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Abstract
Background: Elucidating protein-protein interactions (PPIs) is essential to constructing protein interaction networks 
and facilitating our understanding of the general principles of biological systems. Previous studies have revealed that 
interacting protein pairs can be predicted by their primary structure. Most of these approaches have achieved 
satisfactory performance on datasets comprising equal number of interacting and non-interacting protein pairs. 
However, this ratio is highly unbalanced in nature, and these techniques have not been comprehensively evaluated 
with respect to the effect of the large number of non-interacting pairs in realistic datasets. Moreover, since highly 
unbalanced distributions usually lead to large datasets, more efficient predictors are desired when handling such 
challenging tasks.

Results: This study presents a method for PPI prediction based only on sequence information, which contributes in 
three aspects. First, we propose a probability-based mechanism for transforming protein sequences into feature 
vectors. Second, the proposed predictor is designed with an efficient classification algorithm, where the efficiency is 
essential for handling highly unbalanced datasets. Third, the proposed PPI predictor is assessed with several 
unbalanced datasets with different positive-to-negative ratios (from 1:1 to 1:15). This analysis provides solid evidence 
that the degree of dataset imbalance is important to PPI predictors.

Conclusions: Dealing with data imbalance is a key issue in PPI prediction since there are far fewer interacting protein 
pairs than non-interacting ones. This article provides a comprehensive study on this issue and develops a practical tool 
that achieves both good prediction performance and efficiency using only protein sequence information.

Background
Various interactions among proteins are essential to
diverse biological functions in a living cell. Information
about these interactions provides a basis to construct
protein interaction networks and improves our under-
standing of the general principles of the workings of bio-
logical systems [1]. The study of protein-protein
interaction (PPI) is, therefore, an important theme of sys-
tems biology [2]. Recent years have seen the development
of experimental approaches to analyze PPIs, including
yeast two-hybrid (Y2H) [3,4], coimmunoprecipitation
(CoIP) [5-7] and other approaches [8,9]. The resulting

interaction data is publicly available in several databases
such as BIND [10], DIP [11], MIPS [12] and IntAct [13].

While experimentally detected interactions present
only a small fraction of the real PPI network [14,15],
many computational methods have been developed to
provide complementary information for experimental
approaches. Some of these computational methods
require not only sequence information but also auxiliary
data, for example, localization data [16], structural data
[17-19], expression data [20,21] and/or interactions from
orthologs [22,23]. Shoemaker and Panchenko have pro-
vided a comprehensive review of these computational
methods [24].

The main limitation of above methods is that they rely
on prior knowledge that may be expensive to acquire. To
overcome this limitation, several de novo (ab initio) algo-
rithms have been proposed to detect potential interacting
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proteins for which no auxiliary information are available
[25-34]. Most of these de novo PPI predictors transform
protein sequences into feature vectors and adopt super-
vised machine learning (ML) techniques to analyze these
feature vectors. Najafabadi and Salavati proposed a
method based on codon usage [35], which utilizes DNA
sequence for feature extraction and requires open reading
frame (ORF) information. The adopted ML techniques
include random decision forests [28] and support vector
machines (SVMs) [25,27,29,33,34]. These ML-based
approaches achieved satisfactory performance on the
input datasets comprising equal number of interacting
and non-interacting protein pairs. However, this ratio is
not balanced in nature, and these methods were not com-
prehensively evaluated with respect to the effect of the
large number of non-interacting pairs in a naturally
unbalanced dataset [36,37]. This unbalanced characteris-
tic of PPI datasets, as will be elaborated in this study,
requires more attention when developing and evaluating
PPI prediction methods.

This study presents a novel ML-based method using
only the primary sequences to predict interacting pro-
teins. The proposed feature set is improved from the con-
joint triad feature [33], which describes a protein
sequence by the frequencies of distinct conjoint triads--
three continuous amino acids--observed in it. We pro-
pose a probability-based mechanism for estimating the
significance of triad occurrences considering the amino
acid composition. This improvement is designed to miti-
gate the dependency of triad occurrence frequencies on
the amino acid distribution. Another notable contribu-
tion of this study is to provide a systematic analysis of the
effect of dataset sampling when evaluating prediction
performance.

