
SOFTWARE Open Access

A highly efficient multi-core algorithm for
clustering extremely large datasets
Johann M Kraus1,2, Hans A Kestler1,2*

Abstract

Background: In recent years, the demand for computational power in computational biology has increased due to
rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to
increase. Standard algorithms for analyzing data, such as cluster algorithms, need to be parallelized for fast
processing. Unfortunately, most approaches for parallelizing algorithms largely rely on network communication
protocols connecting and requiring multiple computers. One answer to this problem is to utilize the intrinsic
capabilities in current multi-core hardware to distribute the tasks among the different cores of one computer.

Results: We introduce a multi-core parallelization of the k-means and k-modes cluster algorithms based on the
design principles of transactional memory for clustering gene expression microarray type data and categorial SNP
data. Our new shared memory parallel algorithms show to be highly efficient. We demonstrate their computational
power and show their utility in cluster stability and sensitivity analysis employing repeated runs with slightly
changed parameters. Computation speed of our Java based algorithm was increased by a factor of 10 for large
data sets while preserving computational accuracy compared to single-core implementations and a recently
published network based parallelization.

Conclusions: Most desktop computers and even notebooks provide at least dual-core processors. Our multi-core
algorithms show that using modern algorithmic concepts, parallelization makes it possible to perform even such
laborious tasks as cluster sensitivity and cluster number estimation on the laboratory computer.

Background
The advent of high-throughput methods to life sciences
has increased the need for computer-intensive applica-
tions to analyze large data sets in the laboratory. Cur-
rently, the field of bioinformatics is confronted with
data sets containing thousands of samples and up to
millions of features, e.g. gene expression arrays and gen-
ome-wide association studies using single nucleotide
polymorphism (SNP) chips. To explore these data sets
that are too large for manual analysis, machine learning
methods are employed [1]. Among them, cluster algo-
rithms partition objects into different groups that have
similar characteristics. These methods have already
become a valuable tool to detect associations between
combinations of SNP markers and diseases and for the
selection of tag SNPs [2,3]. Not only here, the size of
the generated data sets has grown up to 1000000

markers per chip. The demand for performing these
computer-intensive applications is likely to increase
even further for two reasons: First, with the popularity
of next-generation sequencing methods rising, the num-
ber of measurements per sample will soar. Second, the
need to assist researchers in answering questions such
as “How many groups are in my data?” or “How robust
is the identified clustering?” will increase. Cluster num-
ber estimation techniques address these types of ques-
tions by repeated use of a cluster algorithm with slightly
different initializations or data sets, ultimately perform-
ing a sensitivity analysis.
In the past, computing speeds doubled approximately

every 2 years via increasing clock speeds, giving software
a “free ride” to better performance [4]. This is now over,
and such automatic performance improvements are no
longer possible. As clock speeds are stalling, the increase
in computational power is now due to the rapid increase
of the number of cores per processor. This makes paral-
lel computation a necessity for the time-consuming

* Correspondence: hans.kestler@uni-ulm.de
1Institute of Neural Information Processing, University of Ulm, 89069 Ulm,
Germany

Kraus and Kestler BMC Bioinformatics 2010, 11:169
http://www.biomedcentral.com/1471-2105/11/169

© 2010 Kraus and Kestler; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:hans.kestler@uni-ulm.de
http://creativecommons.org/licenses/by/2.0

analyses in the laboratory. Generally, two parallelization
schemes are available. The first is based on a network of
computers or computing nodes. The idea of such a mas-
ter-slave parallelization is to parallelize independent
tasks using a network of one master and several slave
computers. While there is no possibility for communica-
tion between the slaves, this approach best fits scenarios
where the same serial algorithm is started several times
on different relatively small data sets or different ana-
lyses are calculated in parallel on the same data set.
Data set size matters here, as distribution of large data
sets is time consuming and requires all computers to
have the appropriate memory configuration. The second
approach called shared memory parallelization is used
to parallelize the implementation of an algorithm itself.
This is an intrinsic parallelization via different interwo-
ven sub-processes (threads) on a single multi-core com-
puter accessing a common memory, and requires a
redesign of the original serial algorithm.

Master-slave parallelization
Master-slave parallelization is heavily used by computer
clusters or supercomputers. The Message Passing Inter-
face (MPI) [5] protocol is the dominant model in high-
performance computing. Without shared memory the
compute nodes are restricted to process independent
tasks. As long as the load-balancing of the compute
nodes is well handled, the parallelization of a complex
simulation scales linearly with the number of compute
nodes. In contrast to massive parallel simulation runs of
complex algorithms, master-slave parallelization is also
used for parallelizing algorithms. For this task, a large
dataset is usually first split into smaller pieces. The sub-
sets are then distributed through a computer network
and each compute node solves a subtask for its subset.
Finally, all results are transferred back to the master
computer, which combines them to a global result. The
user interacts with the hardware cluster through the
master computer or via a web-interface. However, in
addition to hardware requirements, such as minimal
amount of memory that are imposed on each compute
node, the effort of distributing the data and communi-
cating with nodes of the computer network restricts the
speedup achievable with this method. An approach simi-
lar to MPI by Kraj et al. [6] uses web-services for paral-
lel distribution of code, which can reduce the effort for
administrating a computer cluster, but is platform-
dependent. A very popular programming environment
in the bioinformatics and biostatistics community is R
[7,8]. In recent years several packages (snow, snowfall,
nws, multicore) have been developed that enable mas-
ter-slave parallelized R programs to run on computer
cluster platforms or multi-core computers, see Hill et al.

[9] for an overview of packages for parallel program-
ming in R.

Shared memory parallelization
Today most desktop computers and even notebooks
provide at least dual-core processors. Compared to mas-
ter-slave parallelization, developing shared-memory soft-
ware reduces the overhead of communicating through a
network. Despite its performance in parallelizing algo-
rithms, shared memory parallelization is not yet regu-
larly applied during development of scientific software.
For instance, shared memory programming with R is
currently rather limited to a small number of paralle-
lized functions [9].
Shared-memory programming concepts like the Open

Multi-Processing (Open MP) [10] are closely linked to
thread programming. A sequential program is decom-
posed into several tasks, which are then processed as
threads. The concept of thread programming is available
in many programming languages like C (PThreads or
OpenMP threads), Java (JThreads), or Fortran (OpenMP
threads) and on many multi-core platforms [11].
Threads are refinements of a process that usually share
the same memory and can be separately and simulta-
neously processed, but can also be used to imitate mas-
ter-slave parallelization by avoiding access to shared
memory [11]. Due to the mostly used shared memory
concept, communication between threads is much faster
than the communication of processes through sockets.
In a multi-core parallelization setting there is no need
for network communication, as all threads run on the
same computer. On the other hand, as every thread has
access to all objects on the heap there is a need for con-
currency control [12]. Concurrency control ensures that
software can be parallelized without violating data integ-
rity. The most prominent approach for managing con-
current programs is the use of locks [10]. Locking and
synchronizing ensures that changes to the states of the
data are coordinated, but implementing thread-safe pro-
grams using locks can be fatally error-prone [13]. Pro-
blems might occur when using too few locks, too many
locks, wrong locks, or locks in the wrong order [14]. For
instance an implementation may cause deadlocks, where
two processes are waiting for each other to first release
a resource.
In the following we describe a new multi-core parallel

cluster algorithm (McKmeans) that runs in shared mem-
ory, and avoids locks for concurrency control. Bench-
mark results on artificial and real microarray data are
shown. The utility of our computer-intensive cluster
method is further demonstrated on cluster sensitivity
and cluster number estimation of high-dimensional gene
expression and SNP data.

