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Abstract

Background: Ever since the ground-breaking work of Anfinsen et al. in which a denatured protein was found to refold
to its native state, it has been frequently stated by the protein fold prediction community that all the information
required for protein folding lies in the amino acid sequence. Recent in vitro experiments and in silico computational
studies, however, have shown that cotranslation may affect the folding pathway of some proteins, especially those of
ancient folds. In this paper aspects of cotranslational folding have been incorporated into a protein structure prediction
algorithm by adapting the Rosetta program to fold proteins as the nascent chain elongates. This makes it possible to
conduct a pairwise comparison of folding accuracy, by comparing folds created sequentially from each end of the
protein.

Results: A single main result emerged: in 94% of proteins analyzed, following the sense of translation, from N-terminus
to C-terminus, produced better predictions than following the reverse sense of translation, from the C-terminus to N-
terminus. Two secondary results emerged. First, this superiority of N-terminus to C-terminus folding was more marked
for proteins showing stronger evidence of cotranslation and second, an algorithm following the sense of translation
produced predictions comparable to, and occasionally better than, Rosetta.

Conclusions: There is a directionality effect in protein fold prediction. At present, prediction methods appear to be too

approach to protein fold prediction.

noisy to take advantage of this effect; as techniques refine, it may be possible to draw benefit from a sequential

Background
The purpose of this paper is to investigate whether direc-
tionality of synthesis can have an impact on the accuracy
of protein structure prediction. In order to do this a
sequential structure prediction algorithm, based on the
most successful free modelling method of our time,
Rosetta, was developed and used to predict structure,
first starting from the nitrogen terminus and then start-
ing from the carbon terminus. Free modelling protein
structure prediction methodology has improved in recent
years, but is still not accurate enough to be considered
satisfactory (see results of CASP6 [1] and CASP7 [2,3]
and the more recent CASP8 [4]). Given this noisy nature
of current free modelling stucture prediction techniques,
the pairwise comparison design used here appears to be
required; it succeeded in detecting a consistent direction-
ality effect. We begin, however, by summarizing the area.
Almost fifty years ago Anfinsen et al. [5,6] showed that
denatured small globular proteins could refold to their
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native state. On the other hand, experimentalists have
known for many years that cotranslation can play an
important role in protein folding [7-12]. Polypeptides are
synthesized sequentially, and translation can occur at
variable rates according to codon speed [13-17]. In
Escherichia coli, for example, translation can occur in the
order of 0.05 s/codon [13,18-20]. On the other hand, it
has been shown that helices and sheets fold in the low
millisecond scale [21-23]. Therefore, some proteins fold
faster than they elongate, and it is reasonable to assume
that nascent chains can adopt secondary or tertiary struc-
tures cotranslationally. Experimental evidence for
cotranslational folding dates back to the 1960s with a
study on cotranslation in vivo reporting that ribosome-
bound -galactosidase was showing enzymic activity [24].
More recently it has been shown that the Semliki Forest
Virus Protein (SFVP), which contains a protease domain
that folds to autocatalytically cleave the protein from a
larger polyprotein precursor, gains its enzymic activity
before complete synthesis of the polyprotein [25]. More-
over, the rapid cotranslational folding of SFvVP does not
require additional cellular components [26].
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In addition to enzymatic activity whilst still bound to
the ribosome, intermediate stages of cotranslational fold-
ing may have native-like structures. Various length a-
globins have been shown to have specific heme binding
activity on several truncated ribosome-bound nascent
chains. The shortest of these contained only the first 86
residues (from a total of 147 residues), demonstrating
that the nascent chain has native-like structure [27]. NMR
studies of nascent chains containing tandem Ig domains
and still attached to the ribosome revealed that the N-ter-
minus domain folds to its native state while the C-termi-
nus domain is largely unfolded and flexible [28]. Recent
molecular dynamics simulations also conclude that small
peptides may adopt a conformation that is similar to the
one adopted in full proteins [29]. The discovery of the
formation of disulphide bonds in nascent immunoglobu-
lin peptides also confirms the ability of proteins to begin
to fold whilst they are being synthesized [30,31].