This article reports several experiments conducted to
evaluate the present de novo PPI predictor. A large collec-
tion of 17,855 interacting pairs from 6,429 proteins are
adopted to generate different unbalanced datasets with
1:1~1:15 positive-to-negative ratios. As illustrated by the
experimental results, the proposed feature set achieves
the best prediction performance when compared with
two de novo feature sets recently published for PPI pre-
diction. Furthermore, the analyses included in this study
reveal that a) the extent of imbalance of the sampled data-
set and b) the efficiency of the employed classification
algorithm are important to PPI predictors.

Results and Discussion
In this section, a quick overview of the proposed method
is first presented, where the details are left in the Meth-
ods section. The issues of handling unbalanced data are
then addressed to reveal the importance of data imbal-
ance in experiments, followed by experimental results.

The end of this section discusses some considerations for
real world PPI data.

Proposed PPI predictor
The present method uses only sequence information for
training a classifier to distinguish positive instances of
truly interacting protein pairs from negative instances of
non-interacting protein pairs. Shen et al. [33] have shown
that the triad frequency is a useful feature encoding for
PPI prediction. However, the frequencies of different tri-
ads are largely affected by the amino acids distribution.
Thus, a probability-based mechanism of estimating triad
significance is proposed to alleviate the effect of the
amino acid distribution in nature. The relaxed variable
kernel density estimator (RVKDE), recently proposed by
the authors [38], is then invoked to predict protein-pro-
tein interactions based on the feature vectors. The details
of how to transform protein pairs into feature vectors, the
algorithm of RVKDE classifier and some implementation
issues can be found in the Methods section.

Noteworthy issues for predicting unbalanced datasets
In PPI prediction, positive instances are collected from
PPI databases, while negative instances are all other pro-
tein pairs. This is a large and extremely unbalanced data.
A common practice in processing such unbalanced data-
sets is to form a balanced dataset by sampling from the
original dataset. This step of sampling, however, raises
new problems. For example, Figure 1(a) shows a synthe-
sized 1:15 dataset (where the positive-to-negative ratio is
1:15). Figure 1(b), which is a sampled 1:3 dataset, contains
all the positive instances and arbitrarily selected negative
instances from Figure 1(a). PredictorA and PredictorB--
represented by their decision boundaries--are two pre-
dictors. Both predictors perform better on the sampled
dataset than the original dataset. After sampling, some of
negative instances that are close to the positive cluster are
excluded. That leads to an easier dataset for classification.
Another observation from Figure 1 relates to the perfor-
mance differences between the two predictors. PredictorB
is obviously better than PredictorA in Figure 1(a). How-
ever, in a sampled data such as Figure 1(b), PredictorB
looks to have comparable performance with PredictorA.
As a result, sampling to create balanced datasets not only
simplifies the problem, but also prevents a realistic com-
parison of different predictors.

This study uses unbalanced datasets of different posi-
tive-to-negative ratios for performance evaluation to elu-
cidate how the sampled datasets affect the prediction
performance. However, handling unbalanced datasets
leads to two problems. The first problem is choosing a
suitable evaluation measure. Table 1 shows five widely
used measurements for binary classification problems. A
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predictor which simply predicts all samples as negative
will have an accuracy of 93.8% in a 1:15 dataset. Despite
the appealing score, this strategy is useless because it can-
not predict any potential interactions. Maximizing accu-
racy leads predictors to favor the majority group. In PPI
prediction, however, we care more about the interacting
pairs, which are the minority group. F-measure is a more
appropriate measurement because it is the harmonic
mean of precision and sensitivity, both of which are
related to the performance of the positive instances [39].

Another problem of processing unbalanced datasets is
the increasing size. For example, using the widely used
LIBSVM package [40] to analyze a 1:1 dataset containing
33,710 protein pairs requires 14,059 seconds. The execu-
tion time is measured on a workstation equipped with an
Intel Core 2 Duo E8400 3.0 GHz CPU and 8 GB memory,
and do not include the time taken to carry out parameter
selection or cross validation. According to the observed
time complexity of SVM [41], a complete parameter
selection on a 1:15 dataset of the same amount of positive
samples may take months or even years using a contem-
porary workstation. Conversely, analyzing the same 1:1
dataset with RVKDE takes only 142 seconds on the same
workstation mentioned above, allowing for the analysis of
unbalanced datasets within a reasonable time. On the
other hand, replacing SVM with RVKDE sacrifices a
slight prediction performance of 0.3% F-measure (from
80.7% to 80.4%) on a 1:1 dataset used in this study. Thus,
this study employs RVKDE as the classification algorithm
to compare alternative feature sets. Its efficiency is essen-
tial for handling highly unbalanced datasets.