Kraus and Kestler BMC Bioinformatics 2010, 11:169
http://www.biomedcentral.com/1471-2105/11/169

Page 2 of 16

Implementation
Multicore k-means/k-modes clustering
Clustering is a classical example of unsupervised learn-
ing, i.e. learning without a teacher. The term cluster
analysis summarizes a collection of methods for generat-
ing hypotheses about the structure of the data by solely
exploring pairwise distances or similarities in the data
space. Clustering is often applied as a first step in data
analysis for the creation of initial hypotheses. Let X =
{x1, ..., xN} be a set of data points with the feature vector
xi Î Rd. Cluster analysis is used to build a partition of a
data set containing k clusters such that data points
within a cluster are more similar to each other than
points from different clusters. A partition P (k) is a set
of clusters {C1, C2, ..., Ck} with 0 <k <N and meets the
following conditions:

C X C

C C i j

i i

i

k

i j

  

  


,

,
1




The basic clustering task can be formulated as an
optimization problem:
Partitional cluster analysis
For a fixed number of groups k find that partition P(k) of
a data set X out of the set of all possible partitions F (X,
k) for which a chosen objective function f: F (X, k) ® R+

is optimized. For all possible partitions with k clusters
compute the value of the objective function f. The parti-
tion with the best value is the set of clusters sought.
This brute force method is computationally infeasible

as the cardinality of the set of all possible partitions is
huge even for small k and N. The cardinality of F (X, k)
can be computed by the Stirling numbers of the second
kind [15]:

| (,) |
!

() X k S
k

k

i
iN

k k i N

i

k

  













1

1
0

Existing algorithms provide different heuristics for this
search problem. k-means is probably one of the most
popular of these partitional cluster algorithms [16]. The
following listing shows the pseudocode for the k-means
algorithm:
Function k-means
Input: X = {x_1, ..., x_n} (Data to be clustered)

k (Number of clusters)
Output: C = {c_1, ..., c_k} (Cluster centroids)

m: X->C (Cluster assignments)
Initialize C (e. g. random selection from X)
While C has changed
For each x_i in X

m(x_i) = argmin_j distance (x_i, c_j)
End
For each c_j in C

c_j = centroid ({x_i | m(x_i) = j})
End

End
Given a number k, the k-means algorithm splits a data

set X = {x1 ..., xn} into k disjoint clusters.
Hereby, the cluster centroids μ1, ..., μk are placed in

the center of gravity of the clusters C1, ..., Ck. The algo-
rithm minimizes the objective function:

F Cj j i j

Cj

k

i j

(,) || || .  

 x
x

2

1

This amounts to minimizing the sum of squared dis-
tances of data points to their respective cluster centroids.
k-means is implemented by repeating two major steps,
which reassign data points to nearest cluster centroids
and update centroids (often also called prototypes) for
the newly assembled cluster. A centroid μj is updated by
computing the mean of all points in cluster Cj:

 j i

C
C j

i j



1

| |
.x

x

k-modes clustering for SNP data
Data from SNP profiles can be encoded as a vector of
categorical data representing homozygous reference,
heterozygous, and homozygous alternative as 0, 1, and
2. For instance, a SNP s has two alleles A and T. The
three possible genotypes are AA, AT, and TT. A data
point x is represented as a vector of SNP values. For
measuring similarity of two SNP samples, the allele
sharing distance (ASD) has been proposed [17].
Recently, it has been shown that ASD provides suffi-
cient information for separating subpopulations using
SNPs [18,19]. The allele sharing distance d(x, y) for cal-
culating the distance between data point x and y is
defined as:

d x y x yi i

i

S

(,) (,)



1

where:

(,)

, ,

,x y

x y

xi i

i

i
0

1

if and have two alleles in common

if
i

 and have only a single allele in common

if and

y

x y
i

i

,

,2 ii have no allele in common.








To incorporate SNP data, the centroid update step of
the k-means algorithm is adapted to calculate centroids

Kraus and Kestler BMC Bioinformatics 2010, 11:169
http://www.biomedcentral.com/1471-2105/11/169

Page 3 of 16

from categorical data [20]. Cluster centers are now cal-
culated by counting the frequency of each genotype and
using the most frequent genotype (mode) as the new
value.

Parallel k-means/k-modes in shared memory
The k-means/k-modes algorithm is parallelized by
simultaneously calculating

(a) the minimum distance partition (first for loop in
function k-means) and subsequently
(b) the centroid update (second for loop).

That means that the complete data set is split into
several subsets (Figure 1, left), and nearest centroid
search is then performed in an individual thread for that
subset, effectively parallelizing the minimum distance
search. Simultaneous write access, to the data structures
(lists) containing these data points (Figure 1, right),
which is not possible in a master-slave scenario, is possi-
ble through a transactional memory system (see below).
Centroid update is also parallelized by calculating the
new location for every centroid from the previously
found minimum distance partition (Figure 1, right).
Instead of explicitly controlling thread concurrency,

we here use the concept of transactional memory to
indirectly guarantee thread safety (e.g. being lock-free).
The number of threads used is influenced by two fac-
tors: For calculating the minimum distance partition,
the number of data threads equals the number of avail-
able CPU cores. Furthermore, each centroid is managed
by its own thread. This means that during the assign-
ment step, data is continually sent to the centroids from
all data threads, and the centroid update is performed
with k threads in parallel.
Transactional memory
In shared memory architectures, there is a need for con-
currency control. Simultaneously running threads can
process the same data and might also try to change the
data in parallel. Opposed to the low-level coding via
locking and unlocking individually memory registers,
transactional memory provides high-level instructions to
simplify writing parallel code [21,22]. The concept of
software transactional memory (STM) that we use here
is a modern alternative to the lock-based concurrency
control mechanism [23,24]. It offers a simple alternative
to this concurrency mechanism, as it shifts the often
complicated part of explicitly guaranteeing correct syn-
chronization to a software system [25]. The basic func-
tionality of software transactional memory is analogous
to controlling simultaneous access via transactions in
database management systems [26]. Transactions moni-
tor read and write access to shared memory and check
whether an action will cause data races. The STM

system prevents conflicting data changes by rolling back
one of the transactions. Transactions ensure that all
actions on the data are atomic, consistent, and isolated.
The term atomic means that either all changes of a
transaction to the data occur or none of them does.
Consistent means that the new data from the transac-
tion is checked for consistency before it is committed.
Isolated means that every transaction is encapsulated
and cannot see the effects of any other transaction while
it is running. As a consequence, transactional references
to mutable data via STM enables sharing changing state
between threads in a synchronous and coordinated
manner.
Implementations of software transactional memory

can be divided into two categories called direct-update
and deferred-update STMs [25,27]. In our implementa-
tion, we use a deferred-update STM (see Figure 2).
Transactions in deferred-update STM systems obtain a
copy of the original data and process their changes.
Before committing the changes to the shared memory,
conflicts are checked by the STM system, and conflict-
ing transactions are rejected. As side effects from con-
flicting transactions do not affect the shared memory,
there is no need for restoring a consistent memory
state. Threads concurrently execute all of their modifica-
tions to the shared data without locking other threads.
However, before committing the changes, the system
checks whether other threads have altered the data in
use. If so, the transaction is retried until a consistent
commit can be performed. Through the use of atomic
blocks encapsulating code fragments, parallel code can
be implicitly defined without knowledge about locking
strategies or thread handling. The STM system guaran-
tees to handle the atomic block correctly.

