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Abstract

Background: The recent emergence of the H5N1 influenza virus from avian reservoirs has raised concern about
future influenza strains of high virulence emerging that could easily infect humans. We analyzed differential gene
expression of lung epithelial cells to compare the response to H5N1 infection with a more benign infection with
Respiratory Syncytial Virus (RSV). These gene expression data are then used as seeds to find important nodes by
using a novel combination of the Gene Ontology database and the Human Network of gene interactions.
Additional analysis of the data is conducted by training support vector machines (SVM) with the data and
examining the orientations of the optimal hyperplanes generated.

Results: Analysis of gene clustering in the Gene Ontology shows no significant clustering of genes unique to
H5N1 response at 8 hours post infection. At 24 hours post infection, however, a number of significant gene
clusters are found for nodes representing “immune response” and “response to virus” terms. There were no
significant clusters of genes in the Gene Ontology for the control (Mock) or RSV experiments that were unique
relative to the H5N1 response. The genes found to be most important in distinguishing H5N1 infected cells from
the controls using SVM showed a large degree of overlap with the list of significantly regulated genes. However,
though none of these genes were members of the GO clusters found to be significant.

Conclusions: Characteristics of H5N1 infection compared to RSV infection show several immune response factors
that are specific for each of these infections. These include faster timescales within the cell as well as a more
focused activation of immunity factors. Many of the genes that are found to be significantly expressed in H5N1
response relative to the control experiments are not found to cluster significantly in the Gene Ontology. These
genes are, however, often closely linked to the clustered genes through the Human Network. This may suggest the
need for more diverse annotations of these genes and verification of their action in immune response.

Background
Techniques such as microarray analysis allow measure-
ments of the differential gene expression in cells for
tens of thousands of genes simultaneously. The ability
to measure changes in the transcription activity of a cell
in response to an external stimulus allows for a system-
wide approach in which pathways and sub-networks are
analyzed rather than the activity of isolated genes [1].
Further, the development of biological knowledge sys-
tems such as the Gene Ontology (GO) [2] have provided
a framework in which groups of genes can be classified

in three areas: biological processes, molecular function
and cellular components. This ontological classification
scheme of gene function gives a hierarchical context in
which groups of genes can be regarded to determine
how closely they are functionally related [3].
A complimentary approach to above classification

based on GO is the assessment of molecular functions
in the context of known interactions between genes,
DNA/RNAs, proteins and small chemicals, as mapped
in biochemical interaction maps, pathways and networks
[4]. The novel combination of these biochemical net-
works, along with the classifications provided by the
GO, allows important clusters of genes in the cellular
response to be identified. It further provides evidence by
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adjacency and pathway connectivity to assign genes that
may not be significantly expressed to the relevant gene
clusters.
Here, these methods are used to study properties of

avian influenza infection with H5N1 virus, and to com-
pare this infection to another upper respiratory tract
infection, namely respiratory syncytial virus (RSV). The
H5N1 influenza virus shows remarkably higher virulence
than other strains of influenza [5]. A greater under-
standing of the H5N1 virus is motivated by epidemiolo-
gical concerns, particularly in-light of the recent
emergence of the H1N1 strain, because it is a prime
candidate as a future pandemic infection should it
mutate or reassort into a form that can be easily con-
tracted by humans [6,7].
As a cross check on the significance analysis, a sup-

port vector machine (SVM) algorithm [8] is used to
identify which genes show the greatest differences in
their expressions between the H5N1 infected and con-
trol samples. This ranking is then compared to the sig-
nificance analysis and genes associated with over
represented GO nodes as well as genes that are closely
associated with significant genes through interactions in
the Human Network. This cross check will allow us to
identify nodes that are not properly annotated, thus are
not captured by the GO analysis.

Results and Discussion
Results are presented in threefold. First, significant clus-
tering of genes into sub-graphs of the Gene Ontology
are identified using the GO enrichment analysis plugin
BiNGO [9] for CytoScape [10]. Second, many of the
most strongly up and down regulated genes are exam-
ined and their possible function in the cellular response
of Normal Human Bronchial Epithelial (NHBE) cells to
H5N1 is considered with comparison to RSV and Mock
infections. Comparisons were made at 8 and 24 hours
postinfection for comparison of gene expression changes
prior to and following productive viral replication, gen-
erally 12-14 hours postinfection in this NHBE culture
model. Viral replication was verified by standard plaque
assay techniques under the appropriate biocontainment
levels. A total of 138 and 213 genes were found to be
both significant biologically and statistically post infec-
tion at 8 and 24 hours, respectively. Of these, only a
small fraction are associated with over represented GO
nodes. Third, human response networks are calculated
and correlated with GO.

Significant Sub-Graphs
After 8 and 24 hours of H5N1 exposure, 138 and 213
significant genes relative to the controls were identified,
respectively. In spite of 138 genes being found at 8
hours, no significant over-representation of any GO

nodes was found by BiNGO. At 24 hours after infection,
several GO nodes showed over-representation and are
listed in Table 1 along with the significant genes that
are annotated with the corresponding GO ID. Only
nodes that are significant at the 0.05 level using a Bon-
ferroni correction are listed. Using the more liberal Ben-
jamini correction did not yield appreciably different
graphs [11]. The genes associated with each of these
GO nodes and their functional interactions with other
genes as described by our constructed Human Network
are shown in Figure 1 (see Additional Files 1 and 2).
Most of the genes in the GO clustering and those found
associated/related in the Human Network are up-regu-
lated, with a minority being down-regulated. Many of
the genes with the greatest change in expression, how-
ever, were down regulated such as EGR2, FOS and
EGR1 as shown in Table 2 (see Table 3 for a list of
gene-definitions).
Another visualization of these results is depicted in Fig-

ure 2 (see Additional files 3 &4), which contains a net-
work that used daughters of BiNGO nodes as seeds for
the human response network. As a result there are many
genes connected to each GO node. The increased num-
ber of paths between GO nodes obscures the genes that
are at the hub of activity, though FOS, IFI27, STAT1,
CXCL11 and CDC6 are rather well connected. This is in
contrast to Figure 1, which shows a graph where the sig-
nificant genes were used as seeds regardless of their GO
connections to generate a human response network, and
the resulting graph was then merged with the GO nodes
found to be significant with BiNGO.
Interestingly, no significant over-representation of GO

nodes can be found among the significantly represented
genes during RSV infection. That is, looking at the
genes that are both biologically and statistically signifi-
cant in the RSV but not in the Mock assays. This may
indicate that the response to RSV at times earlier than
24 hours does not involve activating genes that are not
part of the normal metabolic behavior of the cell. It is
possible that there is a more subtle interplay between
the gene activations in how the cell orchestrates a
response. Alternatively, the effects of early RSV infection
could be small such that the cell has not mustered sig-
nificant changes in gene expression by 24 hours post
infection. In any case, using the union of all genes
found to be significant in any of the control experiments
is rather conservative and may exclude sufficient true
positives to make finding significantly over represented
GO nodes difficult; however, this also highlights the dra-
matic response of the cell to infection by H5N1.