Evaluation of the proposed feature set
Datasets
This study adopts a collection of protein-protein interac-
tions from the Human Protein Reference Database
(HPRD) [42,43], Release 7. This version of HPRD con-
tains 38,167 PPI and 25,661 protein entries from litera-
ture. Interactions in which more than two proteins
participate are removed, since it is difficult to confirm
which individual proteins in such complexes have physi-
cal interactions [21]. Furthermore, interactions that con-
tain a protein sequence with selenocysteine (U) are also
removed. The remaining set comprises 37,044 interacting
protein pairs in which 9,441 proteins are involved. Since
interactions detected based on in vitro experiments
might be false positives that occur in laboratory proce-
dures but do not occur physiologically [14], only the in
vivo PPI pairs are used in preparing the positive set to
prevent introducing spurious interactions. The resultant
positive set comprises 17,855 interacting protein pairs
and 6,429 proteins. This study follows the procedure in a
previous work [33] to construct a negative set, which
ensures that (a) a negative sample is not in any of the
38,167 interactions (including in vitro and those with >2
participated proteins) and (b) the two individual proteins
of a negative instance are included in the 6,429 proteins
of the positive set. Thus, a dataset of m interacting pairs
that contain n proteins can generate n(n + 1)/2 - m nega-
tive instances.

This work arbitrarily divides the 17,855 positive
instances into two subsets for the training and testing
sets, respectively. The training set includes 16,855 posi-
tive instances and the testing set includes the remaining

Figure 1 Demonstration of evaluation bias owing to subset-sam-
pled dataset, where the dashed line represents the decision 
boundary of PredictorA while the solid line represents the deci-
sion boundary of PredictorB.
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1,000 positive instances. Datasets with different positive-
to-negative ratios are generated with the same positive
instances and distinct negative sets, which are obtained
by randomly sampling from the negative instances. Care
has been taken to ensure that a negative instance would
not be selected in more than one set. Since the procedure
to generate training and testing datasets involves ran-
domness, the prediction process is repeated 20 times to
alleviate the evaluation bias in a single prediction process.
All the training and testing datasets with different posi-
tive-to-negative ratios are available at http://
mbi.ee.ncku.edu.tw/ppi/ppi.tgz, for any following studies
of PPI prediction that require unbalanced datasets as a
benchmark to compare with.

Comparison with similar works
This study adopts a large collection of protein-protein
interactions to illustrate the importance of dataset imbal-
ance. Hence, the present significance vector is compared
with two advanced feature sets recently published for de
novo PPI prediction that have been shown delivering
good performance on large datasets (>5,000 PPIs) [33,34].
The first feature set was developed by Shen et al., which
employed the frequency of conjoint triads as the feature
set [33]. This feature set has been reported to achieve
>82.23% precision, >84.00% sensitivity and >82.75% accu-
racy, and is the first study of conducting large-scale
experiments on the whole HPRD data to show its robust-
ness and reliability. The second feature set was developed
by Guo et al., which proposed a feature representation
using auto cross covariance [34]. This feature set has a
reported accuracy of 87.36% on the PPI data of yeast Sac-
charomyces cerevisiae, and also achieved an accuracy of
88.09% on another independent data set of yeast PPIs.

Table 2 shows the prediction performances using dif-
ferent features sets. In Table 2, the proposed feature set
achieves the best performance in most positive-to-nega-
tive ratios and evaluation measurements. To further
investigate the effects of data imbalance, Figure 2 extracts

accuracy and F-measure from Table 2, and introduces
two trivial predictors as baseline candidates. The random
predictor predicts any query protein pair as positive with
a 0.5 probability, and as negative with a 0.5 probability as
well. The opportunistic predictor learns nothing form the
training set but can ingratiate its prediction strategy with
alternative measurements: (a) it predicts any query pro-
tein pair as negative for accuracy and (b) it predicts any
query protein pair as positive for F-measure.