As well as adopting native-like conformations while still
attached to the ribosome, there is evidence that peptides
can begin to fold whilst still in the ribosomal exit tunnel.
Analysis of the ribosomal exit tunnel reveals that peptides
can traverse the tunnel in an a-helical conformation [32],
but that at no point is the tunnel big enough to accommo-
date structures larger than a-helices [33,34]. Peptides are
not restricted to an a-helix, however, and may adopt
more extended conformations [35]. Analysis of the exit
tunnel has also shown that the tunnel can entropically
stabilize a-helical conformations as they pass through
[36].

The rate of in vitro refolding has often been observed to
be slower than the corresponding rate in vivo [37,38].
Cotranslation has been studied in the bacterial luciferase
af heterodimer, and the formation of the heterodimer is
faster when the 8 monomer is translated in the presence
of the folded &« monomer than when the  monomer is
refolded from a denatured state [38]. This shows that,
under cotranslational folding, the 8 monomer is able to
obtain a conformation that is more receptive to the for-
mation of the dimer, thus avoiding kinetic traps associ-
ated with refolding from a denatured state [39]. Native-
like structure has also been observed in cotranslationally
folding monomeric firefly luciferase; again, cotransla-
tional and in vitro folding pathways appear to be differ-
ent, with cotranslational folding being faster [40].
Cotranslational folding in P22 tailspike protein has been
shown to guide the peptide away from aggregation-prone
conformations that are frequently encountered when
refolding in vitro, leading to the hypothesis that cotrans-
lational folding could be an efficient strategy for the fold-
ing of B-sheet topologies, and for large, multidomain
proteins in general [41]. One possible explanation for this
is that the peptide begins to fold while still attached to the
ribosome [42,43]. Another possible explanation is the
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existence of additional folding machinery contained in
the cell; however, only approximately 20% of proteins
associate, for example, with chaperones [44,45]. The
removal of major chaperones, such as DnaK and Hsp70,
in E. coli has no adverse effect on cell growth or viability
[46,47]. This suggests that chaperones alone cannot
account for the higher folding rates observed in vivo.

Complementing these experimental findings, computa-
tional models of cotranslational folding have also been
explored, an early, incidental, use of this idea appearing in
[48]. Simple computational models of protein folding
incorporating cotranslation demonstrate that such fold-
ing favours local contacts in intermediate and final folds
[49,50]. More recently the effect of energy barriers on
simple cotranslational models was studied, and it was
found that the ground state of proteins folded sequen-
tially was not necessarily the one of lowest energy [51].
Computational models have provided evidence that
nascent chains may adopt partial structures similar to the
corresponding parts of the complete protein [52]. Other
lattice studies present a differing view of cotranslation
where nascent peptides can remain largely unstructured
until the final stages of synthesis (estimated to be when
90% or more of the protein has been extruded) [53]. This
finding is dependent on the involvement of the C-termi-
nal in tertiary interactions, and may not be applicable to
all proteins. There is also evidence arising from lattice
models that cotranslational folding pathways and refold-
ing pathways are different [53]. Computational simula-
tions of real proteins folding cotranslationally compared
to refolding from a denatured state show mixed results.
Chymotrypsin inhibitor 2 (CI2) and barnase were shown
to fold mostly posttranslationally, with intermediates
similar to those observed in refolding [54]. An alternative
computational, cotranslational approach using dynamic
optimisation in [55] found that major elements of the CI2
tertiary structure only form when the amino acid string is
fully translated. For SEVP, which is known to fold cotrans-
lationally [25], different pathways were taken during syn-
thesis to those taken when folding from a denatured state
[54]. A further promising approach is found in [56]. Path-
ways which minimize the difficulty of folding to the
native state (for example, those which avoid having the
chain pass through an opening) are found; results indi-
cate that earlier folding is more likely around the N-ter-
minus than the C-terminus, so pointing to an asymmetry
of the folding process that is confirmed in the current
work.

