is the prior probabil-
ity of the graph G. To compute the posterior probability
of a graph G with respect to the data set D, we assume a
uniform graph prior P(G), and a Dirichlet prior [11] for
P(0]|G). The best network with respect to the data is one
that maximizes the posterior probability P(G|D). The
logarithm of P(G|D) is called the Bayesian score of the
network. Finding the network with the highest Bayesian
score is known to be NP-complete [11]. There are two
heuristic approaches used to finding approximate solu-
tions to the combinatorial optimization problem - direct
search for a graph G guided by the Bayesian scoring
function, and using Markov chain Monte Carlo sampling
of graphs from the posterior distribution P(G|D). In this
paper, we propose a modification of the direct search
procedure described in [10]. Instead of starting ab initio,
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we began with a known network, including the member
genes and their connectivities and extend, one gene at a
time, from a genome wide expression data set. We call
this the single-gene expansion strategy. Starting with a
core pathway of 5 genes in the PKA pathway (Figure 1),
we expanded the network by adding a single gene at a
time in all possible ways that preserve the acyclicity of
the expanded network. In all, up to 2'° networks were
considered for each gene, corresponding to all possible
ways the gene can be added to the core network. Then
we calculate the Bayesian score of each expanded 6-node
network. The highest scoring 6-node network represents
the likelihood that the inserted gene is involved in the
PKA pathway. The score associated with the gene, called
the Bayesian addition score, is the difference between the
Bayesian score of the best 6-node network with the gene,
and the Bayesian score of the core pathway (i.e., without
the gene). The rank of each inserted gene is determined
by its Bayesian addition score, which was computed as
follows:

Bayesian addition score ( gene; ) =

[ BayesianScore (G + gene;; D ) ] - [ BayesianScore (G; D) ]

where D is the set of high quality data for the genes in
the network, and G is the core PKA network. We chose
not to perform cross-validation, since this analysis
would require random sub-sampling of the expression
dataset resulting in the exclusion of different perturba-
tion experiments. Modeling the data subsets would pro-
duce highly variable sub-optimal Bayesian addition
scores that do not reflect the most likely model given
the entire dataset.

The single-gene expansion strategy and the computa-
tion of the Bayesian addition scores was implemented
using the Bayes Net Toolbox for Matlab [20]. The
Matlab script we used is provided in Additional file 1.
Bayesian addition scores were calculated for 4,053 genes
in our expression data set.

Co-expression analysis

As a simpler alternative to the proposed technique we
have considered co-expression analysis, which does not
take into account a prior knowledge of network struc-
ture and instead only considers pairwise interactions
between genes. We used correlation between expression
levels of a given gene and the genes in the core pathway
as a measure of its relevance to the network. In particu-
lar, we defined a co-expression score of a gene as the
minimum pairwise distance between the gene and every
member of the core network.

Co-expression score ( gene; ) = min; ( distance( gene;, Core; ))
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The co-expression score was used to rank the 4,053
genes in our expression data set.

There are many distance measures that can be used,
including Pearson correlation and Euclidean distance.
While Euclidean distances are very sensitive to the mag-
nitudes of expression levels, Pearson correlations are
more robust since they measure the strength and direc-
tion of a (linear) relationship between expression levels.
Therefore, we chose to use Pearson correlation over
Euclidean distance in our analysis. The co-expression
score of a new gene is the highest Pearson correlation
between the gene and each of the other genes in the
core network.

Statistical analyses

Hypergeometric distribution (Phyper function in the sta-
tistical software package R) was used to determine
enrichment of developmental genes among the top-
ranked genes with published phenotypes. All published
mutants and their phenotypes are available at http://
www.dictybase.org. We used a 1-sided, unequal variance
Student’s -test (t.test function in the statistical software
package R) to examine whether the expression values of
some of the genes were characterized by higher variabil-
ity than the other genes.

GST-fusion protein and EMSA in vitro

The bZIP region of bzpF, coding for the DNA-binding
domain and the leucine zipper domain, was cloned into
the pGEX4T1 vector (Amersham Biosciences) upstream
of GST to generate a GST-fusion protein. The construct
was verified by restriction analysis and sequencing and
transformed into E. coli strain BL21star (Invitrogen).
Gene expression was induced with IPTG and the pro-
tein was purified on glutathione-sepharose beads (Amer-
sham Biosciences) according to the manufacturer’s
recommended protocol. The protein was used in an
electrophoretic mobility shift assay (EMSA) [21] with 2
double-stranded oligonucleotides. The CRE-containing
oligonucleotide was 5 AGC TAA TAT GAG AAA ATT
GAC GTC ATT AAC TTT T 3’ (the CRE sequence is
shown in bold letters), and the CRE-negative oligonu-
cleotide was 5 AGC TAA TAT GAG AAA ATT CAC
AAAATT AAC TTT T 3’, (mutations of the CRE
sequence are underlined). The oligonucleotides were
annealed with complementary oligonucleotides (5" AAA
AGT TAA TGA CGT CAA TTT T 3" and 5 AAA
AGT TAA TTT TGT GAA TTT T 3, respectively) and
labeled radioactively by filling in with Klenow fragment
of DNA polymerase (Invitrogen) in the presence of o-
32P-dATP. The labeled oligonucleotides were mixed
with the purified protein at room temperature, incu-
bated for 30 minutes and resolved by electrophoresis
through a native 5% polyacrylamide gel in 0.5x TBE
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buffer at 200 volts for 2 hours. The gels were dried
under reduced pressure and autoradiography was per-
formed to visualize the binding products.

Results

We extended the Bayesian network framework to facili-
tate an exploratory analysis of specific pathways to iden-
tify new potential members. We started by testing
whether transcriptional profiles could provide informa-
tion for reconstruction of a regulatory network. We ana-
lyzed 2,495 expression-array experiments, consisting of
data on 4,053 genes, including 5 genes from the estab-
lished PKA pathway (Figure 1). The pathway was con-
structed without consideration of gene expression, so
there was no reason to assume that it could be recon-
structed from expression data. Nevertheless, we chose
this network for several reasons, not the least of which
is its biological significance. Firstly, we assumed that it
would provide a more rigorous test of the approach
than the analysis of a known transcriptional network.
Moreover, the network includes cases in which two
genes coordinate the expression of a third gene, but the
two are not necessarily coordinately regulated. We pos-
tulated that incorporating prior knowledge from other
sources would allow better identification of potential
pathway members that depend on two or more core
members.

The transcriptional data we used were from cells with
different genotypes that were subjected to various
growth and developmental conditions [15,22-28]. All the
data are available in various public repositories, but we
have also collected and deposited them in our repository
for added convenience http://www.ailab.si/dictyexpress/
data.htm. We used the Bayesian scoring function to
evaluate all possible networks connecting the 5 genes.
As a control, the same networks were scored with ran-
domly shuffled expression data (Figure 2). We found
that the network scores obtained from the intact data
were variable, whereas the network scores obtained
from the shuffled data were nearly indistinguishable,
indicating that Bayesian modeling is capable of extract-
ing significant biological information from this domain.
The rank of the known 5-gene network was 10,313,
which is not significantly different from the rank
obtained from the shuffled data (Figure 2). This finding
was expected because the pathway was constructed
without consideration of transcriptional data and
because the 5 genes are not coordinately regulated. This
finding is not related to the applicability of our algo-
rithm, since our goal is to discover potential new mem-
bers of a known pathway, rather than to rediscover the
topology of a known pathway. Additionally, since
mRNA levels do not necessarily correlate with protein
levels and protein function, we use transcriptional data
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Figure 3 Single-gene expansion reveals candidate pathway
components. We compared the distribution of rankings from the
only as a surrogate measure to discover new members single-gene expansion method and co-expression analysis. A. Genes
of the PKA pathway. To find new pathway members, we were added to the network one at a time in all possible putative
implemented a single—gene expansion approach. We positions and the Bayesian addition scores (y-axis) were calculated
. . for each new network (x-axis). The top scores for each gene were
expanded the PKA pathway, which includes 5 genes and ,
. o . . ¢ plotted from best to worst (grey line). The top 5% of the
their Conne.ctwltles (Flgure 1), by addmg a smgle new distribution (black line) consist of 209 genes. B. Similarity between
gene at a time to make all p0551b1e 6-node networks. genes and network members was computed by calculating all
We scored the new networks by Calculating the Bayesian pairwise Pearson’s correlations and the maximal correlation score (y-
addition scores, e.g. the difference between the Bayesian axis) was used to rank each new gene (x-axis). Using the cutoff
determined by the single-gene expansion method, we focused our
score of the augmented network and that of the core , S, .
comparison on the top 5% of the distribution (black line).

network.