Cluster number estimation
Cluster number estimation can be linked to an assess-
ment of the stability of the clustering. This issue is
often discussed in cluster analysis, as the number of
clusters in the data is usually unknown [28-30]. It has
been shown that a repeated cluster analysis with differ-
ent methods, parameters (especially a different number
of assumed clusters), feature sets, or sample sizes can
help to reveal the underlying data structure. For
instance, the bootstrap technique can be used for esti-
mating the number of clusters [31]. If the fluctuations
among the partitions are small compared to random
clustering, the clustering is called robust, and that parti-
cular model is chosen. Although there are few theoreti-
cal findings on the stability property of clusterings, this
methodology has proven to work well in practice
[32-34]. For stability evaluation of repeated clusterings,
methods that measure the similarity of a clustering rela-
tive to some instance are used. These methods measure

Kraus and Kestler BMC Bioinformatics 2010, 11:169
http://www.biomedcentral.com/1471-2105/11/169

Page 4 of 16

different characteristics of the identified partitions or
sequences of partitions, thus implying repeated calcula-
tions. They can be subdivided into three groups [15]:

1. Internal criteria: Measure the overlap between
cluster structure and information inherent in the
data, for example silhouette, inter-cluster
similarity.
2. External criteria: Compare different partitions, for
example Rand index, Jaccard index, Fowlkes and
Mallows.
3. Relative criteria: Decide which of two structures is
better in some sense, for example quantifying the

difference between single-linkage or complete-
linkage.

To demonstrate the quality of cluster algorithms, they
are often applied to a-priori labeled data sets and evalu-
ated by an external criterion [28,35]. An external index
describes to which degree two partitions agree, given a
set of N objects X = {x1, ..., xN} and two different parti-
tions P = {C1, ..., Cr} and Q = {D1, ..., Ds} into r and s
clusters respectively.
MCA cluster similarity index
For the evaluation of the experiments, we here use a
measure that is based on the pairwise similarity between

Figure 1 Basic design of the multicore k-means algorithm. The data is split and implicitly assigned to different threads (left). Additional
threads are used for centroid update (one thread for every centroid). Centroids are initialized randomly. During the cluster assignment step the
nearest centroid for each data point is searched and is updated accordingly. Additionally, each data point is written to the list of members of its
nearest centroid (right). Simultaneous write access to these lists is possible via software transactional memory.

Kraus and Kestler BMC Bioinformatics 2010, 11:169
http://www.biomedcentral.com/1471-2105/11/169

Page 5 of 16

set partitions and can be interpreted as the mean pro-
portion of samples being consistent over the different
clusterings [32,33]. Because this index behaves linearly
in the number of data points it offers a better interpret-
ability in terms of proportion of samples moving
between clusters. There is no such intuitive interpret-
ability for quadratic validity measures like Rand or Jac-
card index [36,37]. The concept is illustrated in
Figure 3. In the left part of Figure 3 two partitionings P
and Q are compared. The correspondence or similarity
sij
PQ between two clusters Ci and Dj is given by the size

of the intersection set |Ci ∩ Dj|. The idea of the maxi-
mum cluster assignment (MCA) index is to find a bijec-
tive mapping π: {1 ... k} ® {1 ... k} that maps each
cluster from one clustering P to its corresponding clus-
ter in Q such a way that the sum over all similarities

si
PQ

i

k

i 1
is maximized. The bold lines in the right part

of Figure 3 mark the maximum matching nodes in the
bipartite graph representation. In this example, the best
mapping is A1 ↔ B2, A2 ↔ B1, A3 ↔ B3. The MCA
index is then defined as the ratio of the number of data
points in the intersection sets of the corresponding clus-
ters to the overall number of data points:

MCA
n

C Di j

i

k



1

1

max | | .




The normalization factor 1
n

bounds the index into
(0, 1], where a value of 1 denotes a perfect matching
between the two clusterings, i.e. the two partitions are
identical up to a permutation of their components.
The remaining problem is to find the best mapping
π(·). This is a well-known problem in discrete mathe-
matics called linear assignment problem (LAP [38]). In
the current implementation, we use the algorithm by
Jonker & Volgenant (1987) [39] that runs in  (k3)
after building the assignment matrix, which can be
done in  (n).
Correction for chance
Cluster validity indices are used to quantify findings
about results of a cluster analysis. They do not include
information about a threshold for distinguishing
between high and low values. Statistical hypothesis test-
ing provides a framework to distinguish between
expected and unusual results based on a distribution of
the validity index [40,41]. The null hypothesis is chosen
to reflect the case of no inherent cluster structure.

Figure 2 Software transactional memory. Software transactional memory circumvents the need for explicit locking of resources. All changes
to the state of data are encapsulated in transactions, i.e. every thread has a copy of its working data and can change its value. During
submission of the changes to the shared memory, the consistency of the internal state is checked. If no interim changes occurred, the
submission is performed. If another thread working on another copy of the same data has meanwhile submitted its changes, the transaction is
rejected and restarted with a new copy of the data.

Kraus and Kestler BMC Bioinformatics 2010, 11:169
http://www.biomedcentral.com/1471-2105/11/169

Page 6 of 16

Different null hypotheses, which lead to different
expected values of a cluster validation index and all
reflect a specific context of the clustering can be
designed. Yet, due to the complex characteristics of the
baseline distributions and the validation indices it is
often not possible to deduce a formula for the expected
value of a corrected index [15]. In this case, a Monte
Carlo analysis can assist to reveal the distribution of
these indices under the chosen null hypothesis. In a
Monte Carlo simulation, several independent test sets
are sampled from a given baseline distribution. The cho-
sen validity index is then evaluated for the random data
sets. This gives an estimate for the expected value of a
validity index under an empirical baseline distribution.
Then, the baseline distribution is used to correct the
validation index I for randomness:

I
I E I

Imax E Icor 
  
  

where Imax is the maximum value (which is 1 in case
of MCA-index) and E(I) is the expected value under a
random hypothesis.
In the following, we consider three baseline scenarios

that we call the random label hypothesis, the random
partition hypothesis, and the random prototype hypoth-
esis (see Figure 4).
Random label hypothesis
The random label hypothesis simulates the worst case
behavior of a clustering. Each data point is randomly
assigned to one of the k clusters such that no cluster
remains empty, i.e. ∀xi Î X assign xi to cluster Cr, with
r uniformly chosen from {1, ..., k} and all Cr ≠ ∅. The
Monte Carlo simulation for the empirically expected
value of the MCA index under this baseline is shown in
Figure 4. For the MCA index, the expected value under

this hypothesis can also be derived analytically:

• If n
k

is an integral number, the expected value of

matching points between partitions is
n
k
n k 1 .