Finally, there is also evidence of cotranslational protein
folding that arises from numerical summaries of known
protein structures. An analysis of structures in the Pro-
tein Data Bank (PDB) found that residues are, in general,
closer to previously synthesized residues than those syn-
thesized later, and that the N-terminal region was more
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compact than the C-terminal region [57]. It was argued
that this provided evidence of cotranslational folding,
however, these findings were contradicted by a later anal-
ysis of a larger set of proteins [58]. In the second study it
was observed that the C-terminals were more compact
and contained greater numbers of local contacts than N-
terminals. Further analysis that considered topological
accessibility (the ability of a protein to fold from a given
residue as a starting point using only local contacts)
found this to be more evident towards the N-terminus in
the a/f class of proteins [59]. In a similar vein, Deane et
al. [60] developed a measure of previous contacts which
assesses the extent to which the chain forms contacts
with previously extruded residues. They also found that
the a/B class and ancient folds [61] exhibited such evi-
dence of cotranslation.

To date, protein structure prediction methods do not
incorporate cotranslational effects. This paper describes
such an algorithm and evaluates its performance. This
evaluation reveals that, in more than 94% of cases, a
sequential algorithm that follows the sense of translation,
that is, from N-terminus to C-terminus, is more accurate
than an algorithm that follows the reverse sense, from C-
terminus to N-terminus. The success of the sequential
algorithm is greater the more the target shows evidence
of cotranslational folding. It is also found that a sequential
algorithm can match, and on occasion better (in 51% of
proteins tested), the performance of a leading non-
sequential protein structure prediction algorithm, namely
Rosetta.

Methods

Structure prediction algorithms

A sequential algorithm (SAINT, a Sequential Algorithm
Initiated at the Nitrogen Terminus) was developed and
used to predict the structure of a number of proteins.
This algorithm uses the Rosetta program [62] (version
2.1.0), extending it to incorporate cotranslational aspects
of protein folding. To investigate the importance of fol-
lowing the direction of translation, the sequential algo-
rithm was adapted to predict the structure of proteins
produced in the reverse direction, from the C-terminus
to the N-terminus. Predictions from the sequential and
reverse sequential algorithms were compared and they in
turn compared to predictions made using an unmodified
version of Rosetta. These algorithms are now described.
Sequential algorithm

SAINT extends the peptide by a nine residue fragment at
each iteration, starting with the N-terminus. Each frag-
ment is added in a fully extended conformation (¢ = -
150°, w = 150° and w = 180°). The final fragment may con-
tain fewer than nine residues; it will contain as many resi-
dues as are required to complete the full protein chain. At
each extension the peptide is allowed to fold and the con-
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formation reached is used as the starting structure for the
next extension, with Rosetta ab initio used to perform the
structure predictions at each stage. In order to make
comparisons between the sequential and non-sequential
algorithms fair, each uses the same total number of
cycles. For the sequential algorithm these cycles were dis-
tributed evenly amongst each extension of the peptide
with the number of cycles calculated as follows. If b is a
base number of cycles and / is the protein length then the
total number of cycles ¢ is 5(I/100) and the number of
extrusions e is /9. This results in #n = t/es cycles for the
first e - 1 extrusions and ¢ - n(e - 1) cycles for the final
extrusion.

Reverse sequential algorithm

The reverse sequential algorithm is the same as the
sequential algorithm. It differs only in that the peptide is
extended from the C-terminus to the N-terminus.
Non-sequential algorithm

In non-sequential folding a protein is folded from a fully
extended state. The Rosetta ab initio algorithm is
employed for this process, using insertion from a library
of fragments to build decoys (predicted structures). This
has proved a successful technique for protein structure
prediction in recent years [3,63-65]. Rosetta can select
fragments from the target, so the algorithm as used here
is not strictly ab initio. The number of cycles (fragment
insertions) used by Rosetta varies with protein length in
this study. A base number of 34,000 cycles was used for a
protein of 100 residues, and this number increased pro-
portionately; for example, for a protein with 143 residues
the number of cycles is increased by a factor of 1.43. This
is reasonable as in the cell longer proteins take more time
to be synthesized, and thus have more time to explore
conformational space before synthesis is completed.