The scores determine the rank of the inserted gene
among all genes in the dataset - a higher rank indicates
a higher conditional dependence between the new gene
and the PKA network, as a whole. Figure 3A shows the
distribution of the Bayesian addition scores for all the
genes. The near-horizontal center of the sigmoid curve
shows that most genes are not significantly different
from each other in their effect on the network. A few
genes received high scores, suggesting significant rela-
tionships with the network (the left part of the plot) and
a few received low scores (the right part of the plot).
The latter is due to low-quality data, since the expres-
sion values were characterized by high variability com-
pared to the other genes (Student’s ¢-test p-value 4 x
10'*). These findings suggest that only a few new genes
may be involved in the PKA pathway. We therefore
focused our analysis on the 209 genes that ranked as
the top 5% (black line, Figure 3A). This group contains

mostly novel genes without definable domains and sev-
eral genes of known or presumed function (Additional
file 2, Table S1).

Mutations in known PKA-pathway genes cause develop-
mental defects [27]. We postulated that mutations in
new pathway genes would also cause such phenotypes.
The Dictyostelium genome is sparsely annotated - only
433 genes have known or presumed function. Despite
this sparse annotation, we find that 13 of the 209 top
ranked genes have been characterized previously, repre-
senting a statistically significant enrichment of genes
with known or presumed function (Hypergeometric
Test, p-value 0.005). Of the 13 previously characterized
genes, previous work has shown that 12 are essential for
proper development (Table 1). One possible explanation
for this finding could have been that published work is
skewed in favor of mutants with developmental
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Table 1 Retrospective analysis of high-ranking genes

Bayesian Rank Co-exp Rank Gene name Mutant phenotype® Reference
4 16 dhkK Aberrant slug migration [40]

33 31 gbfA Development arrests at mound stage [41]

42 69 WimA Aberrant fruiting body morphology [42]

77 44 dhkC Precocious development [43]

79 8 comC Aberrant aggregation [44]

92 174 1ZpA Aberrant aggregation [45]

112 NA egeB Development arrests at mound stage [37]

115 NA Sell-like Wild Type [42]

118 138 DG1037 No aggregation [42]

122 208 mybE Increased slug size [46]

123 157 CRTF No aggregation [47]

140 178 CudA Development arrests at slug stage [48]

189 214 tsg101 Small fruiting body [49]

204 NA cbpC Delayed culmination [50]

NA - Not ranked in the top 5% of the distribution; a - Mutant phenotypes were obtained from http://dictybase.org/. Twelve of the 13 high-ranking genes with
published mutant phenotypes exhibit developmentally abnormal phenotypes when mutated.

abnormalities. However, we calculated that only 67% of
all the characterized mutants in D. discoideum have
developmental abnormalities. Thus, the enrichment we
observed of genes essential for development is signifi-
cantly higher than that publication skewing (Hypergeo-
metric Test, p-value 0.002). The published data suggest
that most of the 12 genes are involved in the PKA net-
work (Table 1), validating the single-gene expansion
approach.

To test whether the single-gene expansion method has
an advantage over a simpler approach of identifying co-
expressed genes, we subjected the data to a similar ana-
lysis using co-expression networks instead of Bayesian
networks. Unlike co-expression analysis, our addition
procedure goes beyond considering pairwise interactions
between the new gene and the existing network, and
includes all potential n-ary interactions to judge the
relevance of the gene to the PKA pathway. Therefore we
expected the single-gene expansion method performance
to be comparable to co-expression networks when genes
have simple pairwise dependences, but to have an
advantage in discovering genes with higher-order depen-
dences in the core network. We measured the pairwise
similarity of each new gene to each of the 5 PKA path-
way genes using Pearson’s correlation. Figure 3B show
the distribution of co-expression scores for all the genes.
The shape of the curve we observed is also sigmoid but
it lacks distinct groups of high and low likelihood
scores. This observation suggests that the co-expression
method was less efficient in distinguishing potential net-
work members from unrelated genes at the high end,
and performed very poorly on genes with low quality
data at the low end. Therefore, we used the cutoff iden-
tified using the single-gene expansion method and
focused our comparison on the top 5% ranked genes by

both analyses. We found that 133 of the top-ranking
genes were discovered by both methods (Additional file
2, Table S1 and Additional file 3, Table S2), suggesting
that many of the 209 top-ranked genes have relatively
simple pairwise dependences with one of the genes in
the 5-gene network. The remaining 76 genes not
revealed by the pairwise analysis, therefore, are likely
dependent on 2 or more genes in the core network. To
test that possibility we computed the number of depen-
dences on core network genes for each of the 76 genes
discovered only by the single-gene expansion method.
We found that the number of dependences on core net-
work genes was significantly higher for those 76 genes
compared to the genes found by both methods (Stu-
dents ¢-test, p-value 0.01) (Additional file 2, Table S1).
While the single-gene expansion method identifies
higher-order dependences, this analysis does not detect
the strength of the dependences.

To further validate our approach, we tested additional
Dictyostelium strains with mutations in genes from the
top 5% whose developmental roles were unknown
(Table 2). Our selection criteria included availability of

Table 2 Experimental validation of predictions

Bayesian Co-exp Gene name Mutant phenotype

Rank Rank

34 92 bzpR None observed®

35 33 dhkL Precocious
development®

98 NA BC5V2_0_00231 None observed®

166 NA bzpG None observed®

188 129 bzpF Aberrant fruiting

bodies®

NA - Not ranked in the top 5% of the distribution, a - Huang and Shaulsky,
unpublished; b - this study (Figure 5); ¢ - data not shown.
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knockout vectors from the Functional Genomics Project
at Baylor College of Medicine [29], and the ability to
successfully generate and grow the knockout strains. We
successfully created 5 mutant strains, one with a disrup-
tion in a histidine kinase gene (dhkL), which is likely to
have a role upstream of PKA, 3 in basic leucine-zipper
transcription factors (bZIP) that are potential CREB
homologs, predicted to function downstream of PKA,
and one with no sequence homology.

We mutated the dhkL gene and found that the
mutants exhibited accelerated mid-development pro-
gression (Figure 4A). The dhkL™ mutants showed a
marked acceleration in development at 10 hours, but by
20 hours they resembled the wild type again. To quan-
tify this phenotype we developed wild-type and dhkL’
mutant cells and counted the number of spores during
development. The mutants started to form spores 2
hours before the wild type, and made 3-fold more

dhkL™

1004
804

60
40+
204

Sporulation efficiency
(% of input)

Q-

14 16 18 20 22 24
Time (h)

Figure 4 dhkL cells exhibit accelerated development. Wild-type
(WT) and dhkL™ cells were developed on buffered agar. A.
Developmental morphology at 10, 12 and 14 hours as indicated. Bar
-1 mm. The dhkl” mutants were indistinguishable from the wild
type cells during the first 8 hours of development (data not shown).
At 10 hours, the mutants formed fingers and tipped aggregates,
while the wild-type cells only formed tight aggregates. At 14 hours,
the mutants progressed to the slug stage, while the wild-type cells
just entered the finger stage. After 20 hours, the mutants resembled
the wild type cells again (data not shown). B. We counted the
number of spores at 2-hour intervals during development of dhkL
(circles and dashed lines) and wild type cells (squares and solid
lines). The sporulation efficiency (% of cells that became spores) is
plotted as a function of time (14-24 hrs), the average and standard
error from 3 independent replications. Error bars are not shown
when smaller than the symbol. Asterisks indicate a significant
difference between the wild type and the mutant values (Student's
t-test, p < 0.05).
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spores at 18 hours of development. That difference
decreased to 2-fold at 20 hours and disappeared by 22
hours (Figure 4B). Mutations in several PKA-pathway
genes cause rapid development [3], so the observed phe-
notypes suggest that dhkL is indeed a member of the
PKA pathway, probably functioning as a negative regula-
tor. Histidine kinases function by phosphorylating
response regulators. The D. discoideum genome encodes
two known response regulators [30] - the cAMP phos-
phodieasterase regA and the adenylate cyclase acrA
[31,32]. Thus the function of dhkL in the PKA pathway
may be mediated by these response regulators, which
modulate cAMP levels directly.

Previous efforts have failed to identify CREB homolo-
gues among the 19 bZIPs in the Dictyostelium genome
[30], but our analysis implicated three bZIPs as potential
PKA pathway components (Additional file 2, Table S1).
Sequence analysis revealed a degenerate cAMP-response
element (CRE) binding motif only in bzpF, implicating it
as a potential CREB (Figure 5A). We examined the abil-
ity of the BzpF protein to bind the canonical CRE by
expressing a GST-fusion protein in bacteria and testing
it in an electrophoretic mobility shift assay. We found
that the fusion protein bound a CRE-containing oligo-
nucleotide (Figure 5B, lane 3) but not a mutated oligo-
nucleotide (Figure 5B, lane 7), suggesting that BzpF can
bind CRE-containing DNA.