• Otherwise, there is at least one cluster expected to

have more matching data points, i.e. the expected

value is
n
k
n





 .

• E(M CA) is not monotonically decreasing with n,

but has a minimum at n
k





 , see Figure 4.

The expected value of the MCA index is:

E MCA

n
k
n

k
n

n
n k

n
k

n

  





  





 




  







,

,

if

if

2

1
2













The number of matching points between partitions can-
not decrease when choosing another baseline hypothesis,
i.e. this hypothesis reflects the lower bound of the MCA
index. Due to the limitations of the Monte Carlo simula-
tion, the expected value of the simulated random label

Figure 4 Comparing different baseline distributions for
clustering. Baselines for clustering an artificial data set containing
50 one-dimensional points. For each partitioning into k = {1, ..., 50}
clusters, the average value of the MCA index from 500 runs is
plotted. The different baselines are from bottom to top: black =
random label, red = simulated random label, green = random
partition, blue = random prototype. It can be seen that the random
label baseline is a lower bound for the MCA index, whereas the
simulated random label and random partition baselines are much
tighter. The data-driven random prototype baseline builds the
tightest bound for the MCA index.

Figure 3 Example for cluster evaluation via the MCA index. On
the left, two possible partitionings of the data set are shown, i. e.
P = {A1, A2, A3} and Q = {B1, B2, B3}. The bipartite matching graph is
given on the right. Each edge is annotated with the number of
intersecting data points in both partitionings. The solid lines mark
the maximal matching edges. In this example the MCA index is
4 2 4

14
  = 0.71.

Kraus and Kestler BMC Bioinformatics 2010, 11:169
http://www.biomedcentral.com/1471-2105/11/169

Page 7 of 16

baseline stays constantly above the theoretical limit unless
n ≫ k (Figure 4).
Random partition hypothesis
The random partition hypothesis simulates the general
behavior of randomly clustering a data set. Under this
hypothesis, every partition of n data points into k clus-
ters is assumed to be equally probable. The number of
possible partitions is given by the Stirling numbers of

the second kind [42]: 1 1 1
0k

i n

i

k k

i
k!   







   . Even

for small n and k an exhaustive computation of all pos-
sible partitions is not feasible. To give an estimate of the
expected value under this hypothesis, a Monte Carlo
simulation can be used (Figure 4).
Random prototype hypothesis
In contrast to the previous hypotheses, the random pro-
totype hypothesis simulates the average behavior of a
clustering with respect to a given data set. k cluster pro-
totypes cj are chosen randomly, and according to these
prototypes, an assignment is performed, e.g. the nearest
neighbor rule: ∀ xi Î X assign xi to cluster Cr if r = arg-
minj||xi - cj||

2. Varying the assignment rule enables the
simulation of different cluster algorithms (here: nearest
centroid for k-means type clustering). Under this
hypothesis, the generated partitions are data-driven and
best reflect the random baseline clustering for each data
set (Figure 4).

Choosing the appropriate clustering
With a fast cluster number estimation, a two step proce-
dure can be executed to choose the appropriate cluster-
ing. The first step consists of choosing a set of k’s that
have the highest robustness. For this task we and others
propose the sensitivity of the clustering as a measure,
see the preceding section [32-35,43-47]. Robustness ana-
lysis is based on the observation that for a fixed number
of clusters, repeated runs of a cluster algorithm on a
resampled dataset often generate different partitions.
The robustness of k-means is also affected by different
random initializations. To reduce this effect, k-means is
restarted repeatedly for each resampled dataset. Only
the result with minimal quantization error is then
included into the list of generated partitions. In this
regard, the median value of the MCA index from com-
paring all generated partitions to another can serve as a
predictor for the correct number of clusters. We define
the best number of clusters k as the one with maximal
distance between median MCA index from cluster
results and median MCA index from the random proto-
type baseline. Statistical hypothesis testing (e.g. Mann-
Whitney-test) can be used to rate the significance of the
observed clusterings with respect to the baseline cluster-
ing and thus can serve to reject a clustering altogether,
meaning no structure in data can be found.

In the second step, we choose the partition with the
smallest quantization error for the selected k’s. As k-
means does not guarantee to reach a global optimum,
but convergence to a local optimum is always given
[48], we use the strategy of restarts with different initia-
lizations [15]. Finally, the result with the minimal quan-
tization error (least mean squared error) is selected as
the best solution. For extremely large data sets, this
strategy requires a fast implementation, as several hun-
dreds of repetitions may be necessary [20].

Results
To illustrate the utility of our multi-core parallel
k-means algorithm we performed simulations on artifi-
cial data, gene expression profiles and SNP data. All
simulations of McKmeans were performed on a Dell
Precision T7400 with dual quad-core Intel Xeon 3.2
GHz and 32 GB RAM. The four cores on each CPU
share 6 MB of cache. Simulations were partly compared
to two reference implementations, namely the single-
core k-means function implemented in R [7] and the
network-based ParaKMeans [6] algorithm. For the k-
means function from R (version 2.9), simulations were
also performed on the Dell T7400.
ParaKMeans was tested on the web interface at

http://bioanalysis.genomics.mcg.edu/parakmeans. Some
of our larger test data could not be processed due to
either a slow data loading routine (R) or memory lim-
itations on the master computer. These runtime
performance comparisons between different implemen-
tations (languages, hardware, software paradigms) can
only illustrate a rough difference between single and
multi-core algorithms and should not be regarded as
benchmarks.

Artificial data
Artificial data sets without cluster structure
We generated data sets without imposing a cluster
structure. As the k-means algorithm is guaranteed to
converge to a clustering, the median runtime of the
algorithm on such data sets was used as a performance
measure. We generated three simulated data sets (10000
samples with 100 features, 100000 samples with 500 fea-
tures, 1000000 samples with 200 features). Each feature
is uniformly distributed over the interval [0,1] to mini-
mize the effect of random initializations. The perfor-
mance of clustering the data sets into 20 clusters is
summarized in Figure 5A. Each box summarizes the
results of 10 repeated clusterings (median and interquar-
tile range). In case of the small data set the computa-
tional overhead of the thread management negatively
affects the runtime. For the extremely large data set, an
improvement of the runtime by a factor of 10 can be
observed (Figure 5B).