Selection of targets

In Deane et al. [60] a measure was developed, an Average
Logarithmic Ratio (ALR), which assesses the extent of
previous contacts within a peptide chain; proteins with
positive ALR are expected to be those for which the
cotranslational aspect of folding has a substantial impact,
whilst proteins with negative ALR are expected to be
those for which cotranslation has lesser impact. Two sets
of targets were created from a PISCES[66] data set (<30%
sequence identity, resolution better than 3 A, at least 100
residues and no missing residues, downloaded 6 Febru-
ary, 2009). The first set contained protein chains with an
ALR value of 0.15 or greater (total of 34 proteins), and the

second contained chains with an ALR of -0.15 or less
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(total of 34 proteins); these two sets are referred to as the
positive and negative sets respectively. For each protein in
the two sets, 1000 decoys were generated with each of the
algorithms described above (sequential, reverse sequen-
tial and non-sequential). GDT_TS values [67] were calcu-
lated for each of the resulting predictions. GDT_TS is
defined as (N, + N, + N, + Ng)/(4N), where N;is the num-
ber of corresponding residues within iA and N is the total
number of residues. It measures the closeness of corre-
sponding residues in known and predicted structures,

more heavily weighting closer pairs. It is helpful to see it

in non-cumulative form as
(4N, +3N% + 2N + N3) / (4N) where
N,i =N;\ Ni/z .

Larger sample size

To establish whether the sample size (that is, the number
of decoys produced for each protein) has an effect on the
results, two proteins were subjected to a larger sampling.
An additional 100,000 decoys were generated for the
FLIiG C-terminal domain of Thermotoga maritima
(1gc7A) and also for 1ji4A, using the SAINT algorithm.

Variability in peptide termini

As the differences between mean GDT_TS scores for
SAINT and reverse SAINT, for a given protein, prove to be
generally small, additional tests were conducted to ascer-
tain whether terminus loop regions could be causing the
observed effects. The termini of proteins are often
unstructured, and their structure can be highly variable
and difficult to predict. Small mistakes in the terminus
regions could lead to the small differences observed
between the mean GDT_TS scores.

The first N-terminus and last C-terminus secondary
structure elements were identified in the experimental
structure for each protein, and the termini up to the iden-
tified secondary structure element of the corresponding
predicted model with the highest GDT_TS were
removed. A secondary structure element was defined as a
run of four residues with identical secondary structure
assignment. Secondary structure was assigned from the
experimentally determined structure with DSSP. In addi-
tion to these conditions the N-terminus and C-terminus
secondary structure element had to be separated by at
least five residues. GDT_TS scores were recalculated and
counts taken of how often SAINT outperformed reverse
SAINT and how often SAINT outperformed Rosetta.
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Clash analysis

A possible reason for better performance of SAINT was
conjectured to be that extrusion from the nitrogen termi-
nus produces fewer steric clashes than does extrusion
from the carbon terminus. In order to investigate this, ten
protein sequences were selected on the basis of their
mean GDT_TS scores: four in which SAINT performed
better, three in which reverse SAINT performed better,
and three in which SAINT and reverse SAINT performed
comparably. For each protein, two of the 1000 models
generated were selected for each of SAINT and reverse
SAINT. The extent of steric clashes in conformations fol-
lowing folding, for five extruded lengths (18, 36, 54, 72,
90), were assessed using MolProbity [68], a web server
that calculates a "clashscore", equal to the number of
steric overlaps that are greater than 0.4 A per 1000 atoms.
Nine residues in fully extended conformation were then
added at the C-terminus (for SAINT) or the N-terminus
(for reverse SAINT) to produce strings of length 27, 45, 63,
81, and 99 and these checked again for steric clashes. For
each of the five positions, the clashscore before the addi-
tion of nine residues was subtracted from the clashscore
after the addition of the 9-mer fragment. An average of
the differences in clashscores, across all five lengths, was
taken for each protein sequence and each algorithm.