To test whether the mobility shift was indeed due to
binding by the BzpF-GST fusion protein, we added anti-
GST antibodies to the binding reaction. We found that
the shifted band was super-shifted, indicating that the
mobility shift was due to interaction between the oligo-
nucleotide and the fusion protein (Figure 5B, lane 4).
We also performed a competition assay by adding unla-
beled oligonucleotides to the reaction. Increasing
amounts of the mutated oligonucleotide had almost no
effect on binding (Figure 5B, right panel, CRE’) but
increasing amounts of the specific oligonucleotide
reduced binding in a dose-dependent manner
(Figure 5B, right panel, CRE). These results support the
conclusion that the BzpF protein binds CRE in a
sequence-specific manner and suggest that BzpF is a
candidate CREB protein.

Discussion

Our experimental results validate our computational
approach and indicate that it can discover components
of cellular pathways from expression profiles. This work
is an extension of work on Bayesian network models
using known pathways [33,34]. Our approach improves
on these methods by incorporating more complex prior
knowledge about the initial core network, including
dependencies derived from non-transcriptional data.
Our work is similar to other approaches that
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Figure 5 BzpF is a candidate CREB homolog, which binds CRE
DNA in vitro. A. The 120-amino-acid region of BzpF, containing the
conserved basic-leucine-zipper region is shown (aa 360-480). Amino
acids in bold correspond to the CRE-binding motifs in other
eukaryotes as shown in alignment with the human CREB
(NP_604391, aa 280-318). The underlined region was expressed as a
GST-fusion protein in £. coli and used for EMSA. B. The purified
BzpF-GST fusion protein was used in EMSA with radioactively
labeled oligonucleotides containing the canonical CRE motif (CRE,
lanes 1-4) or with a mutated form of CRE (CRE/, Lanes 5-7). An
autoradiogram is shown. Lanes 1 and 5 - no protein added; lanes 2
and 6 - GST protein alone (without the BzpF fusion); lane 3 and 7 -
BzpF-GST fusion protein; lane 4 - BzpF-GST fusion protein with anti-
GST antibodies added for super shift. Competition EMSA was done
under the same conditions as in Lane 3 but in the presence of
increasing amounts of unlabeled CRE’ (Lanes 8-10) or CRE (Lanes
11-13) oligonucleotides as indicated above the lanes. The triangles
indicate increased ratios of labeled to unlabeled oligonucleotides—
1:10, 1:50 and 1:500). Black text indicates the labeled
oligonucleotides and grey text indicates the unlabeled competitor.

incorporate various sources of knowledge into the Baye-
sian framework [35,36], but improved by allowing rank-
ing of thousands of genes to facilitate a more
explorative analysis.

The ability of Bayesian networks to discover depen-
dences between more than two genes makes the techni-
que more powerful than co-expression networks. For
example, our single-gene-expansion method discovered
egeB, a gene that encodes a C2-domain-containing cyto-
solic protein. That gene was highly ranked by our single-
gene-expansion method, but not by the co-expression
networks. egeB is a member of a gene family that is
responsible for induction of genes involved in early devel-
opment [37] . Our analysis found transcriptional depen-
dence between egeB and two early developmental genes,
pufA and acaA. Although no direct regulation of pufA
and acaA has been reported, there is evidence for indir-
ect regulation through yakA and carA, respectively [37].
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With the power to detect higher order relationships, our
Bayesian networks algorithm detected these interactions,
while the co-expression networks approach fell short.
Despite this advantage many of the previously character-
ized genes show higher ranking by co-expression analysis
compared with the single-gene expansion method. Most
likely the 76 genes identified only by the single-gene
expansion method are lowering the rankings of the 133
identified by both methods. We expect the highly ranked
genes with multiple dependences to be members of the
PKA pathway and exhibit clear developmental pheno-
types as we characterize more knockout mutants.

Since the known network is expanded by one gene at
a time, our method cannot detect interactions where
two or more non-core genes are involved in the regula-
tion. Since bZIP transcription factors are known to het-
erodimerize and many of them may have overlapping
functions [38], the fact that single knockouts of bzpR
and bzpG do not exhibit developmental phenotypes
does not exclude them as potential members of the
PKA pathway. Expanding the known networks by more
than one gene at a time has the potential to identify
more interacting partners, but since this extension
requires exponentially more computational time it was
not implemented for the PKA pathway analysis.

Our algorithm discovers genes that have conditional
dependences with members of the PKA pathway,
regardless of whether they are members of the PKA-
pathway or of parallel pathways. For example, we found
the transcriptional regulator ghfA, which is considered a
member of a parallel pathway [39]. Although PKA activ-
ity is not required for ghfA induction or activity, maxi-
mal mRNA expression of ghfA does require PKA
activity [39], suggesting conditional dependence between
these components.

Conclusions

Computational methods that infer Bayesian networks
can uncover gene expression dependencies in large data-
sets and thus provide means of proposing gene expres-
sion pathways. We introduce a novel strategy for using
Bayesian networks, designed for discovering new genes
of known genetic networks. This method incorporates
prior biological knowledge from many different sources
into the structure of the starting network and discovers
new components that may have higher-order dependen-
cies with members of the initial network. We applied
this method to the PKA pathway in D. discoideum and
validated the top predictions by performing direct
genetic tests. The experimental results identified dhkL, a
new candidate up-stream regulator of PKA, and bzpF, a
candidate CREB homologue in D. discoideum. Although
the initial PKA network does not reflect the underlying
transcriptional network, the single-gene-expansion
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method was successful in identifying new members.
Modeling networks that better represent the underlying
regulatory network may be even more informative.

The success of this method can be attributed to the
power of Bayesian networks and to the nature of our
dataset. We propose that successful modeling requires a
large dataset representing a wide range of cellular states.
The underlying network and probability distribution
might be perturbed in some mutant strains and under
some experimental conditions, and therefore trying to
model the wild type network using a heterogeneous
dataset can confound the analysis. On the other hand,
perturbation experiments are essential for creating the
necessary range of cellular states required for identifying
gene interactions. Therefore one must consider the tra-
deoff between maintaining the wild type network and
the information gain from perturbation experiments.
We chose the PKA pathway because it plays a central
role in all stages of Dictyostelium development and our
dataset contained many knockout experiments for genes
related to the core pathway. Many of these perturba-
tions affect the pathway function during specific stages,
and therefore provide the necessary information for
detecting gene dependences while maintaining the wild
type network during the other stages. Therefore our
dataset provides the required resolution for detecting
new members of the PKA pathway.

Additional file 1: Single-gene expansion script. Matlab script file
containing the single-gene expansion algorithm. The matlab BNT toolbox
and the expression data are required for the script to run. The BNT
toolbox can be downloaded from http://code.google.com/p/bnt/. The
complete expression dataset can be downloaded from
http://www.ailab.si/dictyexpress/data.htm.

Additional file 2: Supplementary Table S1. Gene ranked in the top 5%
by the single-gene expansion algorithm.