Kraus and Kestler BMC Bioinformatics 2010, 11:169
http://www.biomedcentral.com/1471-2105/11/169

Page 8 of 16

http://bioanalysis.genomics.mcg.edu/parakmeans

The influence of changing the number of threads (1,
2, 4, 8, 16) for calculating the minimum distance parti-
tion (the number of threads used for the centroid
assignment is always k) in McKmeans is shown in Fig-
ure 5C. Each box summarizes the results of 10 repeated
clusterings for a data set (100000 samples with 500 fea-
tures). The choice of the number of threads shows best
performance if it is in the range of the number of physi-
cal CPUs to the number of cores, i.e. 2 to 8 cores.
We also performed a cluster analysis with McKmeans

for different numbers of computer cores on a data set
(100000 samples with 500 features). A summary of the
experiments using 1, 2, 4, and 8 cores is shown in Fig-
ure 5D. Using 4 cores resulted in a runtime improve-
ment by a factor of 2 compared to the single-core
experiment. With 8 cores, the CPU usage rate never
exceeded 600%, i.e. not all cores were used during
calculations.
Artificial data sets with gene cluster structure
We simulated clustered data sets using multivariate nor-
mal distributions as the basis for each cluster [49]. An
artificial microarray experiment consists of n microar-
rays being composed of p genes. An experiment is
sampled to contain exactly k gene clusters. Within-clus-
ter variance and between-cluster variance are used to
assemble a set of exactly k well-formed gene clusters as
follows: At first, k pair-wise equidistant gene cluster
centroids μk are drawn from an interval around 0 with
the variance set to the between-cluster variance  b

2 .
Each gene is assigned to one of the k gene cluster cen-
troids. Then, a gene-specific mean μg is drawn from a
normal distribution with the mean set to the assigned
cluster centroid μk and variance set to the within-cluster
variance  w

2 . The variance of an individual gene over n
microarrays  g

2 follows a c2 distribution with n degrees
of freedom. To get an unbiased estimate of the variance,
it is divided by n - 1, i.e.  g

x
n

2
1


  , with x ~c2 [50].

Only a small fraction of genes in the same cluster is set
to have a non-zero correlation. The probability of any
gene-pair to be correlated is set to c = 5 * 10-(log(p)+2).
For each cluster the number of correlated genes is
determined by a Poisson distribution with mean equal

to pk pk c
*

*
 1

2
, where pk is the number of genes in

cluster k. If gene gi and gj are correlated, the covariance
is calculated from a product of  g gi j

2 2, , and the corre-
lation r is drawn randomly from a uniform distribution
(r ~U (-1, 1)) [6]. The covariance matrix Σ and the gene
mean vector μg are then used to simulate the different
artificial microarrays. An artificial microarray is calcu-
lated from Σ and μg using the triangular factorization
method. A matrix Σ can be factored into a lower trian-
gular matrix T and its transpose T’, Σ = TT’. It follows
that X = YT + μg ~Nk(μg, Σ), with a matrix Y ~Nk(0, I).

The factorization is done with the Cholesky decomposi-
tion of Σ [49].
We generated artificial microarray experiments with

different number of genes, arrays, and clusters (p =
50000, 100000, n = 200, 500, k = 10, 20). Benchmark
results for these data sets are given in Figures 6A+B.
Each box summarizes the results of 10 repeated cluster-
ings. Both McKmeans and k-means R use the Mersenne
Twister to generate random numbers. When started
with the same seed value, our implementation of k-
means reproduces exactly the same results as computed
by the reference implementation in R.
Cluster number estimation on artificial data
To further illustrate the need for a high computational
speed of cluster algorithms, we performed simulations
to infer the number of clusters inherent in a data set.
The stability is measured by comparing the agreement
between the different results of running k-means on
subsets of the data. The agreement is measured with
the MCA index, and correction for chance is done
using the random prototype hypothesis. Here, we simu-
lated the clustered data set using separate multivariate
normal distributions as the basis for each cluster. We
generated a data set with 100000 cases containing 3
clusters in 100 dimensions. The data set was resampled
10 times leaving out n data points. The effect of
resampling on the stability of the clustering can be
reproduced on this data. The experiment correctly pre-
dicts a most stable clustering into 3 clusters. Total run-
ning time was 204.27 min. In the simulation 380
separate clusterings were performed. We also performed
a cluster number estimation for every artificial data set
mentioned in this paper. All simulations predicted the
correct number of clusters, see supplementary material
(Additional file 1).

Gene expression profiles
Smirnov microarray data
We also compared the algorithms on gene expression
profiles from Smirnov et al. [51] with 22277 genes and
465 cell lines. They used data from cells collected at
baseline and 2 and 6 h after exposure to 10 Gy of ioniz-
ing radiation. We performed two experiments on this
data, one comparing runtimes of clustering genes and a
second one performing a cluster number estimation for
grouping cell lines. Results of the runtime experiments
are given in Figure 6C. Here, each box summarizes the
results from 10 repeated clusterings. Our multi-core
algorithm performs up to 10 times faster than the sin-
gle-core k-means algorithm included in R. In the cluster
number estimation experiment, the objective was to find
the best clustering of the 465 profiles using all available
22277 genes. We performed 3800 cluster runs (k = 2 ...
20, 100 repetitions each for the clustering and the

Kraus and Kestler BMC Bioinformatics 2010, 11:169
http://www.biomedcentral.com/1471-2105/11/169

Page 9 of 16

Figure 5 Runtime performance of ParaKMeans, k-means R, and McKmeans on the artificial data sets. Benchmark results for the simulated
data sets (no cluster structure imposed, features chosen uniformly from [0, 1]) comparing the runtime of ParaKMeans, k-means R, and McKmeans.
For the smaller data set (panel A) the computational overhead of the parallelization negatively affects the runtime. For the larger data set
(1 million cases, panel B) an improvement of the runtime by a factor of 10 can be observed. The network-based parallelization algorithm
ParaKMeans is significantly slower than McKmeans. Panel C shows the dependency of the runtime on the number of threads used (Kruskal-Wallis
test: p = 1.15 × 10-5) and Panel D the number of cores used (Kruskal-Wallis test: p = 4.59 × 10-6) for a data set of 100000 cases and 500 features.
Each box summarizes the results from 10 repeated clusterings (median and interquartile range).

Kraus and Kestler BMC Bioinformatics 2010, 11:169
http://www.biomedcentral.com/1471-2105/11/169

Page 10 of 16

Figure 6 Runtime performance of R and McKmeans on the microarray data. Benchmark results for the artificial microarray data set with
50000 (panel A) and 100000 (panel B) genes, 200/500 arrays, and 10/20 clusters comparing the runtime of k-means R, and McKmeans. Each box
summarizes the results from 10 repeated clusterings. Panel C shows the runtime for clustering genes (22277) from 465 cell lines of Smirnov et al.
[51]. The parallelization leads to a runtime improvement by a factor of 10.

Kraus and Kestler BMC Bioinformatics 2010, 11:169
http://www.biomedcentral.com/1471-2105/11/169

Page 11 of 16

random prototype). The best clustering was found with
k = 4 clusters. These four clusters do not correspond to
the quantitative phenotypes induced by radiation expo-
sure (see Table 1). This suggests and supports the find-
ings of Smirnov and co-workers that indicate a highly
individual response to the damage at the expression
level, and not a uniform mechanism of how cells deal
with this radiation exposure.