The importance of sense

To investigate why SAINT might perform consistently bet-
ter than reverse SAINT, measures of secondary structure
prediction quality were developed. For a given decoy,
structural alignments for every overlapping fragment of
11 residues against the experimental structure were
obtained, and the average C,-C, distance of the alignment
was assigned to the fragment's center residue (fragments
of 11 residues were chosen to provide insight into predic-
tion accuracy on a more local scale than, for example,
taking an entire secondary structure element). These res-
idue-assigned distance measures were averaged across all
residues in a-helices in the decoy (residue secondary
structure was assigned by DsSP for the experimentally
determined model) and these in turn averaged over all
1000 decoys. This was done for both the forward and
reverse decoy sets. Finally, the forward helical prediction
quality measure was subtracted from the reverse helical
prediction quality measure. The same process was fol-
lowed for S-strands. If directionality is not important in
folding we would expect the accuracy of helical or strand
predictions to be similar regardless of the direction of
synthesis, resulting in the difference calculated above
being zero. A positive difference would indicate that for-
ward predictions were more accurate than reverse pre-
dictions while negative differences would indicate that
reverse predictions were more accurate. One of the pro-
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teins in the positive set (1gc7A) and four in the negative
set (1kf6D, 1mkaA, 1nekC and 1uz3A) contained no -
strand residues and, therefore, were not considered in the
analysis.

Results and Discussion

The emerging partial conformations produced by SAINT
for sequence 1qc7A are shown in Figure 1, using the most
successful decoy. The six helices are seen to progressively
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take shape as the chain is extruded, with early conforma-
tions largely preserved.

Results for SAINT, reverse SAINT and Rosetta for each of
the proteins in the positive set (ALR > 0.15, see Methods,
Selection of targets) and negative set (ALR < -0.15) are
summarized in Table 1 and Table 2 respectively. The
mean performance and best models produced by SAINT
show that it predicts structures better than reverse SAINT
in the majority of cases (Table 3). For example, SAINT

Residues 1-9
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Residues 1-18

Residues 1-36 Residues 1-45
o
Fa
Residues 1-63 Residues 1-72
Residues 1-90 Residues 1-99

Figure 1 Cotranslational structure prediction of the FLiG C-terminal domain (1gc7A; 101 residues). Segments of nine residues are extruded at
a time except for the last segment which consists of two residues. One thousand decoys were produced; the particular simulation above produced

the structure with the highest GDT_TS of 63.12%. In each sub-figure the N-terminal is coloured dark blue and appears at the center adopting approx-
imately the same orientation; it cannot always be the same orientation due to changes in conformation as the protein folds.
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Table 1: Results from positive set. Accuracy of models obtained for 34 proteins with ALR = 0.15 using SAINT, reverse SAINT

and Rosetta.

Code Length ALR Mean GDT_TS Maximum GDT_TS
SAINT Reverse Rosetta SAINT Reverse Rosetta
SAINT SAINT