Additional file 3: Supplementary Table S2. Gene ranked in the top 5%
by co-expression analysis.
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BackgroundCellular function depends on the coordination of thousands of genes whose expression and activities are regulated by complex networks. Understanding these networks is essential for elucidating cell function, and is a central question in systems biology. PKA (cAMP-dependent protein kinase) is an important regulator of cellular function in many eukaryotes. The role of PKA in development has been studied extensively in the amoeba Dictyostelium discoideum using biochemistry, genetics and cell biology, but the underlying transcriptional regulatory network remains largely unknown. For example, one of the most important missing components is CREB (cAMP-response element-binding protein), the bZIP transcription factor that couples cAMP signaling with gene expression in most eukaryotes 1. We have used gene-expression data from thousands of experiments to improve our understanding of PKA regulation and to uncover new components in the network.D. discoideum cells are free-living soil amoebae that prey on bacteria and propagate as single-celled organisms when food is abundant. Upon starvation, the cells aggregate, differentiate into 2 types and form fruiting bodies that consist of balls of spores carried atop cellular stalks 2. The control of cAMP synthesis and the regulation of PKA are essential for the transition from growth to development and for all subsequent developmental stages (Figure 1). Mutations in genes of the PKA pathway cause severe developmental defects. Elimination of positive regulators results in lack of aggregation and elimination of negative regulators causes precocious development 3. Genome-scale analysis of the D. discoideum PKA regulatory network should help to identify pathway components and reveal emergent properties that may predict novel network behavior.Recently, many techniques to analyze gene-expression patterns have been suggested. Methods using clustering or correlation 456 have fallen short of uncovering the complex dependences governing regulatory networks. Many probabilistic graphical approaches, using probabilistic Boolean networks, information theory, and Bayesian networks, have been used to model the connectivity of regulatory networks. In a probabilistic Boolean network, a gene state is predicted from the state of several other genes by a set of probabilistic functions 7. Information theory approaches, such as ARACNE, compare expression profiles between all genes using mutual information as a generalized measure of correlation 8. Bayesian networks are useful because they can model higher than pairwise orders of dependences between genes and can incorporate existing knowledge 91011. They have been used to learn direct, causal dependencies among genes from expression data, distinguishing them from simple correlations 12. Unfortunately, a major limitation of Bayesian network algorithms is their inability to model cyclic networks. Furthermore algorithms that infer network structure ab initio from experimental data scale super-exponentially with the number of variables (genes), so restrictive assumptions must be made for computational feasibility. State-of-the-art algorithms that provide exact results can only handle networks with 30-50 genes 13, while heuristic approaches often require strong assumptions 14, and rely on the availability of very large, high quality datasets that represent a wide range of states for each gene in the network. The paucity of such datasets in biology makes network structure inference challenging.MethodsMicroarray dataWe created a microarray data management system for 2,495 experiments that consists of gene-expression data from various strains and mutants grown under many different conditions. The microarrays represent 4,053 D. discoideum genes 15. Our data management and analysis pipeline incorporates the LIMMA package 16 in R/BioConductor for quality control and normalization. Since these data are derived from different experiments under different conditions, we implemented a normalization algorithm, which accounts for variation within and between experiments 17, and a filtering schema to reject low quality data (data with low correlation between on-chip replications). Individual chips with low correlation between duplicate spots and duplicate spots with low correlation across all chips were removed. Chips passing the quality filter were normalized using the �printtip loess� normalization function in LIMMA, followed by median scaling. Print tip normalization accounts for signal intensity biases introduced during the array printing process, while loess normalization removes the biases introduced by different labeling dyes 18. Next the data are median-scaled to account for differences in hybridization kinetics across experiments. Finally the expression data are merged into a unified dataset to allow meta-analysis. To deal with the inherent noise in gene expression data, the expression values were discretized into three categories: under-expressed, normal and over-expressed, as compared to the average across all experiments 19. We tested multiple discretization strategies and found they made little difference to the final Bayesian analysis. The entire dataset is available at http://www.ailab.si/dictyexpress/data.htm.Bayesian networksWe used Bayesian networks 20 to model the core PKA pathway (Figure 1). A Bayesian network encodes a pathway as a joint probability distribution over variables denoting the expression levels of all the genes in that pathway. The network is a factored, graphical representation of the full joint distribution over the expression levels. The graph structure of the network encodes conditional independence relationships between the genes. More formally, a Bayesian network over a set V = {V1,..., Vn} of n genes is a pair (G, &theta;), where G is a directed acyclic graph whose vertices represent the variables V1,..., Vn, and whose edges represent direct dependencies between the variables and &theta; represents the set of conditional probability distributions of the form P(Vi|Parents(Vi, G)), for all i = 1,..., n. The qualitative part of the model is the topology of the G, while the quantitative part is the set &theta; of local conditional probability distributions. The full joint probability distribution P(V1,..., Vn) can be reconstructed as the product of the individual conditional probability distributions in &theta;.Learning Bayesian networks and the Single-gene expansion strategyThe problem of learning a Bayesian network from data is posed as an optimization problem: given a data set D = {v|v � Rn } of m joint measurements of n genes, find a network B* = (G*, &theta;*) which maximizes the posterior probability of the network given the data.The first term P(D|G, &Theta;) is the likelihood of the expression data D given the network (G, &theta;), the second term is the probability of the parameters &Theta; given the graph structure, and the third term is the prior probability of the graph G. To compute the posterior probability of a graph G with respect to the data set D, we assume a uniform graph prior P(G), and a Dirichlet prior 11 for P�(&theta;|G). The best network with respect to the data is one that maximizes the posterior probability P(G|D). The logarithm of P(G|D) is called the Bayesian score of the network. Finding the network with the highest Bayesian score is known to be NP-complete 11. There are two heuristic approaches used to finding approximate solutions to the combinatorial optimization problem - direct search for a graph G guided by the Bayesian scoring function, and using Markov chain Monte Carlo sampling of graphs from the posterior distribution P(G|D). In this paper, we propose a modification of the direct search procedure described in 10. Instead of starting ab initio, we began with a known network, including the member genes and their connectivities and extend, one gene at a time, from a genome wide expression data set. We call this the single-gene expansion strategy. Starting with a core pathway of 5 genes in the PKA pathway (Figure 1), we expanded the network by adding a single gene at a time in all possible ways that preserve the acyclicity of the expanded network. In all, up to 210 networks were considered for each gene, corresponding to all possible ways the gene can be added to the core network. Then we calculate the Bayesian score of each expanded 6-node network. The highest scoring 6-node network represents the likelihood that the inserted gene is involved in the PKA pathway. The score associated with the gene, called the Bayesian addition score, is the difference between the Bayesian score of the best 6-node network with the gene, and the Bayesian score of the core pathway (i.e., without the gene). The rank of each inserted gene is determined by its Bayesian addition score, which was computed as follows:where D is the set of high quality data for the genes in the network, and G is the core PKA network. We chose not to perform cross-validation, since this analysis would require random sub-sampling of the expression dataset resulting in the exclusion of different perturbation experiments. Modeling the data subsets would produce highly variable sub-optimal Bayesian addition scores that do not reflect the most likely model given the entire dataset.The single-gene expansion strategy and the computation of the Bayesian addition scores was implemented using the Bayes Net Toolbox for Matlab 20. The Matlab script we used is provided in Additional file 1. Bayesian addition scores were calculated for 4,053 genes in our expression data set.Co-expression analysisAs a simpler alternative to the proposed technique we have considered co-expression analysis, which does not take into account a prior knowledge of network structure and instead only considers pairwise interactions between genes. We used correlation between expression levels of a given gene and the genes in the core pathway as a measure of its relevance to the network. In particular, we defined a co-expression score of a gene as the minimum pairwise distance between the gene and every member of the core network.The co-expression score was used to rank the 4,053 genes in our expression data set.There are many distance measures that can be used, including Pearson correlation and Euclidean distance. While Euclidean distances are very sensitive to the magnitudes of expression levels, Pearson correlations are more robust since they measure the strength and direction of a (linear) relationship between expression levels. Therefore, we chose to use Pearson correlation over Euclidean distance in our analysis. The co-expression score of a new gene is the highest Pearson correlation between the gene and each of the other genes in the core network.Statistical analysesHypergeometric distribution (Phyper function in the statistical software package R) was used to determine enrichment of developmental genes among the top-ranked genes with published phenotypes. All published mutants and their phenotypes are available at http://www.dictybase.org. We used a 1-sided, unequal variance Student�s t-test (t.test function in the statistical software package R) to examine whether the expression values of some of the genes were characterized by higher variability than the other genes.GST-fusion protein and EMSA in vitroThe bZIP region of bzpF, coding for the DNA-binding domain and the leucine zipper domain, was cloned into the pGEX4T1 vector (Amersham Biosciences) upstream of GST to generate a GST-fusion protein. The construct was verified by restriction analysis and sequencing and transformed into E. coli strain BL21star (Invitrogen). Gene expression was induced with IPTG and the protein was purified on glutathione-sepharose beads (Amersham