Genes of Interest
Although no significant GO nodes are found at 8 hours,
there is one sub-network associated with binding in the
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Gene Ontology that contains a fair number of genes. At
8 hours this sub-network contains a handful of genes
including CTGF, CYR61, SDPR and LGALS2. By 24
hours this has expanded to accommodate numerous
genes. This parent node common to the genes of this
subnetwork is associated with IFIT5, a gene that codes
for an interferon induced protein. Other subnetwork
that are easily identified by visual inspection include
genes involving transcription regulation, with the genes
EGR1, JUN, MCM6, FOSB, FOS and ZFP36 being sig-
nificantly regulated at both 8 and 24 hours, and genes
involved with post transcriptional/translational modifica-
tion such as TAP1, ISG15, and PLK3. There are also a

number of kinase/phosphatase related genes, DUSP1,
ABCC3, SOCS3. Among these, several of these genes
also appear among the top 35 components to the vector
normal to the OHP in the SVM analysis. Table 4 lists
genes from Table 5 that appear as significant in the 8
and 24 hour experiments. Although most of these genes
are not found in the BiNGO analysis, they are generally
found to be highly connected to those genes through
the Human Network. Many of these genes, including
CYR61, EGR1, JUN and DUSP1 are prominently dis-
played in the response network in Figure 1.
Among the three most dramatically regulated genes at

both 8 and 24 hours is the Early Growth Response 1

Table 1 Significant GO nodes

Significant GO Nodes at 24 Hours

GO ID GO description p-value

gene gene description log2(avg. fold change)

6955 Immune response p = 6.23 × 10-16

AIM2 absent in melanoma 2 2.71

CCL5 chemokine (C-C motif) ligand 5 1.64

CHST4 carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 4 1.53

EDG6 endothelial differentiation, lysophosphatidic acid GPCR 6 -1.22

EXO1 exonuclease 1 0.08

GBP1 guanylate binding protein 1, interferon-inducible, 67 kDa 1.75

GBP4 guanylate binding protein 4 1.25

OAS1 2’,5’-oligoadenylate synthetase 1, 40/46 kDa 1.91

OAS2 2’,5’-oligoadenylate synthetase 2, 69/71 kDa 2.36

OAS3 2’,5’-oligoadenylate synthetase 3, 100 kDa 2.68

SPON2 spondin 2, extracellular matrix protein -1.29

TAP1 transporter 1, ATP-binding cassette, sub-family B (MDR/TAP) 1.63

7049 Cell Cycle p = 1.88 × 10-10

CCNA2 cyclin A2 1.58

CCNE2 cyclin E2 2.32

CDC6 CDC6 cell division cycle 6 homolog (S. cerevisiae) 1.86

E2F1 E2F transcriptoin factor 1 1.37

MCM6 MCM6 minichromosome maintenance deficient 6 2.05

PRC1 protein regulator of cytokinesis 1 1.17

SPC25 kinetochore protein 2.15

TXNIP thioredoxin interacting protein 1.29

UHRF1 ubiquitin-like, containing PHD and RING finger domains, 1 1.63

9615 Response to Virus p = 5.98 × 10-9

CCL5 chemokine (C-C motif) ligand 5 1.64

IFIH1 interferon induced with helicase C domain 1 1.87

IRF7 interferon regulatory factor 7 1.76

MX1 myxovirus (influenza virus) resistance 1, interferon-inducible prot. p78 (mouse) 2.57

MX2 myxovirus (influenza virus) resistance 2 (mouse) 2.43

OAS1 2’,5’-oligoadenylate synthetase 1, 40/46 kDa 1.91

STAT1 signal transducer and activator of transcription 1, 91 kDa 1.66

6260 DNA Replication p = 8.92 × 10-9

MCM6 MCM6 minichromosome maintenance deficient 6 2.05

MCM10 MCM10 minichromosome maintenance deficient 10 (S. cerevisiae) 2.10

The most significant GO nodes are given with their raw p-values. Under each GO entry is a list of the genes associated with that node.
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gene EGR1, which is down-regulated by about an order
of magnitude at both 8 and 24 hours. Other studies of
epithelial lung cells in mice have shown significant up
regulation of this gene in association with lung injury,
though on much shorter time scales [12]. Up-regulation
of EGR1 and EGR2 have been seen after wounding in
mouse studies at several stages of development from
embryo to adult, though knockout studies show that
neither gene is essential to healing [13]. This suggests a
redundancy in systems in the cellular response to
trauma. Such backup systems are excluded in this study
by the selection criteria as a gene must appear in all
three experimental sets to be selected. The timescale for
EGR1 up-regulation in these cases is much faster and is
reported to be insignificant 90 min post trauma. Simi-
larly, EGR2 was reported to decrease to near zero after
1 hour. EGR1 is a master transcription factor that has
been shown to be up-regulated by histamine in human
aortic endothelial cells [14]. It is not known whether
this effect also exists in pulmonary endothelial cells, but
based on these data this seems to be a possibility. It is
curious, however, that this study finds EGR1 to be

strongly down regulated, in contrast to other studies.
The immediate early gene EGR1 is also activated by
injury, suggesting that mechanical stress of the cellular
membrane and viral infection may have a common fac-
tor in the response triggered in the cell [15]. There are
also significant differences between an intense, onetime
injury and the more gradual onset and constant stress
of a viral infection. These differences may help explain
the faster timescales of gene activation associated with
injury.
With respect to virus response, studies by Djavani

et al. (2007) report down-regulation of EGR1 and EGR2
after infection with the lymphocytic choriomeningitis
virus (LCMV) in a monkey model [16]. Down-regulation
of these genes has been recorded by Djavani et al. after
day 1 until the end of their measurements at day 7. This
evidence is consistent with our findings. Thus it seems
that virus infection triggers different reactions in the
same first responder genes compared to wound healing.
Interested to report with this respect is a regulatory net-
work identified by Djavani et al. that includes EGR1,
EGR2, FOS, JUN and PTGS2 (Figure 3, Additional files
5 &6). In contrast to Djavani et al., PTGS2 and IL1RL1
are up-regulated (Not shown: IL1R1 and IL1R2 are also
up-regulated). These results indicate moderately differ-
ent host responses during different viral infections even
for such a compact and highly connected network of
major host responding genes.
A study of cellular response in birds to H5N1 [17]

reports several genes to be significantly regulated. None
of the genes reported match the genes found in this
study, though several are similar. Many genes, such as
SOCS3, IL17C and STAT1 in this study, are similar to

Figure 1 Network of significant genes and GO nodes at 24 hours. The Gene Ontology nodes found to be significant in the BiNGO analysis
are shown as rectangles, with the more orange nodes being more statistically significant. The genes associated with the GO nodes are listed in
ovals connected by black arrows to the GO nodes. These genes are further connected to other genes in the Human Network via yellow and
orange edges. Red ovals indicate up-regulated genes while blue indicates down-regulated genes (see Additional files 1 &2).