In Figure 2, the present feature set has an advantage of
~3% accuracy on the 1:1 dataset, but this advantage
decreases as the positive-to-negative ratio is getting more
unbalanced. The advantage is only 1.2% and 2.0% on the
1:15 dataset. Conversely, this feature set has an advantage
of <3% F-measure on the 1:1 dataset. This advantage
increases with the positive-to-negative ratio, leading to
an advantage of 10.5% and 7.0% on the 1:15 dataset. The
different trends between the two measurements are rea-
sonable and could be explained by the performance of the
opportunistic predictor. For accuracy, the opportunistic
predicts all query protein pairs as negative, thus a high
accuracy can be achieved in an extremely unbalanced
dataset without detecting any interacting pairs. On the
other hand, both trivial predictors deliver decreasing per-
formances as the dataset gets more unbalanced in terms
of F-measure. These results imply that the problem is get-
ting harder as the dataset is getting more unbalanced,
which concurs with the observations elaborated in Figure
1. Figure 3 shows the precision vs. sensitivity curve for
the 1:15 dataset, where the proposed significance vector
generally performs better than the two compared works
when precision is greater than 30%.

Considerations for real word data
We have presented a predictor that is consistently better
than the compared methods on datasets of varying data
imbalance, but a critical question is how the predictor
would perform on real world data. This is an open ques-
tion for not only PPI prediction but many other bioinfor-

Table 1: Evaluation measurements employed in this study

Measurement Abbreviation Equation1

Precision Prec. TP/(TP+FP)

Sensitivity (recall) Sens. TP/(TP+FN)

Specificity Spec. TN/(TN+FP)

Accuracy Acc. (TP+TN)/(TP+TN+FP+FN)

F-measure Fm. 2TP/(2TP+FP+FN)

1The definition of the abbreviations used: TP is the number of interacting protein pairs correctly classified; FN is the number of interacting 
protein pairs incorrectly classified as non-interacting; TN is the number of non-interacting protein pairs correctly classified; and FP is the 
number of non-interacting protein pairs incorrectly classified as interacting.

http://mbi.ee.ncku.edu.tw/ppi/ppi.tgz
http://mbi.ee.ncku.edu.tw/ppi/ppi.tgz
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matics fields, and there are currently no satisfactory
solutions.

To illustrate this issue, we create a dataset of all the pro-
tein pairs from the 6,429 proteins present in the HPRD in
vivo PPI dataset. This dataset contains 17,855 in vivo PPIs
and 20,631,068 negative samples that are not in any of the
38,167 HPRD interactions, and has an extreme positive-
to-negative ratio of ~1:1100, which we will call the com-
prehensive dataset. Training with such a comprehensive
dataset would take more than 400 days using RVKDE and
decades using SVM. Hence, we use a lower ratio (1:7) for
training then test the model on a dataset with the desired
positive-to-negative ratio. Such a comprehensive dataset,
however, would likely contain many false negative sam-
ples (i.e., interacting protein pairs in the negative dataset)
given the incompleteness of the human protein-protein
interaction data, biasing the results. Some previous stud-
ies proposed to restrict negative samples that are located
in different cellular compartments to avoid such false
negative samples [34,35]. A second dataset is thus created
by removing the negative samples of which the two pro-
teins are in the same cellular compartment from the com-
prehensive dataset. This dataset, which we call the
compartmental dataset, contains 975,626 negative sam-
ples and has a positive-to-negative ratio of ~1:55.

The F-measure of the present method on the compre-
hensive dataset is 2.93%. This performance is overly pes-

simistic due to the incompleteness of human protein
interactions network (PIN). Based on current under-
standing, the size of PIN comprises ~650,000 interactions
[44]. However, less than 3% interactions are currently
identified and collected in HPRD. Namely, even a perfect
predictor cannot deliver an F-measure greater than 6%.
On the other hand, the F-measure on the compartmental
dataset achieves 57.4%. Note that this F-measure is higher
than those obtained by evaluating on the 1:7 and 1:15
datasets in Table 2. The process of removing false nega-
tives also removes the true negatives localized in the
same cellular compartment that are difficult to discrimi-
nate from interacting pairs, making the problem easier. It
might reduce the learning problem to that of classifying
whether two proteins are in the same cellular compart-
ment.