Single nucleotide polymorphism data
HapMap SNP data
For evaluating the performance of McKmeans in clus-
tering SNP data, we used the HapMap Phase I SNP
dataset [52]. The HapMap project collected SNPs from
270 individuals from four ethnic populations: Yoruba in
Ibadan, Nigeria (YRI), CEPH (Utah residents with ances-
try from northern and western Europe, CEU), Han Chi-
nese in Beijing, China (CHB), and Japanese in Tokyo,
Japan (JPT). For the cluster analysis we only used unre-
lated individuals. The number of unrelated individuals
per group is: 60 YRI, 60 CEU, 45 CHB, and 45 JPT.
Only SNPs with a minor allele frequency greater than
0.1 have been included, which resulted in 116678 SNPs.
We performed a cluster number estimation for this

data (number of rows 210 (profiles), number of columns
116678 (SNPs)). For each k {Î 2, 3, ..., 10}, we per-
formed 1000 runs of clustering on a resampled data set
of row size 195 (jackknife n). The results are illu-
strated in Figure 7. For each k, two boxplots are shown,
one summarizing the MCA values from the pairwise
comparisons of all cluster results and the other one
showing the results of the random baseline. The best
clustering (maximal distance between medians) is
reported for k = 4 (Mann-Whitney test: p < 1.0 × 10-16).
We then computed 1000 repeated runs of k-means with
k = 4. The clustering with the minimal quantization
error is given in Table 2. The reported clustering essen-
tially coincides with the different populations. All indivi-
duals from CEU form a cluster, as well as individuals
from YRI do. One individual from CHB is clustered into
the group of JPT, and 3 individuals from JPT are clus-
tered into the group of CHB. This gives an overall accu-
racy of 98.1% for separating the population by clustering
the available SNP data.

Discussion and Conclusion
Fast algorithms are increasingly becoming important in
the individual laboratory, as the sizes of data sets grow
and computational demands rise. We have devised a
variant of the popular k-means/k-modes algorithm that
effectively utilizes current multi-core hardware, so that
even complex cluster number estimations for large data
sets are possible on a single computer. Computer-inten-
sive bioinformatics software is frequently parallelized
using a network-based strategy. Such a parallelization
can be very efficient when the same algorithm has to be
started several times on different data sets of moderate
size, or when different analyses have to be calculated in
parallel on the same data set. However, this approach
also requires additional effort and equipment, like spe-
cialized hardware for fast communication between com-
puters, multiple software installations in heterogeneous
environments, or compute cluster administration. For
multi-core parallelization, OpenMP and functional pro-
gramming languages provide a basic parallelization
scheme through the parallel execution of loops. More
efficient parallelization can be achieved through direct
use of threads and locking variables, which requires
additional effort for concurrency control as well. We
have designed a highly efficient parallel k-means algo-
rithm that utilizes transactional memory, guarantees
concurrency, and can serve as a template for other par-
allel implementations. We achieve a performance
increase that scales well with the available resources. An
even more dramatic performance gain could be mea-
sured in the comparison to the single core k-means
implementation: On 8 cores, the parallel implementation
attained a 13-fold speed increase (338 min vs 25 min)
for a large data set of 1 million cases with 200 dimen-
sions. This disproportionately high increase is partly due
to different data loading times of the R implementation
and our Java application. For smaller data sets, the
highly efficient R implementation, which calls compiled
C code, outperforms both our multi-core implementa-
tion and a network-based reference implementation on
singular cluster runs. Cluster number estimation is often
discussed in conjunction with cluster analysis methods,
as the number of clusters is an unknown prior [28,30].
For instance, the gap statistic can be used to search for
a strong change in within-cluster dispersion across dif-
ferent numbers of clusters [53]. Such approaches that
are based on internal cluster measures favor highly com-
pact clusters. Other methods relying on resampling stra-
tegies combined with external cluster evaluation
measures have been used to additionally incorporate the
stability of single clusters [31-33]. Consensus clustering
assesses the stability as the percentage of object pairs
clustered together [29,54,55]. Here, the consensus

Table 1 Clustering of gene expression profiles from
Smirnov et al. [51]

C1 C2 C3 C4

0 hr 67 21 43 24

2 hrs 68 22 37 28

6 hrs 62 36 31 26

Cluster results for the best clustering with four clusters. Each entry shows the
number of profiles that are in Cluster Ci and one of the groups (0 hrs of
radiation, 2 hrs of radiation, and 6 hrs of radiation).

Kraus and Kestler BMC Bioinformatics 2010, 11:169
http://www.biomedcentral.com/1471-2105/11/169

Page 12 of 16

matrix scales quadratically with the number of objects,
and therefore becomes infeasible in clustering extremely
large data sets. In contrast, our cluster number estima-
tion method based on resampling and a similarity mea-
sure that is linear in the number of objects provides an
easy interpretation of the results: Instead of considering
pairs of objects, we calculate the percentage of objects
clustered together across multiple clusterings. For clus-
ter number estimation across repeated runs of an algo-
rithm, fast implementations become even more
important, as simulation time can be extensive even for

small data sets. For instance, for a cluster number esti-
mation on a data set consisting of 100 cases and 5000
gene expression values, our multi-core algorithm
reduces the runtime from 467 min (using the R imple-
mentation) to 115 min. For larger data, cluster number
estimation now becomes feasible and can give new
insights into the data, like suggesting a highly individual
radiation-induced response of B cells at the expression
level (Smirnov data), or showing that a grouping of indi-
viduals is actually possible on the basis of single nucleo-
tide polymorphisms (HapMap data). Our evaluations of
the McKmeans algorithm show that it is fast, achieves
the same accuracy as the single-core reference imple-
mentations, and is able to cluster extremely large data
sets. Furthermore, the Java implementation is easily
deployable on different hardware and software plat-
forms. It runs on a single desktop computer and is able
to perform complex cluster number estimation experi-
ments due to parallelization.

Availability and requirements
The Java software McKmeans supports multi-core and
single-core k-means clustering of real valued data,

Figure 7 Clustering and stability estimation for HapMap SNP profiles. Cluster number estimation via repeated clustering of profiles/subjects
for the HapMap data (210 profiles, 116678 SNPs). For each k Î {2, 3, ..., 10}, 1000 repeated cluster runs were performed. For each cluster number,
two boxplots are shown, one summarizing the MCA values from the pairwise comparisons of all cluster results (left), and the other one for the
results from the random prototype baseline (right). A higher value indicates increased stability.

Table 2 Clustering of SNP profiles from the HapMap data
set. Cluster results for the best clustering with four
clusters. Each entry shows the number of individuals that
are in Cluster Ci and one of the populations (CHB, JPT,
CEU, YRI)

C1 C2 C3 C4

CHB 44 1 0 0

JPT 3 42 0 0

CEU 0 0 60 0

YRI 0 0 0 60

Kraus and Kestler BMC Bioinformatics 2010, 11:169
http://www.biomedcentral.com/1471-2105/11/169

Page 13 of 16

k-modes clustering of SNP data, and for both data types
cluster number estimation. There are three possible
modes of using McKmeans, the graphical user interface
(see Figure 8), the command line version, and the
R-package (rMcKmeans).

Graphical user interface
The graphical user interface (GUI) software is available
for download from our website. Usage of the software is
described in the built-in help system. The GUI supports
clustering of microarray (real valued) and SNP data.
Clustering subjects and clustering genes/SNPs can be
done by transposing the imported data set. Gene data is
visualized as a scatterplot from two selected dimensions.
Furthermore, Sammon’s projection method can be per-
formed to show a nonlinear two-dimensional projection

of the data [56,57]. Results from the cluster number
estimation are given as boxplots. We integrated a statis-
tical test (Mann-Whitney test) for computing the signifi-
cance of the best cluster result. The best clustering and
the results of the cluster number estimation can be
saved for further analysis with statistical software such
as R. All plots can be saved as SVG files.