Table 2 Top 3 most strongly regulated genes at 8 and
24 hours

Gene 8 hrs 24 hrs

EGR2 -3.65 ± 0.10 -3.47 ± 0.00

FOS -3.47 ± 0.00 -3.25 ± 0.16

EGR1 -3.32 ± 0.00 -3.10 ± 0.08

Errors are based on the variation of the fold change in expression between
the three independent trials. EGR2 has the greatest average down-regulation
of all genes observed in this study at both 8 and 24 hours with FOS being
more down-regulated than EGR1 at 8 hours and FOS and EGR1 switching
places at 24 hours. The log2 fold changes are shown.
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the genes SOCS1, IL17A and STAT3 reported in [17].
These genes show opposite regulation in this study
compared to the results in birds. Other genes, such as
TLR2 in this study and TLR15 in birds are both found
to be activated by exposure to H5N1.
Of the strongly regulated genes, several are also found

in the SVM analysis described in the last portion of the
Methods section. The genes common to the significance
analysis and the top 35 components of the SVM analysis
are shown in Table 4. The two largest components of
the vector describing the optimal hyperplane are for the
genes CYR61 and SOCS3. These genes have been asso-
ciated with ventilator-induced lung injury in mice, along
with CCL2 [18]. It has also been found that androgen
receptors enhance STAT3, which in turn regulates tran-
scription of SOCS3 [19]. This system is responsible for
leptin regulation and may indicate a change in the
energy use of a cell when responding to a pathogen.
Variations in levels of CYR61 have also been reported in
human tumor cell lines from nervous tissue along with
a structurally related gene, CTGF [20].
Over-expression of ZFP36 has been found after

wounding keratinocytes in human tissue [21], though
this is in contrast to the down regulation observed in
this study. The study by [21] also shows FOS and EGR1
to be activated by injury, again with opposite results of
the data presented here where both are found to be
down regulated. Up regulation of ZFP36 has also been
reported between bouts of muscular exercise [22]. The
reason for the down-regulation of ZPF36 upon exposure
to H5N1 while it is up regulated in response to physical

Table 3 Definition of genes referred to in the main text

Gene Definition

ABCC3 ATP-binding cassette, sub-family C (CFTR/MRP), member 3

CCL2 chemokine (C-C motif) ligand 2

CDC6 cell division cycle 6 homolog (S. cerevisiae)

CTGF connective tissue growth factor

CXCL11 chemokine (C-X-C motif) ligand 11

CYR61 cysteine-rich, angiogenic inducer, 61

DUSP1 dual specificity phosphatase 1

EGR1/2 early growth response 1/2

FOS v-fos FBJ murine osteosarcoma viral oncogene homolog

FOSB FBJ murien osteosarcoma viral oncogene homolog B

IFI27 interferon, alpha-inducible protein 27

IFIT5 interferon-induced protein with tetratricopeptide repeats 5

IL17C interleukin 17C

ISG15 ISG15 ubiquitin-like modifier

JUN v-jun sarcoma virus 17 oncogene homolog (avian)

LGALS2 lectin, galactoside-binding, soluble, 2

MCM6 minichromosome maintenance deficient 6

PLK3 polo-like kinase 3 (Drosophila)

PTGS2 prostaglandin-endoperoxide synthase 2

SDPR serum deprivation response (phosphatidylserine binding
protein)

SOCS1/3 suppressor of cytokine signaling 1/3

STAT1 signal transducer and activator of transcription 1, 91 kDa

STAT3 signal transducer and activator of transcription 3
(acute-phase response factor)

TLR toll-like receptor

TAP1 transporter 1, ATP-binding cassette, sub-family B
(MDR/TAP)

ZFP36 zinc finger protein 36, C3H type, homolog (mouse)

Figure 2 Network of genes using daughters of BiNGO nodes as seeds. Genes that are up-regulated are shown in red and those in blue are
down-regulated. Any gene found to be a daughter of a GO node found to be significant under the BiNGO analysis was included in a seed set
used to generate the resulting network connecting the BiNGO nodes. In this case, the seed genes are not necessarily significant, rather, it is their
associated GO node that is significant (see Additional files 3 & 4).
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injury is probably due to modulation effects caused by
the virus infection.
SVM results don’t share any of the genes found by

BiNGO analysis. That is, no gene was found to be both
associated with a significantly over represented GO
node and among the most relevant genes in the SVM
analysis. Rather, the genes found by SVM tend to be
functionally related to many of the genes found in sig-
nificant GO clusters. These genes include JUN, FOS,
FOSB, EGR1, DUSP1, and CYR61. This distinction is
likely due to SVM selecting based on differential expres-
sion and without regard to relative statistical significance
or gene relationships. Curiously, the CCL2 gene that
features as a prominent hub in the human network
graph is not found to be significant in either the BiNGO
or the SVM analysis.
The synthesized networks enable us to determine the

regulations (the genes located in up- and down-stream
of the pathways) of the selected genes. For example,
SAA (serum amyloid protein) 2 and 4 are important
host markers for H5N1 HPAI infection. CXCL9, CXCL
10 and 11, CXCR4 along with IL1A regulates expression
of SAA proteins that induce immune response

molecules specific for H5N1 infection (OAS1, OAS2,
OAS3, OASL, GBP1, GBP2, and TAP1), but not RSV or
mock infection. Figure 4 shows response networks at 8
h and 24 h after infection between differentially
expressed genes of H5N1 and RSV (see Additional files
7, 8, 9 and 10). Already at 8 h, CXCL9 is 3.8 times
more expressed in H5N1 than in RSV. This ratio
increases to 18.5 at 24 h. Similar increases can be identi-
fied for CXCL10 and CXCL11. The relative expression
between H5N1 and RSV for these genes change from
2.3 and 2.0 at 8 h to 6.8 and 10.5 at 24 h, respectively.
With respect to OAS genes, relative expression of OASL
changes from 2.9 to 6.1 between 8 h and 24 h. Interest-
ing to note at 24 h is the ICAM1 triggered two-pronged
expressed cascade to the FOS/JUN pair as well as to the
chemokine ligand family (CCL, CXCL) and their corre-
sponding receptors (CCR, CXCR). Thus, H5N1 seems to
trigger a variety of cytokine response in contrast to RSV
infections. The exceptions are CCR3, CXCL13 and
CCL19. These chemokines are suppressed by H5N1,
indicating a weakened anti-viral response induced by
H5N1 infections. The immune responses are further
developed into viral specific immune responses by