In summary, the realistic performance drops in
between 2.93% and 57.4%. This wide range reveals a) the
impact on the performance from different strategies of
negative dataset construction and b) the difficulty in esti-
mating the performance for real world data. Currently, de
novo approaches are suitable to analyze a certain type of
interactions (such as combinatorial interaction of tran-
scription factors [45] or small molecule-kinase interac-
tions [46]) that features a lower degree of imbalance,
while more effort is needed to alleviate the decreasing
performance from the degree of imbalance for general

Table 2: Performance of the compared feature sets on datasets with different positive-to-negative ratios

Feature Acc. (%) Fm.1 (%) Prec. (%) Sens. (%) Spec. (%)

Datasets with 1:1 positive-to-negative ratio

Shen et al.2 77.1 ± 0.8 77.9 ± 0.8 75.2 ± 0.9 80.9 ± 1.4 73.3 ± 1.4

Guo et al.3 77.2 ± 0.9 77.6 ± 0.9 76.2 ± 1.0 79.1 ± 1.3 75.4 ± 1.4

This work4 80.1 ± 0.8 80.4 ± 0.8 79.4 ± 1.0 81.4 ± 1.4 78.8 ± 1.4

Datasets with 1:3 positive-to-negative ratio

Shen et al. 82.2 ± 0.3 58.6 ± 1.1 69.9 ± 0.8 50.4 ± 1.6 92.7 ± 0.3

Guo et al. 82.1 ± 0.6 58.3 ± 1.7 69.8 ± 1.6 50.1 ± 1.8 92.8 ± 0.4

This work 83.6 ± 0.5 66.7 ± 1.2 67.9 ± 0.9 65.5 ± 1.7 89.7 ± 0.4

Datasets with 1:7 positive-to-negative ratio

Shen et al. 88.0 ± 0.3 45.4 ± 1.7 52.8 ± 1.8 39.9 ± 1.9 94.9 ± 0.3

Guo et al. 87.2 ± 0.3 45.5 ± 1.3 48.8 ± 1.5 42.6 ± 1.3 93.6 ± 0.3

This work 90.6 ± 0.2 52.8 ± 1.7 71.5 ± 1.5 41.8 ± 1.8 97.6 ± 0.2

Datasets with 1:15 positive-to-negative ratio

Shen et al. 92.5 ± 0.1 33.1 ± 1.4 37.5 ± 1.3 29.7 ± 1.5 96.7 ± 0.1

Guo et al. 91.7 ± 0.2 36.6 ± 1.5 35.1 ± 1.5 38.3 ± 1.9 95.3 ± 0.2

This work 93.7 ± 0.2 43.6 ± 1.3 49.5 ± 1.7 39.0 ± 1.3 97.3 ± 0.1

The best performance among each positive-to-negative ratio is highlighted with bold font. 1The parameter selection is based on a five-fold 
cross validation of the training dataset to maximize the F-measure. 2Using triad frequency as the feature set. 3Using auto cross covariance as 
the feature set. 4Using triad significance as the feature set.
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Figure 2 Comparison of accuracy and F-measure in datasets with different positive-to-negative ratios. The Random predictor predicts any 
query protein pair as positive with a probability of 0.5, and as negative with a probability of 0.5, too. The Opportunistic predictor predicts any query 
protein pair as negative for accuracy and it predicts any query protein pair as positive for F-measure. Shen et al. use triad frequency as the feature set. 
Guo et al. use auto cross covariance as the feature set. This work uses triad significance as the feature set.
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protein interactions. More work on evaluation schemes is
also required to provide a reasonable and realistic test to
assess PPI predictors.

Conclusions
This article presents a novel method for predicting pro-
tein-protein interactions only using the primary
sequences of proteins, which consistently outperforms
other algorithms in the same category for a collection of
datasets. We have used RVKDE, an efficient machine
learning algorithm, to achieve an extensive evaluation on
alternative approaches with highly unbalanced data. The
results reveal the importance of dataset construction and
the issue of data sampling in problems with naturally
unbalanced distributions. Finally, a discussion on real
world data is included, which show that much improve-
ment in de novo PPI predictors are needed before they
can be effectively used on general protein interactions.

Methods
Feature encoding
This work encodes each protein sequence as a feature
vector by considering the amino acid triads observed in
it. An amino acid triad regards three continuous residues
as a unit. Each PPI pair is then encoded by concatenating
the two feature vectors of the two individual proteins.
However, considering all 203 amino acid triads requires a
16000-dimensional feature vector to encode a protein
pair, which is too large for most practical classifiers, the
20 amino acid types are clustered into seven groups based
on their dipole strength and side chain volumes to reduce
the dimensions of the feature vector [33]. The seven
amino acid groups are listed in Table 3.