Biosciences) according to the manufacturer�s recommended protocol. The protein was used in an electrophoretic mobility shift assay (EMSA) 21 with 2 double-stranded oligonucleotides. The CRE-containing oligonucleotide was 5� AGC TAA TAT GAG AAA ATT GAC GTC ATT AAC TTT T 3� (the CRE sequence is shown in bold letters), and the CRE-negative oligonucleotide was 5� AGC TAA TAT GAG AAA ATT CAC AAAATT AAC TTT T 3�, (mutations of the CRE sequence are underlined). The oligonucleotides were annealed with complementary oligonucleotides (5� AAA AGT TAA TGA CGT CAA TTT T 3� and 5� AAA AGT TAA TTT TGT GAA TTT T 3�, respectively) and labeled radioactively by filling in with Klenow fragment of DNA polymerase (Invitrogen) in the presence of &alpha;-32P-dATP. The labeled oligonucleotides were mixed with the purified protein at room temperature, incubated for 30 minutes and resolved by electrophoresis through a native 5% polyacrylamide gel in 0.5� TBE buffer at 200 volts for 2 hours. The gels were dried under reduced pressure and autoradiography was performed to visualize the binding products.ResultsWe extended the Bayesian network framework to facilitate an exploratory analysis of specific pathways to identify new potential members. We started by testing whether transcriptional profiles could provide information for reconstruction of a regulatory network. We analyzed 2,495 expression-array experiments, consisting of data on 4,053 genes, including 5 genes from the established PKA pathway (Figure 1). The pathway was constructed without consideration of gene expression, so there was no reason to assume that it could be reconstructed from expression data. Nevertheless, we chose this network for several reasons, not the least of which is its biological significance. Firstly, we assumed that it would provide a more rigorous test of the approach than the analysis of a known transcriptional network. Moreover, the network includes cases in which two genes coordinate the expression of a third gene, but the two are not necessarily coordinately regulated. We postulated that incorporating prior knowledge from other sources would allow better identification of potential pathway members that depend on two or more core members.The transcriptional data we used were from cells with different genotypes that were subjected to various growth and developmental conditions 1522232425262728. All the data are available in various public repositories, but we have also collected and deposited them in our repository for added convenience http://www.ailab.si/dictyexpress/data.htm. We used the Bayesian scoring function to evaluate all possible networks connecting the 5 genes. As a control, the same networks were scored with randomly shuffled expression data (Figure 2). We found that the network scores obtained from the intact data were variable, whereas the network scores obtained from the shuffled data were nearly indistinguishable, indicating that Bayesian modeling is capable of extracting significant biological information from this domain. The rank of the known 5-gene network was 10,313, which is not significantly different from the rank obtained from the shuffled data (Figure 2). This finding was expected because the pathway was constructed without consideration of transcriptional data and because the 5 genes are not coordinately regulated. This finding is not related to the applicability of our algorithm, since our goal is to discover potential new members of a known pathway, rather than to rediscover the topology of a known pathway. Additionally, since mRNA levels do not necessarily correlate with protein levels and protein function, we use transcriptional data only as a surrogate measure to discover new members of the PKA pathway. To find new pathway members, we implemented a single-gene expansion approach. We expanded the PKA pathway, which includes 5 genes and their connectivities (Figure 1), by adding a single new gene at a time to make all possible 6-node networks. We scored the new networks by calculating the Bayesian addition scores, e.g. the difference between the Bayesian score of the augmented network and that of the core network.The scores determine the rank of the inserted gene among all genes in the dataset - a higher rank indicates a higher conditional dependence between the new gene and the PKA network, as a whole. Figure 3A shows the distribution of the Bayesian addition scores for all the genes. The near-horizontal center of the sigmoid curve shows that most genes are not significantly different from each other in their effect on the network. A few genes received high scores, suggesting significant relationships with the network (the left part of the plot) and a few received low scores (the right part of the plot). The latter is due to low-quality data, since the expression values were characterized by high variability compared to the other genes (Student�s t-test p-value 4 � 10-14). These findings suggest that only a few new genes may be involved in the PKA pathway. We therefore focused our analysis on the 209 genes that ranked as the top 5% (black line, Figure 3A). This group contains mostly novel genes without definable domains and several genes of known or presumed function (Additional file 2, Table S1).Mutations in known PKA-pathway genes cause developmental defects 27. We postulated that mutations in new pathway genes would also cause such phenotypes. The Dictyostelium genome is sparsely annotated - only 433 genes have known or presumed function. Despite this sparse annotation, we find that 13 of the 209 top ranked genes have been characterized previously, representing a statistically significant enrichment of genes with known or presumed function (Hypergeometric Test, p-value 0.005). Of the 13 previously characterized genes, previous work has shown that 12 are essential for proper development (Table 1). One possible explanation for this finding could have been that published work is skewed in favor of mutants with developmental abnormalities. However, we calculated that only 67% of all the characterized mutants in D. discoideum have developmental abnormalities. Thus, the enrichment we observed of genes essential for development is significantly higher than that publication skewing (Hypergeometric Test, p-value 0.002). The published data suggest that most of the 12 genes are involved in the PKA network (Table 1), validating the single-gene expansion approach.To test whether the single-gene expansion method has an advantage over a simpler approach of identifying co-expressed genes, we subjected the data to a similar analysis using co-expression networks instead of Bayesian networks. Unlike co-expression analysis, our addition procedure goes beyond considering pairwise interactions between the new gene and the existing network, and includes all potential n-ary interactions to judge the relevance of the gene to the PKA pathway. Therefore we expected the single-gene expansion method performance to be comparable to co-expression networks when genes have simple pairwise dependences, but to have an advantage in discovering genes with higher-order dependences in the core network. We measured the pairwise similarity of each new gene to each of the 5 PKA pathway genes using Pearson�s correlation. Figure 3B show the distribution of co-expression scores for all the genes. The shape of the curve we observed is also sigmoid but it lacks distinct groups of high and low likelihood scores. This observation suggests that the co-expression method was less efficient in distinguishing potential network members from unrelated genes at the high end, and performed very poorly on genes with low quality data at the low end. Therefore, we used the cutoff identified using the single-gene expansion method and focused our comparison on the top 5% ranked genes by both analyses. We found that 133 of the top-ranking genes were discovered by both methods (Additional file 2, Table S1 and Additional file 3, Table S2), suggesting that many of the 209 top-ranked genes have relatively simple pairwise dependences with one of the genes in the 5-gene network. The remaining 76 genes not revealed by the pairwise analysis, therefore, are likely dependent on 2 or more genes in the core network. To test that possibility we computed the number of dependences on core network genes for each of the 76 genes discovered only by the single-gene expansion method. We found that the number of dependences on core network genes was significantly higher for those 76 genes compared to the genes found by both methods (Students t-test, p-value 0.01) (Additional file 2, Table S1). While the single-gene expansion method identifies higher-order dependences, this analysis does not detect the strength of the dependences.To further validate our approach, we tested additional Dictyostelium strains with mutations in genes from the top 5% whose developmental roles were unknown (Table 2). Our selection criteria included availability of knockout vectors from the Functional Genomics Project at Baylor College of Medicine 29, and the ability to successfully generate and grow the knockout strains. We successfully created 5 mutant strains, one with a disruption in a histidine kinase gene (dhkL), which is likely to have a role upstream of PKA, 3 in basic leucine-zipper transcription factors (bZIP) that are potential CREB homologs, predicted to function downstream of PKA, and one with no sequence homology.We mutated the dhkL gene and found that the mutants exhibited accelerated mid-development progression (Figure 4A). The dhkL- mutants showed a marked acceleration in development at 10 hours, but by 20 hours they resembled the wild type again. To quantify this phenotype we developed wild-type and dhkL- mutant cells and counted the number of spores during development. The mutants started to form spores 2 hours before the wild type, and made 3-fold more spores at 18 hours of development. That difference decreased to 2-fold at 20 hours and disappeared by 22 hours (Figure 4B). Mutations in several PKA-pathway genes cause rapid development 3, so the observed phenotypes suggest that dhkL is indeed a member of the PKA pathway, probably functioning as a negative regulator. Histidine kinases function by phosphorylating response regulators. The D. discoideum genome encodes two known response regulators 30 - the cAMP phosphodieasterase regA and the adenylate cyclase acrA 3132. Thus the function of dhkL in the PKA pathway may be mediated by these response regulators, which modulate cAMP levels directly.Previous efforts have failed to identify CREB homologues among the 19 bZIPs in the Dictyostelium genome 30, but our analysis implicated three bZIPs as potential PKA pathway components (Additional file 2, Table S1). Sequence analysis revealed a degenerate cAMP-response element (CRE) binding motif only in bzpF, implicating it as a potential CREB (Figure 5A). We examined the ability of the BzpF protein to bind the canonical CRE by expressing a GST-fusion protein in bacteria and testing it in an electrophoretic mobility shift assay. We found that the fusion protein bound a CRE-containing oligonucleotide (Figure 5B, lane 3) but not a mutated oligonucleotide (Figure 5B, lane 7), suggesting that BzpF can bind CRE-containing DNA.To test whether the mobility shift was indeed due to binding by the BzpF-GST fusion protein, we added anti-GST antibodies to the binding reaction. We found that the shifted band was super-shifted, indicating that the mobility shift was due to interaction between the oligonucleotide and the fusion protein (Figure 5B, lane 4). We also performed a competition assay by adding unlabeled oligonucleotides to the reaction. Increasing amounts of the mutated oligonucleotide had almost no effect on binding (Figure 5B, right panel, CRE�) but increasing amounts of the specific oligonucleotide reduced binding in a