Table 4 Genes common to significance and SVM analyses

SVM Gene log2(Fold Change) Description (if available) 8 hrs 24 hrs

CYR61 -1.51 cysteine-rich, angiogenic inducer, 61 + +

SOCS3 -1.06 suppressor of cytokine signaling 3 - +

AK024238 -1.32 mRNA, possibly cadherin 6, type 2 (CDH6) + +

AA768672 -1.47 mRNA, possibly LSM14A + +

THC2348879 -1.22 + -

THC2313287 -2.74 + +

IER2 -1.64 immediate early response 2 + +

ZFP36 -1.74 zinc finger protein 36 + +

FOS -3.47 v-fos FBJ murine osteosarcoma viral oncogene homolog + +

NFKBIE 1.08 nuclear factor of kapppa light polypeptide gene enhancer in B-cells inhibitor + +

AT_nC_3 -1.32 + -

CTGF -1.43 connective tissue growth factor + -

AF159295 -1.89 mRNA, MAP/microtubule affinity-regulating kinase 3 (MARK3) + +

JUN -1.74 v-jun sarcoma virus 17 oncogene homolog (avian) + +

FOSB -2.18 FBJ murien osteosarcoma viral oncogene homolog B + +

EGR1 -3.18 early growth response 1 + +

HP1BP3 -1.00 heterochromatin protein 1, binding protein 3 + -

DUSP1 -1.79 dual specificity phosphatase 1 + +

ABCC3 1.38 ATP-binding cassette, sub-family C (CFTR/MRP), member 3 + +

FOXC1 -1.15 forkhead box C1 - +

SFRS5 -1.47 splicing factor, arginine/serine-rich 5 + +

DB363693 -1.43 + -

THC2343678 -1.47 + +

A_24_P161068 -1.09 - +

Genes are listed in order of importance in the SVM analysis. The fold change in each gene is the average fold change in gene expression including both the 8
and 24 hour data. In the last two columns, a “+” indicates that the gene was found in both the Significance and SVM Analyses at 8 or 24 hours, respectively. A
“-” indicates that the gene was not found in the results in both analyses at 8 or 24 hours. Genes through sfrs5 are among the top 35 and through the end of the
list are in the top 43.
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expressing molecules in interferon family. Targeting any
of these genes aligned in immune response pathways
can boost human anti-viral immune system.

Conclusions
The expression of approximately 100 genes in human
epithelial lung cells is found to be significantly different

at 8 and 24 hours after H5N1 exposure compared to
normal cellular metabolism or to response to RSV infec-
tion. Only those genes found to be significant at 24
hours are significantly clustered in the Gene Ontology
with Cell Cycle and various Immune Response nodes
being over represented. Although many genes are found
to be differentially expressed after exposure to RSV that
are not found in either the control or in the H5N1
experiment, no significant clustering was found using
the BiNGO analysis. The faster time scales and more
intense immunological response may be factors in the
virulence of H5N1. These results are consistent with
reports from infections caused by other aggressive
viruses, such as LCMV. Network responses of major
gene products affected by virulent infection seems to be
conserved between H5N1 and LCMV infections.
Although detailed responses clearly distinguish between
different viruses. H5N1 causes host immune response
by inducing large number of chemokines at the early
stages (24 hour) of infection. However, CXCL13 and
CXCL14 that are the keys to develop host anti-viral
responses are suppressed. Balance among CXCL chemo-
kines may be important to reduce the H5N1 mediated
complications (Figure 4). Future studies looking at time
scales from 12-48 hours would be helpful in addition to
real-time PCR of the most significant genes found here
to better determine their roles in the response to H5N1.
Potential applications of these findings include; (1) the

identification early host biomarkers that can be used to

Table 5 Components of the Optimal Hyper Plane (OHP)
in the SVM analysis

SVM Components of Significant Genes

Gene log2
(Exp Fold)

Ctrl
Fold

Exp pval Ctrl
pval

Component

CYR61 -1.51 0.16 2.8 × 10-6 0.31 -.0098

SOCS3 -1.06 -0.07 0.0017 0.39 -0.0095

LOC196752 -0.94 0.11 0.01 0.6 -0.0094

ALDH3B1 -0.86 0.07 0.012 0.9 -0.0094

KLF6 -1.60 0.26 5 × 10-7 0.38 -0.0093

AK024238 -1.32 0.06 7.6 × 10-7 0.39 -0.0093

AA768672 -1.47 -0.30 6.9 × 10-7 0.3 -0.0093

TUBAL3 -1.22 -0.62 0 0.078 -0.0092

THC2348879 -1.22 -0.09 1.4 × 10-6 0.41 -0.0088

THC2313287 -2.74 -0.09 4.1 × 10-13 0.52 -0.0088

IER2 -1.64 0.07 1.8 × 10-6 0.61 -0.0088

ZFP36 -1.74 0.10 3.7 × 10-7 0.67 -0.0086

FOS -3.47 0.10 1.4 × 10-19 0.6 -0.0086

AHNAK -0.94 0.15 0.012 0 -0.0085

NFKBIE 1.08 -0.09 0 0.37 0.0085

A_24_P7785 -0.97 -0.12 0.013 0.4 -0.0085

AT_nC_3 -1.32 -0.20 0.0067 0.78 -0.0084

CTGF -1.43 0.03 2 × 10-8 0.37 -0.0084

AT_ssH_RR_5 -1.56 -0.14 1.3 × 10-6 0.26 -0.0083

AF159295 -1.89 0.26 2.5 × 10-7 0.3 -0.0083

JUN -1.74 -0.20 7.3 × 10-7 0.26 -0.0083

FOSB -2.18 0.26 1.2 × 10-9 0.58 -0.0082

SYT12 0.88 -0.09 0.012 0.93 0.0082

AK022038 -0.89 0.26 0.013 0.35 -0.0082

EGR1 -3.18 0.21 1.9 × 10-18 0.44 0.0081

A_24_P494658 -0.86 0.08 0.022 0.25 -0.008

HP1BP3 -1.00 -0.04 0.0033 0.62 -0.008

ENST00000380874 -0.97 -0.42 0.0033 0.21 -0.0079

TRAF2 -0.77 -0.17 0.025 0.31 0.0078

DUSP1 -1.79 0.43 2.2 × 10-7 0.27 -0.0078

RELB 1.14 0.15 0 0.29 0.0078

ABCC3 1.38 0.03 1.9 × 10-6 0.23 0.0078

FOXC1 -1.15 0.01 0 0.72 -0.0077

SFRS5 -1.47 0.41 7.1 × 10-9 0.31 -0.0077

G0S2 2.38 0.42 1.5 × 10-8 0.22 0.0076

The components of the OHP in the SVM analysis are displayed along with the
average fold change of the gene in the H5N1 data and control data, and the
average p-values in the H5N1 and control data. The length of each
component is also given. A negative component to the vector normal to the
OHP indicates a decrease in the fold change in gene expression from the
control to the H5N1 exposures while a positive component indicates an
increase in the differential expression from control to H5N1.