The process of encoding a protein sequence is shown in
Figure 4. First, the protein sequence is transformed into a
sequence of amino acid groups. This method then scans
triads one by one along the sequence of amino acid
groups. Each scanned triad is counted in an occurrence
vector, O, in which each element oi represents the num-
ber of the i-th type of triad observed in the sequence of
amino acids groups. However, the value of oi might be
highly correlated to the distribution of amino acids, i.e.,
triads that consist of amino acid groups frequently
observed in nature (e.g., group 1 and 2) tend to have a
large value of oi.

To solve this problem, this study proposes a signifi-
cance vector, S, to replace the occurrence vector for rep-
resenting a protein sequence. Here the significance of a
triad is defined by answering the following question:

How rare is the number of observed occurrences consid-
ering the amino acid composition of the protein?

This definition, for example, distinguishes the signifi-
cance of an occurrence of triad '111' appearing in two
sequences that have equal length but contains three and
ten group-1 residues. In this example, the occurrence of
'111' in the former sequence is more significant since it is

Table 3: Amino acid groups adopted in this study

Group no. Amino acids Occurrence (%)1

1 Ala, Gly, Val 22.0

2 Ile, Leu, Phe, Pro 24.2

3 Tyr, Met, Thr, Ser 17.3

4 His, Asn, Gln, Tpr 11.4

5 Arg, Lys 11.4

6 Asp, Glu 12.2

7 Cys 1.4

This table follows the Shen et al.'s work [33]. 1Occurrences of seven amino acid groups in the Swiss-Prot database release 57.0 [49].

Figure 3 Precision vs. sensitivity curve for the dataset of 1:15 pos-
itive-to-negative ratio.
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less likely to occur by chance. Accordingly, each element
si in the significance vector is formulated as follows:

where Xi is a random variable representing the number
of observations of the i-th triad in a background distribu-
tion of protein sequences and Pr means the probability.
We define si as the probability of observing less occur-
rences of the i-th triad than the one that is actually
observed (oi), which equals to 1 minus the p-value [47]. A
common practice to estimate Xi is to permute the original
protein sequence many times while preserving its amino
acid composition. Suppose that xij is the number of the i-
th triad observed in the j-th sequence from n permuted
sequences, Eq. (1) can be re-formulated as

In our current implementation, n is set to 10,000 to
make each estimated si vary less than 1% relative to the
absolute value of si. Accordingly, each protein sequence is
represented as a significance feature vector, in which each
element si is calculated from oi with Eq. (2). For a protein

pair, the two vectors of both protein sequences are con-
catenated to form a 686-dimensional feature vector.

Relaxed variable kernel density estimator
This study adopts the RVKDE algorithm for accommo-
dating to the large amount of negative instances in unbal-
anced datasets. One main distinctive feature of RVKDE is
that it features an average time complexity of O(nlogn) for
carrying out the training process, where n is the number
of instances in the training set. A kernel density estimator
is in fact an approximate probability density function. Let
{s1, s2 ...sn} be a set of instances randomly and indepen-
dently taken from the distribution governed by fX in the
m-dimensional vector space. Then, with the RVKDE
algorithm, the value of fX at point v is estimated as fol-
lows:

where

1. ;

2. R(si) is the maximum distance between si and its ks
nearest training samples;

3. Γ (·) is the Gamma function [48];
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Figure 4 Schematic diagram of encoding a protein sequence into a feature vector.



Yu et al. BMC Bioinformatics 2010, 11:167
http://www.biomedcentral.com/1471-2105/11/167

Page 9 of 10
4. α, β and ks are parameters to be set either through
cross validation or by the user.

When using RVKDE to predict protein-protein interac-
tions, two kernel density estimators are constructed to
approximate the distributions of interacting and non-
interacting protein pairs in the training set. A query pro-
tein pair (represented as the feature vector v) is predicted
to the class that gives the maximum value among the two
likelihood functions defined as follows:

where | Sj | is the number of class-j training instances,

and (v) is the kernel density estimator corresponding

to class-j training samples. In this study, j is either 'inter-

acting' or 'non-interacting'. Current RVKDE implementa-

tion includes only a limited number, denoted by kt, of

nearest training samples of v to compute  (v) in order

to improve the efficiency of the predictor. The parameter

kt is set either through cross-validation or by the user.
As with SVM and other multivariate statistical learning

tools, the performance of RVKDE depends on the param-
eter selection. The four parameters in RVKDE (α, β, ks
and kt, see the Methods section for further information)
are selected using a grid search approach to maximize F-
measure of a five-fold cross validation on the training set.
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