dose-dependent manner (Figure�5B, right panel, CRE). These results support the conclusion that the BzpF protein binds CRE in a sequence-specific manner and suggest that BzpF is a candidate CREB protein.DiscussionOur experimental results validate our computational approach and indicate that it can discover components of cellular pathways from expression profiles. This work is an extension of work on Bayesian network models using known pathways 3334. Our approach improves on these methods by incorporating more complex prior knowledge about the initial core network, including dependencies derived from non-transcriptional data. Our work is similar to other approaches that incorporate various sources of knowledge into the Bayesian framework 3536, but improved by allowing ranking of thousands of genes to facilitate a more explorative analysis.The ability of Bayesian networks to discover dependences between more than two genes makes the technique more powerful than co-expression networks. For example, our single-gene-expansion method discovered egeB, a gene that encodes a C2-domain-containing cytosolic protein. That gene was highly ranked by our single-gene-expansion method, but not by the co-expression networks. egeB is a member of a gene family that is responsible for induction of genes involved in early development 37 . Our analysis found transcriptional dependence between egeB and two early developmental genes, pufA and acaA. Although no direct regulation of pufA and acaA has been reported, there is evidence for indirect regulation through yakA and carA, respectively 37. With the power to detect higher order relationships, our Bayesian networks algorithm detected these interactions, while the co-expression networks approach fell short. Despite this advantage many of the previously characterized genes show higher ranking by co-expression analysis compared with the single-gene expansion method. Most likely the 76 genes identified only by the single-gene expansion method are lowering the rankings of the 133 identified by both methods. We expect the highly ranked genes with multiple dependences to be members of the PKA pathway and exhibit clear developmental phenotypes as we characterize more knockout mutants.Since the known network is expanded by one gene at a time, our method cannot detect interactions where two or more non-core genes are involved in the regulation. Since bZIP transcription factors are known to heterodimerize and many of them may have overlapping functions 38, the fact that single knockouts of bzpR and bzpG do not exhibit developmental phenotypes does not exclude them as potential members of the PKA pathway. Expanding the known networks by more than one gene at a time has the potential to identify more interacting partners, but since this extension requires exponentially more computational time it was not implemented for the PKA pathway analysis.Our algorithm discovers genes that have conditional dependences with members of the PKA pathway, regardless of whether they are members of the PKA-pathway or of parallel pathways. For example, we found the transcriptional regulator gbfA, which is considered a member of a parallel pathway 39. Although PKA activity is not required for gbfA induction or activity, maximal mRNA expression of gbfA does require PKA activity 39, suggesting conditional dependence between these components.ConclusionsComputational methods that infer Bayesian networks can uncover gene expression dependencies in large datasets and thus provide means of proposing gene expression pathways. We introduce a novel strategy for using Bayesian networks, designed for discovering new genes of known genetic networks. This method incorporates prior biological knowledge from many different sources into the structure of the starting network and discovers new components that may have higher-order dependencies with members of the initial network. We applied this method to the PKA pathway in D. discoideum and validated the top predictions by performing direct genetic tests. The experimental results identified dhkL, a new candidate up-stream regulator of PKA, and bzpF, a candidate CREB homologue in D. discoideum. Although the initial PKA network does not reflect the underlying transcriptional network, the single-gene-expansion method was successful in identifying new members. Modeling networks that better represent the underlying regulatory network may be even more informative.The success of this method can be attributed to the power of Bayesian networks and to the nature of our dataset. We propose that successful modeling requires a large dataset representing a wide range of cellular states. The underlying network and probability distribution might be perturbed in some mutant strains and under some experimental conditions, and therefore trying to model the wild type network using a heterogeneous dataset can confound the analysis. On the other hand, perturbation experiments are essential for creating the necessary range of cellular states required for identifying gene interactions. Therefore one must consider the tradeoff between maintaining the wild type network and the information gain from perturbation experiments. We chose the PKA pathway because it plays a central role in all stages of Dictyostelium development and our dataset contained many knockout experiments for genes related to the core pathway. Many of these perturbations affect the pathway function during specific stages, and therefore provide the necessary information for detecting gene dependences while maintaining the wild type network during the other stages. Therefore our dataset provides the required resolution for detecting new members of the PKA pathway.Authors� contributionsE.H. and C.D. performed the experiments; A.P. performed the data analysis; A.P., D.S. and G.S. wrote the manuscript; all of the authors contributed to the research design, discussed the results, commented on the manuscript and read and approved the final manuscript.
BackgroundCellular function depends on the coordination of thousands of genes whose expression and activities are regulated by complex networks. Understanding these networks is essential for elucidating cell function, and is a central question in systems biology. PKA (cAMP-dependent protein kinase) is an important regulator of cellular function in many eukaryotes. The role of PKA in development has been studied extensively in the amoeba Dictyostelium discoideum using biochemistry, genetics and cell biology, but the underlying transcriptional regulatory network remains largely unknown. For example, one of the most important missing components is CREB (cAMP-response element-binding protein), the bZIP transcription factor that couples cAMP signaling with gene expression in most eukaryotes 1. We have used gene-expression data from thousands of experiments to improve our understanding of PKA regulation and to uncover new components in the network.D. discoideum cells are free-living soil amoebae that prey on bacteria and propagate as single-celled organisms when food is abundant. Upon starvation, the cells aggregate, differentiate into 2 types and form fruiting bodies that consist of balls of spores carried atop cellular stalks 2. The control of cAMP synthesis and the regulation of PKA are essential for the transition from growth to development and for all subsequent developmental stages (Figure 1). Mutations in genes of the PKA pathway cause severe developmental defects. Elimination of positive regulators results in lack of aggregation and elimination of negative regulators causes precocious development 3. Genome-scale analysis of the D. discoideum PKA regulatory network should help to identify pathway components and reveal emergent properties that may predict novel network behavior.Recently, many techniques to analyze gene-expression patterns have been suggested. Methods using clustering or correlation 456 have fallen short of uncovering the complex dependences governing regulatory networks. Many probabilistic graphical approaches, using probabilistic Boolean networks, information theory, and Bayesian networks, have been used to model the connectivity of regulatory networks. In a probabilistic Boolean network, a gene state is predicted from the state of several other genes by a set of probabilistic functions 7. Information theory approaches, such as ARACNE, compare expression profiles between all genes using mutual information as a generalized measure of correlation 8. Bayesian networks are useful because they can model higher than pairwise orders of dependences between genes and can incorporate existing knowledge 91011. They have been used to learn direct, causal dependencies among genes from expression data, distinguishing them from simple correlations 12. Unfortunately, a major limitation of Bayesian network algorithms is their inability to model cyclic networks. Furthermore algorithms that infer network structure ab initio from experimental data scale super-exponentially with the number of variables (genes), so restrictive assumptions must be made for computational feasibility. State-of-the-art algorithms that provide exact results can only handle networks with 30-50 genes 13, while heuristic approaches often require strong assumptions 14, and rely on the availability of very large, high quality datasets that represent a wide range of states for each gene in the network. The paucity of such datasets in biology makes network structure inference challenging.MethodsMicroarray dataWe created a microarray data management system for 2,495 experiments that consists of gene-expression data from various strains and mutants grown under many different conditions. The microarrays represent 4,053 D. discoideum genes 15. Our data management and analysis pipeline incorporates the LIMMA package 16 in R/BioConductor for quality control and normalization. Since these data are derived from different experiments under different conditions, we implemented a normalization algorithm, which accounts for variation within and between experiments 17, and a filtering schema to reject low quality data (data with low correlation between on-chip replications). Individual chips with low correlation between duplicate spots and duplicate spots with low correlation across all chips were removed. Chips passing the quality filter were normalized using the �printtip loess� normalization function in LIMMA, followed by median scaling. Print tip normalization accounts for signal intensity biases introduced during the array printing process, while loess normalization removes the biases introduced by different labeling dyes 18. Next the data are median-scaled to account for differences in hybridization kinetics across experiments. Finally the expression data are merged into a unified dataset to allow meta-analysis. To deal with the inherent noise in gene expression data, the expression values were discretized into three categories: under-expressed, normal and over-expressed, as compared to the average across all experiments 19. We tested multiple discretization strategies and found they made little difference to the final Bayesian analysis. The entire dataset is available at http://www.ailab.si/dictyexpress/data.htm.Bayesian networksWe used Bayesian networks 20 to model the core PKA pathway (Figure 1). A Bayesian network encodes a pathway as a joint probability distribution over variables denoting the expression levels of all the genes in that pathway. The network is a factored, graphical representation of the full joint distribution over the expression levels. The graph structure of the network encodes conditional independence relationships between the genes. More formally, a Bayesian network over a set V = {V1,..., Vn} of n genes is a pair (G, &theta;), where G is a directed acyclic graph whose vertices represent the variables V1,..., Vn, and whose edges