Command line usage
For running batch analyses, McKmeans offers a com-
mand line interface to all functions of the GUI version.
The command line usage is described on our website.

R package
With the R package “rMcKmeans”, the multi-core k-
means algorithm is fully integrated into the R software

Figure 8 Graphical user interface. The GUI supports clustering of microarray (real valued) and SNP data. Clustering subjects and clustering
genes/SNPs can be done by transposing the imported data set. Gene data can be visualized as a scatterplot from two selected dimensions and
via a Sammon mapping. Cluster number estimations can also be visualized (see Figure 7).

Kraus and Kestler BMC Bioinformatics 2010, 11:169
http://www.biomedcentral.com/1471-2105/11/169

Page 14 of 16

framework. rMcKmeans is based on the Java implemen-
tation and is freed from three important limitations in
R: (a) R can only process data sets with up to 2 billion
entries, while Java supports datasets of size 231 × 231, (b)
loading time of extremely large datasets in R is exten-
sive, and (c) R does not yet support true multi-core pro-
grams. All available multi-core packages in R cannot
share memory and internally have to replicate the data
for every used core, resulting in a lower amount of total
memory available for computing.
McKmeans is a Java program implemented in Clojure

(freely available at http://www.clojure.org). McKmeans
can also be called from R (package rMcKmeans).

• Project name: McKmeans
• Project home page: http://www.informatik.uni-ulm.
de/ni/mitarbeiter/HKestler/parallelkmeans
• Operating system(s): Platform independent
• Programming language: Java, R
• Other requirements: Java 1.6 or higher
• License: Artistic License 2.0
• Any restrictions to use by non-academics: no

Additional file 1: Additional cluster number estimation results.
Cluster number estimation results are given for random data sets with
and without cluster structure.

Acknowledgements
We thank Christoph Müssel for R support. This work is supported by the
German Science Foundation (SFB 518, Project C5), the Stifterverband für die
Deutsche Wissenschaft (HAK), and the Graduate School of Mathematical
Analysis of Evolution, Information, and Complexity at the University of Ulm
(HAK, JMK).

Author details
1Institute of Neural Information Processing, University of Ulm, 89069 Ulm,
Germany. 2Department of Internal Medicine I, University Hospital Ulm, 89081
Ulm, Germany.

Authors’ contributions
JMK and HAK designed the study and wrote the manuscript. JMK
implemented the algorithm and performed the experiments. All authors
read and approved the final manuscript.

Received: 1 September 2009 Accepted: 6 April 2010
Published: 6 April 2010

References
1. Andreopoulos B, An A, Wang X, Schroeder M: A roadmap of clustering

algorithms: finding a match for a biomedical application. Brief
Bioinformatics 2009, 10(3):297-314[http://bib.oxfordjournals.org/cgi/content/
full/10/3/297].

2. Ng M, Li M, Ao S, Sham P, Cheung Y, Huang J: Clustering of SNP Data
with Application to Genomics. Proceedings of the Sixth IEEE International
Conference on Data Mining Los Alamitos: IEEE Computer Society 2006,
158-162.

3. Sham P, Ao S, Kwan J, Kao P, Cheung F, Fong P, Ng M: Combining
functional and linkage disequilibrium information in the selection of tag
SNPs. Bioinformatics 2007, 23:129-131.

4. Feng W, Balaji P: Tools and Environments for Multicore and Many-Core
Architectures. IEEE Computer 2009, 42(12):26-27.

5. Gropp W, Lusk E, Skjellum A: Using MPI: Portable Parallel Programming with
the Message Passing Interface Cambridge: MIT Press 1999.

6. Kraj P, Sharma A, Garge N, Podolsky R, McIndoe RA: ParaKmeans:
Implementation of a parallelized K-means algorithm suitable for general
laboratory use. BMC Bioinformatics 2008, 9(200).

7. R Development Core Team: R: A Language and Environment for Statistical
Computing R Foundation for Statistical Computing, Vienna 2009 [http://
www.R-project.org].

8. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B,
Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R,
Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G,
Tierney L, Yang JYH, Zhang J: Bioconductor: Open software development
for computational biology and bioinformatics. Genome Biology 2004, 5:
R80.

9. Hill J, Hambley M, Forster T, Mewissen M, Sloan TM, Scharinger F, Trew A,
Ghazal P: SPRINT: A new parallel framework for R. BMC Bioinformatics
2008, 9(558).

10. Chapman B, Jost G, Pas van der R: Using OpenMP: Portable Shared Memory
Parallel ‘Programming Cambridge: MIT Press 2007.

11. Duan R, Strey A: Data Mining Algorithms on the Cell Broadband Engine.
Euro-Par 2008 Berlin: Springer-VerlagLuque E, Margalef T, Benitez D 2008,
665-675.

12. Lea D: Concurrent Programming in Java: Design Principles and Patterns
Boston: Addison Wesley, 2 2000.

13. Peyton-Jones S: Beautiful concurrency. Beautiful code Sebastopol:
O’ReillyOram A, Wilson G 2007.

14. Adl-Tabatabai AR, Kozyrakis C, Saha B: Unlocking Concurrency. ACM Queue
2006, 4(10):24-33.

15. Jain A, Dubes R: Algorithms for Clustering Data New Jersey: Prentice Hall
1988.

16. MacQueen J: Some methods for classification and analysis of
multivariate observations. Proceedings of the 5th Berkeley Symposium on
Math, Statistics and Probability Berkely: University of California PressNeyman
J, Cam LL 1967, 1:281-297.

17. Gao X, Starmer J: Human population structure detection via multilocus
genotype clustering. BMC Genetetics 2007, 8:34.

18. Edwards AWF: Human genetic diversity: Lewontin’s fallacy. Bioessays 2003,
25(8):798-801.

19. Gao X, Martin ER: Using allele sharing distance for detecting human
population stratification. Human Heredity 2009, 68(3):182-91.

20. Xu R, Wunsch DC II: Clustering IEEE Press Series on Computational
Intelligence, New York: Wiley 2009.

21. Anderson M: Sun’s Rock CPU Could Be a Gem for Oracle. IEEE Spectrum
2009, June:10-11.

22. Drepper U: Parallel Programming with Transactional Memory. ACM Queue
2008, 6(5):38-45.

23. Shavit N, Touitou D: Software Transactional Memory. Proceedings of the
14th ACM Symposium on Principles of Distributed Computing New York: ACM
Press 1995, 204-213.

24. Rajwar R, Goodman J: Transactional Execution: Toward Reliable, High-
Performance Multithreading. IEEE Micro 2003, 23(6):117-125.

25. Larus J, Kozyrakis C: Transactional Memory. Communications of the ACM
2008, 51(7):80-88.

26. Bernstein PA, Newcomer E: Principles of transaction processing Burlington,
MA: Morgan Kaufmann 2009.

27. Herzeel C, Costanza P, D’Hondt T: Reusable Building Blocks for Software
Transactional Memory. Proceedings of the 2nd European Lisp Symposium,
Milan 2009.

28. Handl J, Knowles J, Kell D: Computational cluster validation in post-
genomic data analysis. Bioinformatics 2005, 21(15):3201-3212.