Figure 3 Pathway analysis of major gene products affected by
virulent infection. A sub-network of the response network from
Figure 2 reveals interactions between the major gene products
affected by virulent infections. This network is in accordance with
Figure 5 of Djavani et al. (2007) [16]. In contrast to Djavani et al.,
PTGS2 and IL1RL1 (not shown: as well as IL1R1 and IL1R2) are up-
regulated. EGR1, EGR2, FOS, FOSB are transcription factors. PTGS2
encodes prostaglandin-endoperoxide synthase 2, IL1A/B code for
interleukin 1 and IL1RL1 belongs to the interleukin 1 receptor
family. Color coding is according to Figure 1. Black arrows indicate
known connections not realized in this particular response network
(see Additional files 5 & 6).
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Figure 4 Differential expression network between H5N1 and RSV. Response network of differentially expressed genes between H5N1 and
RSV. (a) A response network H5N1 versus RSV at 8 h is shown with 54 nodes and 65 interactions. The network was calculated with parameters
k = 3 and l = 4.5. (b) A H5N1 versus RSV response network at 24 h is depicted with 53 nodes and 71 interactions. Parameters k = 3 and l = 5
were used for calculation. Color coding is according to Figure 1. Edges with arrows indicate chemical reactions, diamond-shaped edge tips
denote activation, circle-shaped tips refer to phorphorylation reactions and non-decorated edges are non-directional interactions by physical
binding or by inferrence from the iHOP database (see Additional files 7, 8, 9 and 10).
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detect specifically H5N1 infection during the early
stages when the clinical symptoms have not been devel-
oped, (2) the selection of host targets to develop thera-
peutic for H5N1 infection.

Methods
Experiments
The gene expression data of epithelial cells were mea-
sured by Miltenyi Biotec using an Agilent DNA chip.
We used Agilent 60-mer Whole Human Genome Oligo
Microarray (with array numbers 251485014481 and
251485014482 resp.), containing approximately 44 K
genes and genes candidates. Raw expression files can
be accessed at: http://www4.utsouthwestern.edu/For-
stLab. NHBE cells were purchased from Lonza (Allen-
dale, NJ. USA), cultured and differentiated as described
previously [23]. Briefly, the cells are propagated by plat-
ing 2-3 × 106 cells in a 100 mm collagen coated dish in
BEGM media (Lonza, Allendale, NJ. USA) until reaching
70-90% confluency, generally in 3-5 days. NHBEs are
detached by low concentration trypsin digestion (Sigma,
St. Louis, MO, USA) and plated onto the apical surface
of Corning permeable inserts at a cell density of 5 × 105

in 24 mm (6-well) and 2.5 × 105 in 12 mm (12-well) in
ALI media (50:50 mix of BEGM media and DMEM-H
(Sigma, St. Louis, MO, USA) without antibiotics) in
both the apical and basolateral chambers. Retinoic acid
final concentration in ALI media is at 50 nM. At con-
fluency, the apical media is removed and the cells
exposed to air for 28 d. Basolateral media is changed
and apical surface washed with 1× PBS every 48 hr. Dif-
ferentiation is determined by microscopic observation of
ciliary beat and confirmed in one-well by formalin-fixed,
paraffin embedded hematoxylin and eosin staining for
apical ciliary axonemes under microscopic examination.
The fully differentiated cells were infected with High

Pathogenic Avian Influenza A (HPAI) H5N1 A/Hong
Kong/483/97 in BSL-3 facility with Multiplicity Of
Infection (MOI) of 0.01. The infectivity of the virus was
determined with a plaque assay prior to the experi-
ments. Apical compartment were washed with warm
PBS and the viruses were added to the growth media.
After one-hour incubation at 35°C, unattached viruses
were removed from the apical compartment and one ml
of fresh media was added. Eight and 24 hour after infec-
tion the cells were harvested by adding RLT lysis buffer
(Qiagen RNeasy Kit) and total RNA was isolated
according to the Manufacturer’s instructions. One μg of
total RNA was used for microarray analysis. The time-
points were chosen to record physiological changes dur-
ing infections. After 8 h the first viral particle start
forming inside of host cells. By 24 hours the newly
formed viral particles infect the un-infected neighboring
cells.

Differential expression levels of mRNA were measured
at 8 and 24 hours after exposure to one of three agents.
One agent was the H5N1 virus. The other two, which
served as controls, were the more benign Respiratory
Syncitial Virus (RSV) and Mock samples consisting of
growth medium. Three independent experiments were
conducted to measure mRNA levels after exposure to
H5N1 at both time points, for a total of 6 H5N1 data
sets. Two experiments each were carried out for both
controls and at both times, for a total of 8 control data
sets.
Vials containing human RNA samples were shipped to

Miltenyi Biotech on dry ice. At the company, the sam-
ples were further quality checked via Agilent 2100 Bio-
analyzer platform, T7-base amplified, Cy3/Cy5-labeled
and hybridized to the Agilent Whole Human Genome
Oligo Microarrays using Agilent’s recommended hybri-
dization chamber and oven. Fluorescence signals of the
hybridized Agilent Oligo Microarrays were detected
using Agilent’s DNA microarray scanner. The Agilent
Feature Extraction Software (FES) was used to read out
and process the microarray image files. Feature intensi-
ties and ratios, including background subtraction and
normalization, were determined, outliers rejected and
statistical confidences (p-values) calculated (see Addi-
tional file 11 for microarray statistics).