represent direct dependencies between the variables and &theta; represents the set of conditional probability distributions of the form P(Vi|Parents(Vi, G)), for all i = 1,..., n. The qualitative part of the model is the topology of the G, while the quantitative part is the set &theta; of local conditional probability distributions. The full joint probability distribution P(V1,..., Vn) can be reconstructed as the product of the individual conditional probability distributions in &theta;.Learning Bayesian networks and the Single-gene expansion strategyThe problem of learning a Bayesian network from data is posed as an optimization problem: given a data set D = {v|v � Rn } of m joint measurements of n genes, find a network B* = (G*, &theta;*) which maximizes the posterior probability of the network given the data.The first term P(D|G, &Theta;) is the likelihood of the expression data D given the network (G, &theta;), the second term is the probability of the parameters &Theta; given the graph structure, and the third term is the prior probability of the graph G. To compute the posterior probability of a graph G with respect to the data set D, we assume a uniform graph prior P(G), and a Dirichlet prior 11 for P�(&theta;|G). The best network with respect to the data is one that maximizes the posterior probability P(G|D). The logarithm of P(G|D) is called the Bayesian score of the network. Finding the network with the highest Bayesian score is known to be NP-complete 11. There are two heuristic approaches used to finding approximate solutions to the combinatorial optimization problem - direct search for a graph G guided by the Bayesian scoring function, and using Markov chain Monte Carlo sampling of graphs from the posterior distribution P(G|D). In this paper, we propose a modification of the direct search procedure described in 10. Instead of starting ab initio, we began with a known network, including the member genes and their connectivities and extend, one gene at a time, from a genome wide expression data set. We call this the single-gene expansion strategy. Starting with a core pathway of 5 genes in the PKA pathway (Figure 1), we expanded the network by adding a single gene at a time in all possible ways that preserve the acyclicity of the expanded network. In all, up to 210 networks were considered for each gene, corresponding to all possible ways the gene can be added to the core network. Then we calculate the Bayesian score of each expanded 6-node network. The highest scoring 6-node network represents the likelihood that the inserted gene is involved in the PKA pathway. The score associated with the gene, called the Bayesian addition score, is the difference between the Bayesian score of the best 6-node network with the gene, and the Bayesian score of the core pathway (i.e., without the gene). The rank of each inserted gene is determined by its Bayesian addition score, which was computed as follows:where D is the set of high quality data for the genes in the network, and G is the core PKA network. We chose not to perform cross-validation, since this analysis would require random sub-sampling of the expression dataset resulting in the exclusion of different perturbation experiments. Modeling the data subsets would produce highly variable sub-optimal Bayesian addition scores that do not reflect the most likely model given the entire dataset.The single-gene expansion strategy and the computation of the Bayesian addition scores was implemented using the Bayes Net Toolbox for Matlab 20. The Matlab script we used is provided in Additional file 1. Bayesian addition scores were calculated for 4,053 genes in our expression data set.Co-expression analysisAs a simpler alternative to the proposed technique we have considered co-expression analysis, which does not take into account a prior knowledge of network structure and instead only considers pairwise interactions between genes. We used correlation between expression levels of a given gene and the genes in the core pathway as a measure of its relevance to the network. In particular, we defined a co-expression score of a gene as the minimum pairwise distance between the gene and every member of the core network.The co-expression score was used to rank the 4,053 genes in our expression data set.There are many distance measures that can be used, including Pearson correlation and Euclidean distance. While Euclidean distances are very sensitive to the magnitudes of expression levels, Pearson correlations are more robust since they measure the strength and direction of a (linear) relationship between expression levels. Therefore, we chose to use Pearson correlation over Euclidean distance in our analysis. The co-expression score of a new gene is the highest Pearson correlation between the gene and each of the other genes in the core network.Statistical analysesHypergeometric distribution (Phyper function in the statistical software package R) was used to determine enrichment of developmental genes among the top-ranked genes with published phenotypes. All published mutants and their phenotypes are available at http://www.dictybase.org. We used a 1-sided, unequal variance Student�s t-test (t.test function in the statistical software package R) to examine whether the expression values of some of the genes were characterized by higher variability than the other genes.GST-fusion protein and EMSA in vitroThe bZIP region of bzpF, coding for the DNA-binding domain and the leucine zipper domain, was cloned into the pGEX4T1 vector (Amersham Biosciences) upstream of GST to generate a GST-fusion protein. The construct was verified by restriction analysis and sequencing and transformed into E. coli strain BL21star (Invitrogen). Gene expression was induced with IPTG and the protein was purified on glutathione-sepharose beads (Amersham Biosciences) according to the manufacturer�s recommended protocol. The protein was used in an electrophoretic mobility shift assay (EMSA) 21 with 2 double-stranded oligonucleotides. The CRE-containing oligonucleotide was 5� AGC TAA TAT GAG AAA ATT GAC GTC ATT AAC TTT T 3� (the CRE sequence is shown in bold letters), and the CRE-negative oligonucleotide was 5� AGC TAA TAT GAG AAA ATT CAC AAAATT AAC TTT T 3�, (mutations of the CRE sequence are underlined). The oligonucleotides were annealed with complementary oligonucleotides (5� AAA AGT TAA TGA CGT CAA TTT T 3� and 5� AAA AGT TAA TTT TGT GAA TTT T 3�, respectively) and labeled radioactively by filling in with Klenow fragment of DNA polymerase (Invitrogen) in the presence of &alpha;-32P-dATP. The labeled oligonucleotides were mixed with the purified protein at room temperature, incubated for 30 minutes and resolved by electrophoresis through a native 5% polyacrylamide gel in 0.5� TBE buffer at 200 volts for 2 hours. The gels were dried under reduced pressure and autoradiography was performed to visualize the binding products.ResultsWe extended the Bayesian network framework to facilitate an exploratory analysis of specific pathways to identify new potential members. We started by testing whether transcriptional profiles could provide information for reconstruction of a regulatory network. We analyzed 2,495 expression-array experiments, consisting of data on 4,053 genes, including 5 genes from the established PKA pathway (Figure 1). The pathway was constructed without consideration of gene expression, so there was no reason to assume that it could be reconstructed from expression data. Nevertheless, we chose this network for several reasons, not the least of which is its biological significance. Firstly, we assumed that it would provide a more rigorous test of the approach than the analysis of a known transcriptional network. Moreover, the network includes cases in which two genes coordinate the expression of a third gene, but the two are not necessarily coordinately regulated. We postulated that incorporating prior knowledge from other sources would allow better identification of potential pathway members that depend on two or more core members.The transcriptional data we used were from cells with different genotypes that were subjected to various growth and developmental conditions 1522232425262728. All the data are available in various public repositories, but we have also collected and deposited them in our repository for added convenience http://www.ailab.si/dictyexpress/data.htm. We used the Bayesian scoring function to evaluate all possible networks connecting the 5 genes. As a control, the same networks were scored with randomly shuffled expression data (Figure 2). We found that the network scores obtained from the intact data were variable, whereas the network scores obtained from the shuffled data were nearly indistinguishable, indicating that Bayesian modeling is capable of extracting significant biological information from this domain. The rank of the known 5-gene network was 10,313, which is not significantly different from the rank obtained from the shuffled data (Figure 2). This finding was expected because the pathway was constructed without consideration of transcriptional data and because the 5 genes are not coordinately regulated. This finding is not related to the applicability of our algorithm, since our goal is to discover potential new members of a known pathway, rather than to rediscover the topology of a known pathway. Additionally, since mRNA levels do not necessarily correlate with protein levels and protein function, we use transcriptional data only as a surrogate measure to discover new members of the PKA pathway. To find new pathway members, we implemented a single-gene expansion approach. We expanded the PKA pathway, which includes 5 genes and their connectivities (Figure 1), by adding a single new gene at a time to make all possible 6-node networks. We scored the new networks by calculating the Bayesian addition scores, e.g. the difference between the Bayesian score of the augmented network and that of the core network.The scores determine the rank of the inserted gene among all genes in the dataset - a higher rank indicates a higher conditional dependence between the new gene and the PKA network, as a whole. Figure 3A shows the distribution of the Bayesian addition scores for all the genes. The near-horizontal center of the sigmoid curve shows that most genes are not significantly different from each other in their effect on the network. A few genes received high scores, suggesting significant relationships with the network (the left part of the plot) and a few received low scores (the right part of the plot). The latter is due to low-quality data, since the expression values were characterized by high variability compared to the other genes (Student�s t-test p-value 4 � 10-14). These findings suggest that only a few new genes may be involved in the PKA pathway. We therefore focused our analysis on the 209 genes that ranked as the top 5% (black line, Figure 3A). This group contains mostly novel genes without definable domains and several genes of known or presumed function (Additional file 2, Table S1).Mutations in known PKA-pathway genes cause developmental defects 27. We postulated that mutations in new pathway genes would also cause such phenotypes. The Dictyostelium genome is sparsely annotated - only 433 genes have known or presumed function. Despite this sparse annotation, we find that 13 of the 209 top ranked genes have been characterized previously, representing a statistically significant enrichment of genes with known or presumed function (Hypergeometric Test, p-value 0.005). Of the 13 previously characterized genes, previous work has shown that 12 are essential for proper development (Table 1). One possible explanation for this finding could have been that published work is skewed in favor of mutants with developmental abnormalities. However, we calculated that only 