29. Dalgin G, Alexe G, Scanfeld D, Tamayo P, Mesirov J, Ganesan S, DeLisi C,
Bhanot G: Portraits of breast cancer progression. BMC Bioinformatics 2007,
8:291.

30. Kuncheva L: Combining Pattern Classifiers: Methods and Algorithms New
York: Wiley 2004.

31. Jain AK, Moreau JV: Bootstrap Technique In Cluster Analysis. Pattern
Recognition 1987, 20(5):547-568.

32. Kestler HA, Müller A, Schwenker F, Gress T, Mattfeldt T, Palm G: Cluster
analysis of comparative genomic hybridization data. Lecture Notes NATO

Kraus and Kestler BMC Bioinformatics 2010, 11:169
http://www.biomedcentral.com/1471-2105/11/169

Page 15 of 16

http://www.clojure.org
http://www.informatik.uni-ulm.de/ni/mitarbeiter/HKestler/parallelkmeans
http://www.informatik.uni-ulm.de/ni/mitarbeiter/HKestler/parallelkmeans
http://www.biomedcentral.com/content/supplementary/1471-2105-11-169-S1.PDF
http://www.ncbi.nlm.nih.gov/pubmed/19240124?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19240124?dopt=Abstract
http://bib.oxfordjournals.org/cgi/content/full/10/3/297
http://bib.oxfordjournals.org/cgi/content/full/10/3/297
http://www.ncbi.nlm.nih.gov/pubmed/17060359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17060359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17060359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18416829?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18416829?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18416829?dopt=Abstract
http://www.R-project.org
http://www.R-project.org
http://www.ncbi.nlm.nih.gov/pubmed/15461798?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15461798?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19114001?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12879450?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19521100?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19521100?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15914541?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15914541?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17683614?dopt=Abstract

ASI: Aritificial Intelligence and Heuristic Methods for Bioinformatics 2001, S-40,
[Abstract].

33. Lange T, Roth V, Braun ML, Buhmann JM: Stability-Based Validation of
Clustering Solutions. Neural Computation 2004, 16(6):1299-1323.

34. Bertoni A, Valentini G: Random projections for assessing gene expression
cluster stability. Proceedings of the IEEE-International Joint Conference on
Neural Networks (IJCNN) IEEE Computer Society 2005, 1:149-154.

35. Smolkin M, Ghosh D: Cluster stability scores for microarray data in cancer
studies. BMC Bioinformatics 2003, 4(36).

36. Rand W: Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical Association 1971, 66:846-850.

37. Jaccard P: Nouvelles recherches sur la distribution florale. Bulletin de la
Société Vaudoise des sciences naturelles 1908, 44:223-270.

38. Kuhn HW: The Hungarian Method for the assignment problem. Naval
Research Logistics Quarterly 1955, 2(1-2):83-97.

39. Jonker R, Volgenant A: A shortest augmenting path algorithm for dense
and sparse linear assignment problems. Computing 1987, 38(4):325-340.

40. Conover WJ: Practical Nonparametric Statistics New York: Wiley, 2 1999.
41. Hubert L, Arabie P: Comparing Partitions. Journal of Mathematical

Classification 1985, 2:193-218.
42. Graham R, Knuth D, Patashnik O: Concrete Mathematics Boston: Addison

Wesley, 2 1994.
43. Levine E, Domany E: Resampling Method for Unsupervised Estimation of

Cluster Validity. Neural Computation 2001, 13(11):2573-2593.
44. Fridlyand J, Dudoit S: Applications of resampling methods to estimate

the number of clusters and to improve the accuracy of a clustering
method. Technical report 600 University of California, Berkeley 2001.

45. Kerr MK, Churchill GA: Bootstrapping cluster analysis: assessing the
reliability of conclusions from microarray experiments. Proceedings of the
National Academy of Sciences 2001, 98(16):8961-8965.

46. Ben-Hur A, Elisseeff A, Guyon I: A stability based method for discovering
structure in clustered data. Pac Symp Biocomput 2002, 6-17.

47. Kestler HA, Müller A, Buchholz M, Palm G, Gress TM: Robustness evaluation
of clusterings. Currents in Computational Molecular Biology 2003 Spang R,
Béziat P, Vingron M 2003, 253-254, [Abstract].

48. Selim S, Ismail M: K-means-type algorithms: A generalized convergence
theorem and characterization of local optimality. IEEE Transactions on
Pattern Analysis and Machine Intelligence 1984, 6:81-87.

49. Barr DR, Slezak NL: A Comparison of Multivariate Normal Generators.
Communications of the ACM 1972, 15(12):1048-1049.

50. Fukunaga K: Introduction to Statistical Pattern Recognition Academic Press, 2
1990.

51. Smirnov D, Morley M, Shin E, Spielman R, Cheung V: Genetic analysis of
radiation-induced changes in human gene expression. Nature 2009,
459:587-591.

52. Consortium IH: The International HapMap Project. Nature 2003,
426(6968):789-96.

53. Tibshirani R, Walther G, Hastie T: Estimating the number of clusters in a
data set via the gap statistic. Journal of the Royal Statistical Society (Series
B) 2001, 63(2):411-423.

54. Monti S, Tamayo P, Mesirov J, Golub T: Consensus clustering: A
resampling-based method for class discovery and visualization of gene
expression microarray data. Machine Learning 2003, 52(1-2):91-118.

55. Müller F, Laurent L, Kostka D, Ulitsky I, Williams R, Lu C, Park I, Rao M,
Shamir R, Schwartz P, Schmidt N, Loring J: Regulatory networks define
phenotypic classes of human stem cell lines. Nature 2008,
455(7211):401-405.

56. Sammon JW: A nonlinear mapping for data structure analysis. IEEE
Transactions on Computers 1969, 18(5):401-409.

57. Kohonen T: Self-Organizing Maps, of Springer Series in Information Sciences
Berlin: Springer, 3 2001, 30.

doi:10.1186/1471-2105-11-169
Cite this article as: Kraus and Kestler: A highly efficient multi-core
algorithm for clustering extremely large datasets. BMC Bioinformatics
2010 11:169.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Kraus and Kestler BMC Bioinformatics 2010, 11:169
http://www.biomedcentral.com/1471-2105/11/169

Page 16 of 16

http://www.ncbi.nlm.nih.gov/pubmed/15130251?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15130251?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12959646?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12959646?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11674852?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11674852?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11928511?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11928511?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19349959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19349959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14685227?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18724358?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18724358?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Master-slave parallelization
	Shared memory parallelization

	Implementation
	Multicore k-means/k-modes clustering
	Partitional cluster analysis
	k-modes clustering for SNP data

	Parallel k-means/k-modes in shared memory
	Transactional memory

	Cluster number estimation
	MCA cluster similarity index
	Correction for chance
	Random label hypothesis
	Random partition hypothesis
	Random prototype hypothesis

	Choosing the appropriate clustering

	Results
	Artificial data
	Artificial data sets without cluster structure
	Artificial data sets with gene cluster structure
	Cluster number estimation on artificial data

	Gene expression profiles
	Smirnov microarray data

	Single nucleotide polymorphism data
	HapMap SNP data

	Discussion and Conclusion
	Availability and requirements
	Graphical user interface
	Command line usage
	R package

	Acknowledgements
	Author details
	Authors' contributions
	References