Expression Data Analysis
Genes in each of the data sets were deemed as signifi-
cant if they showed at least a two-fold change in expres-
sion and met a preset p-value cutoff. How this value is
selected is discussed below. Those genes that were sig-
nificant in all three exposures to H5N1 after 8 or 24
hours but were not significant in any of the control
trials were taken as relevant to H5N1 response. Stated
formulaically,

E Expr Expr Expr8 24 1 2 3 8 24, ,( )   (1)

C RSA RSA Mock Mock8 24 1 2 1 2 8 24, ,( )    (2)

S E C C8 24 8 24 8 24, , ( )   (3)

where E is the set of genes expressed after H5N1
exposure, C is the set of control genes and S is the set
of genes determined to be significantly relevant to
H5N1 response uniquely. The subscripts indicate the
time point. Thus, the significantly expressed genes rele-
vant to H5N1 response at a given time point of 8 or 24
hours are taken to be the intersection of all genes signif-
icant in all three trials, but not significantly expressed in
any of the control trials. In these experiments, the num-
ber of probe sets differed between the RSV, H5N1 and
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Mock conditions. In order to avoid false results due to a
probe appearing in one condition but not another, only
the probes that were common to all three conditions
were kept to be processed by the above analysis.
The timescale of response to RSV and H5N1 may dif-

fer substantially, thus no attempt is made to distinguish
between controls at 8 hours and those at 24 hours. Any
genes that are significant in any of the control studies
are assumed to be part of normal cellular metabolism
and unrelated to a response to H5N1. This is an over-
simplification and will probably lead to several genes in
the RSV control studies being incorrectly interpreted as
being part of the normal cellular metabolism. What
remains, however, can then be more reliably identified
as being both significant and genuinely a response of
the cell to H5N1. This bias should generally select for
genes responding to the more virulent nature of H5N1
since the basic response of the cells to the more benign
RSV will be interpreted as normal expression through
the control.
To find which genes were significantly expressed as a

part of the cellular immune response a conservative
interpretation of the data is used. Only genes which are
found to be significant in all three experimental trials
are considered to be genuine. Thus, a gene must be
both biologically and statistically significant in all three
experiments at 8 or 24 hours post-exposure to be con-
sidered relevant. As mentioned above, the control stu-
dies are also given a conservative interpretation. If a
gene is found to be both biologically and statistically sig-
nificant in any one of the control studies then it is inter-
preted as being part of the normal functioning of the
cell. This rather conservative interpretation has the
effect of revealing only the most significant genes, and
hopefully, the genes that are most important in the reac-
tions of the cell that are most specific to H5N1.

Evaluation of Significance
A gene is considered biologically significant if there is at
least a 2-fold change in the level of gene expression at
the given time frame after exposure in all three repeats
of the experiment. Statistical significance is determined
by demanding that there be, on average, less than one
false positive due to statistical effects in the set of genes
deemed to be significant. To do this, only data with p-
values below a certain cutoff value are deemed to be sta-
tistically significant. This cutoff value is

p
Ncutoff  0 5

0 02553
.

. , (4)

where N ≈ 3 × 104 is the number of genes measured.
Since the p-value indicates the fraction of random, i.e.,
insignificant, results that will by chance appear significant,

the number of false positives, FP, is assumed to be FP =
pcutoff(N - TP), where TP is the number of true positives.
Since, in general, TP ≪ N it can be approximated that the
number of false positives is FP ≈ pcutoff N. By setting a cut-
off such that FP = 0.5 it can be assumed that, on average,
there are less than 0.5 false positives per experiment, i.e., a
family-wise error rate of 0.5. Since there are three H5N1
experiments at each time point, and it is required that a
result appear significant in all three data sets, the likeli-
hood of a false positive goes down by the cube of the sin-
gle experiment rate. This is equivalent to a Bonferroni
correction, modified for the case where n independent
measurements are made for each variable. Thus, to main-
tain a FP rate of 0.5 the cutoff given in Equation 4 is used.
The tacit assumption here is that TP genes will reliably
reappear as significant across experiments while FP results
will be evenly distributed amongst the insignificant genes
randomly. This assumption will become important
presently.
In the data sets several genes are listed twice or more.

These repeats are due to different oligonucleotide probe
sequences being used on the gene chip that code for dif-
ferent parts of the same gene. Genes that appeared more
that once were not all necessarily measured to be (in)
significant in all instances. In the cases where the results
on a single chip differed, a way of evaluating the signifi-
cance of that gene is needed. In these cases, if a gene
appeared as significant by p-value more than once, and
its average fold change over all instances was greater
than a factor of two, then it was taken to be significant.
Since genes which are repeated have more chances to

appear significant the cutoff p-value given above may
not be sufficient. If a gene appears beneath the p-value
cutoff twice, then the FP rate will be less than p2. As
the number of instances of the gene that are not mea-
sured to be significant increases, however, there is a
greater chance the gene is not significant. To determine
the proper outcome the false negative rate, FN, must be
known. This quantity is unknown but is tacitly assumed
by the above procedure to be FN ≫ pcutoff

2 , making
two positive occurrences compelling. The precise FN
rate is complicated since the redundant entries represent
diffferent probe sequences for the same gene. The aver-
age fold change of all instances is used in determining
biological significance to avoid biasing the measure.
This is not a rigorous statistical treatment, but should
provide reasonable results in conjunction with the other
data sets and for reasonable values of a FN rate.
Changing the p-value cutoff described above did not

appreciably change the numbers of significant genes
identified. With respect to the H5N1 response after 8 h
and 24 h, a total of 152 and 209 genes, respectively,
satisfy Equation 3 when the p-value cut-off is set to
unity. These numbers change to 138 and 213 genes
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when, in addition, the p-value cutoff in Equation 4 is
used. The increase from 209 to 213 genes at 24 hours
after the inclusion of the p-value cutoff reflects the cut-
off eliminating genes from being considered significant
in the control study. All but about 20 genes in both
time sets remained significant regardless of what p-value
cutoff was used in the range pcutoff <p < 1.0.

Gene Ontology
The genes found to be significant in the experiments
involving H5N1 exposure are analyzed using the BiNGO
package for CytoScape. Here, a list of significantly over-
represented Gene Ontology nodes associated with the
significant genes is constructed. Similar to enrichment
analysis [24], the Gene Ontology is then searched for
nodes that are over represented at a statistically signifi-
cant level. Significance is evaluated using the hypergeo-
metric test given by
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where qi gives the probability for a given GO node
having i of its f daughter nodes associated with genes
from a random list of c genes, and g is the number of
GO nodes in the whole Ontology. Thus, the chance of n
or more genes randomly being clustered under a given
GO node (given that c genes were found to be signifi-
cant) has a probability of
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(5)

Otherwise stated, this is the probability of finding a
clustering at least as extreme by random chance, i.e. the
p-value of the clustering.