67% of all the characterized mutants in D. discoideum have developmental abnormalities. Thus, the enrichment we observed of genes essential for development is significantly higher than that publication skewing (Hypergeometric Test, p-value 0.002). The published data suggest that most of the 12 genes are involved in the PKA network (Table 1), validating the single-gene expansion approach.To test whether the single-gene expansion method has an advantage over a simpler approach of identifying co-expressed genes, we subjected the data to a similar analysis using co-expression networks instead of Bayesian networks. Unlike co-expression analysis, our addition procedure goes beyond considering pairwise interactions between the new gene and the existing network, and includes all potential n-ary interactions to judge the relevance of the gene to the PKA pathway. Therefore we expected the single-gene expansion method performance to be comparable to co-expression networks when genes have simple pairwise dependences, but to have an advantage in discovering genes with higher-order dependences in the core network. We measured the pairwise similarity of each new gene to each of the 5 PKA pathway genes using Pearson�s correlation. Figure 3B show the distribution of co-expression scores for all the genes. The shape of the curve we observed is also sigmoid but it lacks distinct groups of high and low likelihood scores. This observation suggests that the co-expression method was less efficient in distinguishing potential network members from unrelated genes at the high end, and performed very poorly on genes with low quality data at the low end. Therefore, we used the cutoff identified using the single-gene expansion method and focused our comparison on the top 5% ranked genes by both analyses. We found that 133 of the top-ranking genes were discovered by both methods (Additional file 2, Table S1 and Additional file 3, Table S2), suggesting that many of the 209 top-ranked genes have relatively simple pairwise dependences with one of the genes in the 5-gene network. The remaining 76 genes not revealed by the pairwise analysis, therefore, are likely dependent on 2 or more genes in the core network. To test that possibility we computed the number of dependences on core network genes for each of the 76 genes discovered only by the single-gene expansion method. We found that the number of dependences on core network genes was significantly higher for those 76 genes compared to the genes found by both methods (Students t-test, p-value 0.01) (Additional file 2, Table S1). While the single-gene expansion method identifies higher-order dependences, this analysis does not detect the strength of the dependences.To further validate our approach, we tested additional Dictyostelium strains with mutations in genes from the top 5% whose developmental roles were unknown (Table 2). Our selection criteria included availability of knockout vectors from the Functional Genomics Project at Baylor College of Medicine 29, and the ability to successfully generate and grow the knockout strains. We successfully created 5 mutant strains, one with a disruption in a histidine kinase gene (dhkL), which is likely to have a role upstream of PKA, 3 in basic leucine-zipper transcription factors (bZIP) that are potential CREB homologs, predicted to function downstream of PKA, and one with no sequence homology.We mutated the dhkL gene and found that the mutants exhibited accelerated mid-development progression (Figure 4A). The dhkL- mutants showed a marked acceleration in development at 10 hours, but by 20 hours they resembled the wild type again. To quantify this phenotype we developed wild-type and dhkL- mutant cells and counted the number of spores during development. The mutants started to form spores 2 hours before the wild type, and made 3-fold more spores at 18 hours of development. That difference decreased to 2-fold at 20 hours and disappeared by 22 hours (Figure 4B). Mutations in several PKA-pathway genes cause rapid development 3, so the observed phenotypes suggest that dhkL is indeed a member of the PKA pathway, probably functioning as a negative regulator. Histidine kinases function by phosphorylating response regulators. The D. discoideum genome encodes two known response regulators 30 - the cAMP phosphodieasterase regA and the adenylate cyclase acrA 3132. Thus the function of dhkL in the PKA pathway may be mediated by these response regulators, which modulate cAMP levels directly.Previous efforts have failed to identify CREB homologues among the 19 bZIPs in the Dictyostelium genome 30, but our analysis implicated three bZIPs as potential PKA pathway components (Additional file 2, Table S1). Sequence analysis revealed a degenerate cAMP-response element (CRE) binding motif only in bzpF, implicating it as a potential CREB (Figure 5A). We examined the ability of the BzpF protein to bind the canonical CRE by expressing a GST-fusion protein in bacteria and testing it in an electrophoretic mobility shift assay. We found that the fusion protein bound a CRE-containing oligonucleotide (Figure 5B, lane 3) but not a mutated oligonucleotide (Figure 5B, lane 7), suggesting that BzpF can bind CRE-containing DNA.To test whether the mobility shift was indeed due to binding by the BzpF-GST fusion protein, we added anti-GST antibodies to the binding reaction. We found that the shifted band was super-shifted, indicating that the mobility shift was due to interaction between the oligonucleotide and the fusion protein (Figure 5B, lane 4). We also performed a competition assay by adding unlabeled oligonucleotides to the reaction. Increasing amounts of the mutated oligonucleotide had almost no effect on binding (Figure 5B, right panel, CRE�) but increasing amounts of the specific oligonucleotide reduced binding in a dose-dependent manner (Figure�5B, right panel, CRE). These results support the conclusion that the BzpF protein binds CRE in a sequence-specific manner and suggest that BzpF is a candidate CREB protein.DiscussionOur experimental results validate our computational approach and indicate that it can discover components of cellular pathways from expression profiles. This work is an extension of work on Bayesian network models using known pathways 3334. Our approach improves on these methods by incorporating more complex prior knowledge about the initial core network, including dependencies derived from non-transcriptional data. Our work is similar to other approaches that incorporate various sources of knowledge into the Bayesian framework 3536, but improved by allowing ranking of thousands of genes to facilitate a more explorative analysis.The ability of Bayesian networks to discover dependences between more than two genes makes the technique more powerful than co-expression networks. For example, our single-gene-expansion method discovered egeB, a gene that encodes a C2-domain-containing cytosolic protein. That gene was highly ranked by our single-gene-expansion method, but not by the co-expression networks. egeB is a member of a gene family that is responsible for induction of genes involved in early development 37 . Our analysis found transcriptional dependence between egeB and two early developmental genes, pufA and acaA. Although no direct regulation of pufA and acaA has been reported, there is evidence for indirect regulation through yakA and carA, respectively 37. With the power to detect higher order relationships, our Bayesian networks algorithm detected these interactions, while the co-expression networks approach fell short. Despite this advantage many of the previously characterized genes show higher ranking by co-expression analysis compared with the single-gene expansion method. Most likely the 76 genes identified only by the single-gene expansion method are lowering the rankings of the 133 identified by both methods. We expect the highly ranked genes with multiple dependences to be members of the PKA pathway and exhibit clear developmental phenotypes as we characterize more knockout mutants.Since the known network is expanded by one gene at a time, our method cannot detect interactions where two or more non-core genes are involved in the regulation. Since bZIP transcription factors are known to heterodimerize and many of them may have overlapping functions 38, the fact that single knockouts of bzpR and bzpG do not exhibit developmental phenotypes does not exclude them as potential members of the PKA pathway. Expanding the known networks by more than one gene at a time has the potential to identify more interacting partners, but since this extension requires exponentially more computational time it was not implemented for the PKA pathway analysis.Our algorithm discovers genes that have conditional dependences with members of the PKA pathway, regardless of whether they are members of the PKA-pathway or of parallel pathways. For example, we found the transcriptional regulator gbfA, which is considered a member of a parallel pathway 39. Although PKA activity is not required for gbfA induction or activity, maximal mRNA expression of gbfA does require PKA activity 39, suggesting conditional dependence between these components.ConclusionsComputational methods that infer Bayesian networks can uncover gene expression dependencies in large datasets and thus provide means of proposing gene expression pathways. We introduce a novel strategy for using Bayesian networks, designed for discovering new genes of known genetic networks. This method incorporates prior biological knowledge from many different sources into the structure of the starting network and discovers new components that may have higher-order dependencies with members of the initial network. We applied this method to the PKA pathway in D. discoideum and validated the top predictions by performing direct genetic tests. The experimental results identified dhkL, a new candidate up-stream regulator of PKA, and bzpF, a candidate CREB homologue in D. discoideum. Although the initial PKA network does not reflect the underlying transcriptional network, the single-gene-expansion method was successful in identifying new members. Modeling networks that better represent the underlying regulatory network may be even more informative.The success of this method can be attributed to the power of Bayesian networks and to the nature of our dataset. We propose that successful modeling requires a large dataset representing a wide range of cellular states. The underlying network and probability distribution might be perturbed in some mutant strains and under some experimental conditions, and therefore trying to model the wild type network using a heterogeneous dataset can confound the analysis. On the other hand, perturbation experiments are essential for creating the necessary range of cellular states required for identifying gene interactions. Therefore one must consider the tradeoff between maintaining the wild type network and the information gain from perturbation experiments. We chose the PKA pathway because it plays a central role in all stages of Dictyostelium development and our dataset contained many knockout experiments for genes related to the core pathway. Many of these perturbations affect the pathway function during specific stages, and therefore provide the necessary information for detecting gene dependences while maintaining the wild type network during the other stages. Therefore our dataset provides the required resolution for detecting new members of the PKA pathway.Authors� contributionsE.H. and C.D. performed the experiments; A.P. performed the data analysis; A.P., D.S. and G.S. wrote the manuscript; all of the authors contributed to the research design, discussed the results, commented on the manuscript and read and approved the final manuscript.
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