Human Network Reconstruction
To construct a hybrid Homo sapiens interaction and
reaction network we have combined protein-protein
interactions with directional signal transduction and
metabolic reactions. We have been using interaction
information from IntAct [25], NetworKin [26] and from
Palsson’s group, consisting of 37,000 nodes (genes, pro-
teins and small chemicals) as well as 156,000 interac-
tions (gene-protein, protein-protein) and reactions
(chemical, protein-phosphorylation, etc). We have also
integrated this network with a larger literature based
network available from iHOP [27] with 45,041 nodes
and 438,567 interactions, which are already about 2/3s

of 650,000 interactions predicted by Stumpf et al. (2008)
[28]. As a third reference network, the Homo sapiens
protein interaction network was downloaded from the
BioGRID database version 2.0.39 [29], which was gener-
ated from literature curation of protein interaction data.
The data set was filtered to include only direct and phy-
sical interactions between human proteins and all loops
and duplicate edges were removed. Although, duplicate
edges from different data sources and different property
(e.g., an interaction identified as generic protein-protein
interaction in one data-set and predicted as phosphory-
lation of a protein by a kinase in another data-set) were
kept to emphasize the importance/validity of such
interactions.

Human Response Network Analysis
The list of genes S8 and S24 are used as seed nodes to
create so called response networks using the Human
Network. The k-shortest paths between all pairs of seed
nodes are found, where k is a positive integer. The
length of a path is weighted at each edge by the average
absolute log-fold change in expression of the two genes
at either end. The parameter k is chosen such that the
graphs showed a large number of interaction pathways
while remaining easily interpretable. The reader is
referred to Cabusora et al. (2005) [30] where the algo-
rithm is described in detail.
Within the Human Network, 37 of the 8 hour nodes

and 80 nodes in the 24 hour set were identified. The
degree to which each gene is interconnected and with
which genes they interact can help identify what role
they play in the cell’s response to H5N1. These net-
works can also help identify important centers of activity
such as the FOS and EGR1 genes seen in Figure 1.
In the Human Networks generated using the genes

found in the BiNGO clustering analysis as seeds it is
desirable to know how often particular genes are added
when Human Networks are constructed. The probability
a given gene will be added to a human network given a
random list of seed genes is determined using Monte
Carlo simulations for calculating the p-values of the
appearance of genes. The p-values calculated are not
significantly different for the top several genes for 1000
or 10000 iterations. In general, the distribution is consis-
tent within the first 1000 and afterward statistical noise
is reduced allowing better accuracy and resolution of
smaller values. Genes with no appearances in the Monte
Carlo can only be said to have an estimated p-value of
less than 1/interactions. The number of seed genes used
in the Monte Carlo simulations was 213, the number
found in the significance analysis. The most significant
GO nodes and their associated raw p-values are given in
Table 6. The p-values for the genes included by the
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Table 6 Most significant GO nodes

Significant GO Nodes at 24 Hours

GO-ID p-value corr p-val sel. tot. Description Genes in test set

2376 2.4009E-16 1.8007E-13 35 783 immune system IFIH1, IFITM1, IFITM3, G1P3, OAS3, PRKR

process TLR2, ISG15, OAS1, C1S, OAS2, ISGF3G

CXCL11, CCL5, HSH2D, BF, PGLYRP4 TAP1

MX1, SPON2, MX2, EDG6, EXO1, EGR1, ZFP36

CHST4, HLA-DQA2, AIM2, PDCD1LG1, IKBKE, CD34

IRF7, IFIT5, DMBT1, GBP1

6955 6.2296E-16 4.6722E-13 31 613 immune IFIH1, IFITM1, IFITM3, TLR2, G1P3, OAS3

response PRKR, ISG15, OAS1, C1S, OAS2, ISGF3G

CXCL11, CCL5, BF, PGLYRP4, TAP1, MX1

SPON2, MX2, EDG6, EXO1, CHST4, HLA-DQA2, AIM2

PDCD1LG1, IKBKE, IRF7, IFIT5, DMBT1, GBP1

51869 4.4363E-13 3.3273E-10 54 2335 response to PIR51, PRKR, G1P3, TLR2, ISG15, ISGF3G

stimulus CXCL11, CALB1, FOS, PGLYRP4, MX1, SPON2

FANCA, CCNA2, MX2, IHPK3, CYR61, RAMP

EDG6, ZFP36, ECGF1, SAA4, CHST4, FOSB

HLA-DQA2, RAD51, PDCD1LG1, UHRF1, GADD45B

PROS1, GBP1, IFIH1, IFITM1, IFITM3

OAS3, OAS1, CHEK1, OAS2, C1S, CCL5

BF, TYMS, TAP1, EXO1, GSTA3, SGK, STAT1

ABCG1, AIM2, IKBKE, DUSP1, IRF7, IFIT5, DMBT1

7049 1.8839E-10 1.4129E-7 28 808 cell cycle E2F1, PRC1, IFITM1, HCAP-G, PRKR, CHEK1

MCM10, CCNE2, SPC25, CDC45L, CCNA2

EXO1, CDC6, MKI67, NUSAP1, FOSB, STAT1

MCM6, RAD51, UHRF1, PLK3, DUSP1 KNTC2

JUN, TOPK, FOXC1, GADD45B, DMBT1

22402 4.4621E-9 3.3466E-6 24 690 cell cycle EXO1, E2F1, CDC6, IFITM1, MKI67, PRC1

process HCAP-G, NUSAP1, CHEK1, FOSB, MCM10, STAT1

RAD51, CCNE2, SPC25, PLK3, CDC45L, KNTC2

JUN, TOPK, FOXC1, GADD45B, CCNA2, DMBT1

9615 5.9766E-9 4.4825E-6 10 91 response IFIH1, IRF7, PRKR, ISG15, OAS1, ISGF3G

to virus CCL5, MX1, STAT1, MX2

6260 8.9240E-9 6.6930E-6 13 188 DNA EXO1, CDC6, ECGF1, MCM10, ORC1L, TK1

replication RAD51, MCM6, CCNE2, TYMS, CDC45L, PFS2, RAMP

9607 2.1548E-8 1.6161E-5 14 241 response to IFIH1, IFITM1, IFITM3, PRKR, ISG15, OAS1

biotic stimulus ISGF3G, STAT1, CCL5, PGLYRP4, IRF7, MX1

MX2, DMBT1

51707 5.8349E-8 4.3762E-5 12 182 response to IFIH1, PGLYRP4, IRF7, PRKR, ISG15, OAS1

other organism ISGF3G, CCL5, MX1, STAT1, MX2, DMBT1

6950 5.9053E-7 4.4290E-4 24 894 response to EXO1, ZFP36, GSTA3, PIR51, SGK, TLR2

stress SAA4, CHST4, CHEK1, C1S, CCL5, CXCL11, RAD51

BF, TYMS, FOS, UHRF1, DUSP1, GADD45B, PROS1

CCNA2, FANCA, IHPK3, RAMP

74 1.7011E-6 1.2758E-3 17 506 reg. of prog. E2F1, CDC6, MKI67, IFITM1, NUSAP1, CHEK1

through cell cycle FOSB, STAT1, MCM10, CCNE2, PLK3, CDC45L

JUN, FOXC1, GADD45B, CCNA2, DMBT1

51726 1.8935E-6 1.4202E-3 17 510 regulation of . E2F1, CDC6, MKI67, IFITM1, NUSAP1, CHEK1

cell cyc FOSB, STAT1, MCM10, CCNE2, PLK3, CDC45L

JUN, FOXC1, GADD45B, CCNA2, DMBT1

6270 3.1656E-6 2.3742E-3 5 27 DNA replication initiation CCNE2, CDC6, CDC45L, ORC1L, MCM6

51706 6.8716E-6 5.1537E-3 12 285 multi-organism IFIH1, PGLYRP4, IRF7, PRKR, ISG15, OAS1

process ISGF3G, CCL5, MX1, STAT1, MX2, DMBT1
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Human Network, not including the seed genes, are
listed in Table 7.
The network generated from the BiNGO results show

several closely related genes to be networked with the
genes found in the significance analysis. Interestingly,
there is no correlation between the connectivity of a
gene in the Human Network and the p-value of that
gene appearing in the human network given a random
set of seed genes. Neither the first nor the second order
connectivity of the nodes is correlated with the gene p-
values. How important the higher order connectivities
are, however, depends on the maximum path-length
allowable. Second, the weights in the expression data
will alter the weight of including each gene in a path.
Thus, genes that are only moderately well connected
but have a low cost of inclusion may appear more fre-

quently than genes that are better connected but with a
higher cost of inclusion.

Support Vector Machines
To provide a check against the significance analysis
described above, the data are also examined using Sup-
port Vector Machines (SVM). SVM is a technique used
in machine learning that is designed to classify objects
into one of two classes [31]. Each object has a number
of parameters describing it that have been measured. In
the case presented here the set of measured parameters
is the set of gene expression values in one experiment,
i.e., where each gene’s level of expression constitutes
one parameter. Each object, i.e., experiment, can be
plotted in Cartesian coordinates of a dimension equal to
the number of parameters, with each axis encoding the
value of one parameter. I this implementation the gene
list is limited to those genes with a p-value of 0.05, or
about twice pcutoff or less. This helps avoid fitting to
noise. Using this cutoff results in having 14 points
plotted in a space of 332 dimensions rather than the
total 3 × 104. Thus, each experiment can be represented
in this space as a vector whose components describe the
degree of regulation for each gene measured. Once all
the objects are plotted, it is often possible to draw a
hyperplane that divides the space so that all objects of
one class are found one one side of the hyperplane and
all objects of the other class are on the other side. Such
a hyperplane could then be used to classify the results
from a gene chip and help determine whether the
results indicated the cell had been exposed to H5N1.

Table 6: Most significant GO nodes (Continued)

6259 9.7883E-6 7.3412E-3 19 704 DNA metabolic EXO1, CDC6, PIR51, ECGF1, CHEK1, MCM10

process ORC1L, MCM6, TK1, RAD51, CCNE2, TYMS, FOS

UHRF1, CDC45L, PFS2, FANCA, IHPK3, RAMP

6263 1.9790E-5 1.4843E-2 7 96 DNA-dependent DNA replic. EXO1, CCNE2, CDC6, CDC45L, ORC1L, MCM6, RAD51

278 2.0740E-5 1.5555E-2 11 267 mitotic cell cycle E2F1, SPC25, CDC6, KNTC2, PRC1, HCAP-G

NUSAP1, TOPK, FOXC1, CHEK1, CCNA2

9719 2.9713E-5 2.2285E-2 12 330 response to EXO1, TYMS, UHRF1, PIR51, SGK, CHEK1

endogenous stim. FANCA, CCNA2, IHPK3, ABCG1, RAD51, RAMP

6952 4.3825E-5 3.2869E-2 15 520 defense response ZFP36, IFIH1, TLR2, SAA4, CHST4, C1S

CXCL11, CCL5, BF, FOS, PGLYRP4, TAP1, MX1

MX2, DMBT1

6974 4.8613E-5 3.6459E-2 11 293 response to DNA EXO1, TYMS, UHRF1, PIR51, SGK, CHEK1

damage stim. FANCA, CCNA2, IHPK3, RAD51, RAMP

279 5.9994E-5 4.4996E-2 10 248 M phase EXO1, SPC25, CDC6, KNTC2, HCAP-G, NUSAP1

TOPK, CHEK1, CCNA2, RAD51

22403 6.1999E-5 4.6500E-2 11 301 cell cycle phase EXO1, E2F1, SPC25, CDC6, KNTC2, HCAP-G

NUSAP1, TOPK, CHEK1, CCNA2, RAD51

The most significant GO nodes are given with their raw p-values. Under each GO entry is a list of the genes associated with that node.

Table 7 Genes found in the Human iHOP Network using
genes significant at 24 hours as seeds

Gene p-value

CCL2 4.0 × 10-1

CSF2 1.0 × 10-2

CSF3 3.8 × 10-2

CXCL10 1.4 × 10-1

CXCR4 8.1 × 10-3

IL1a 3.2 × 10-1

PTGS2 2.1 × 10-2

SOD2 1.0 × 10-1

TLR1 < 1.0 × 10-4

TNF 1.7 × 10-2

Tatebe et al. BMC Bioinformatics 2010, 11:170
http://www.biomedcentral.com/1471-2105/11/170

Page 13 of 15



In this case the components of the hyperplane itself
are examined rather than using it to classify unknown
objects. The vector normal to the Optimal Hyper Plane
(OHP) separating the two classes of objects is used to
determine which genes may be important in cellular
response to H5N1. The hyperplane separating the two
groups (control and H5N1 exposures) maximizes the
margin between the groups, i.e., the distance perpendi-
cular to the OHP separating the nearest members of the
two groups. Thus, the largest components of this vector
are the directions in which the margin between the con-
trol and exposed groups is greatest. A list of the genes
whose change in regulation show the greatest margin
between the two groups is then compiled. The list of
genes used in the SVM analysis is restricted to those
with p-values of 0.05 or less. This is to avoid fitting as
much statistical noise as possible. In spite of no cutoff
for the fold change being required explicitly, the most
prominent genes in the SVM analysis have fold changes
that are generally more than a factor of two and p-
values that are typically much less than the cutoff. The
results are shown in Table 5 and can be compared to
the results from the analysis described in Evaluation of
Significance. Based on the average p-values of the genes
listed, the expected number of false positives among the
35 genes listed is only around 0.3.

Additional file 1: Figure 1 network data. Figure 1 network data in
XML format

Additional file 2: Figure 1 interaction data. Figure 1 interaction data
in sif format

Additional file 3: Figure 2 network data. Figure 1 network data in
XML format

Additional file 4: Figure 2 interaction data. Figure 2 interaction data
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