1bmtA 246 0.1509 17.39 14.44 17.50 30.28 24.19 26.12
1hjrA 158 0.1777 21.56 19.06 21.75 41.77 30.06 35.76
1ji4A 144 0.1851 30.37 32.61 32.77 49.31 48.09 50.17
1k5nA 276 0.1997 10.96 10.58 11.03 16.94 17.21 15.58
1mf7A 194 0.2106 18.17 15.08 18.15 28.74 27.06 31.31
1n2zA 245 0.1668 14.04 12.05 14.12 20.41 17.24 21.43
loaaA 259 0.1909 20.41 14.51 19.11 35.14 25.97 32.14
1qc7A 101 0.2762 39.69 34.93 41.31 63.12 61.63 55.94
1ryp2 233 0.2030 14.74 13.83 15.13 22.75 20.71 26.07
1rypl 222 0.3251 15.37 13.69 15.21 24.21 21.28 24.77
1tcaA 317 0.1592 11.32 8.58 10.70 19.32 15.69 19.56
1wehA 171 0.1635 19.21 18.56 19.36 32.89 28.22 31.14
1y1lA 124 0.2226 2234 21.63 23.20 36.69 3327 36.49
1yqgA 263 0.1723 17.23 13.66 17.04 26.62 21.77 27.09
1yw5A 177 0.1637 17.36 16.41 17.96 26.69 24.15 27.26
1zxxA 319 0.1576 11.67 9.73 11.63 19.20 15.75 17.87
2d00A 109 0.2345 31.79 23.93 31.22 49.77 42.20 47.25
2d1pB 119 0.1581 23.65 21.26 24.29 38.03 32.56 36.13
2ehgA 149 0.2088 21.74 19.51 21.80 44.97 30.54 3272
2euiA 153 0.2054 22.07 21.29 22.67 38.73 36.76 40.20
2f1kA 279 0.1664 16.75 14.49 16.39 28.23 21.68 27.78
2g64A 140 0.1676 19.86 18.55 20.66 29.64 27.50 30.54
2h0rA 216 0.1555 13.77 15.35 14.57 21.18 23.03 27.78
2hy5A 130 0.1693 23.39 21.54 23.60 37.12 30.38 36.73
2imfA 203 0.1810 18.34 16.25 18.41 28.20 28.33 25.00
2j01vV 101 0.1604 20.27 18.26 20.12 27.97 26.49 27.97
2jdjA 105 0.1666 23.39 21.53 24.07 39.05 35.00 45.71
20cgA 254 0.1793 16.33 11.62 16.45 24.31 21.75 23.92
2pd2A 108 0.2397 30.66 28.83 30.82 51.62 49.54 54.86
2935A 243 0.2346 13.77 13.24 13.98 23.05 19.14 20.37
2rcyA 262 0.1922 16.71 14.10 16.67 26.15 21.18 24.62
2rhwA 283 0.1538 12.66 10.58 13.52 21.73 17.67 21.20
3beoA 375 0.1637 10.18 8.42 10.21 15.93 13.67 16.07
3vubA 101 0.1550 25.75 22.37 25.62 67.57 37.62 51.24

The mean GDT_TS and maximum GDT_TS for all 1000 decoys produced for each combination of protein and algorithm is shown. For both

the mean and maximum GDT_TS the highest GDT_TS is shown in bold while the lowest is shown in italics.
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Table 2: Results from negative set. Accuracy of models obtained for 34 proteins with ALR < -0.15 using SAINT, reverse SAINT

and Rosetta.

Code Length ALR Mean GDT_TS Maximum GDT_TS
SAINT Reverse Rosetta SAINT Reverse Rosetta
SAINT SAINT

JaocA 175 -0.2193 14.48 14.41 14.96 21.57 19.57 2043
laym1 285 -0.2877 7.46 7.07 7.40 10.26 9.56 10.79
laym3 238 -0.1526 9.19 7.92 9.26 13.97 10.71 13.97
1ddIA 188 -0.2148 10.87 10.50 10.95 16.09 15.69 17.69
1dwkA 156 -0.1839 20.23 18.97 20.29 32.05 32.37 33.17
1dy5A 124 -0.1685 17.07 16.77 17.48 26.41 25.60 25.40
1e0cA 271 -0.1927 11.53 9.48 12.36 16.61 13.01 18.82
1kf6D 119 -0.1764 25.06 24.13 25.44 38.03 38.66 34.45
1kptA 105 -0.1756 22.50 21.20 22.91 31.67 28.57 30.71
1kyfA 247 -0.2037 12.67 9.60 13.26 20.34 18.93 20.65
1U71A 121 -0.1779 15.17 13.81 15.90 20.87 20.25 22.11
1mkaA 171 -0.1794 15.88 16.32 16.48 23.98 25.15 25.15
InekC 129 -0.2053 27.71 26.88 28.98 44.77 42.05 45.93
1p0zA 131 -0.1594 31.27 27.99 33.13 42.75 40.84 58.21
1agp3 220 -0.3876 10.10 8.60 10.13 16.25 11.70 14.77
1seiA 130 -0.2636 25.49 20.64 24.06 40.77 35.77 40.77
1tt8A 164 -0.1881 16.36 13.53 17.02 24.54 23.63 25.46
lumhA 184 -0.1630 11.68 10.31 11.83 17.93 16.71 16.58
1uz3A 102 -0.1711 28.90 31.22 29.49 41.42 43.87 39.46
1wt9B 123 -0.1723 21.70 18.90 21.60 37.20 29.88 30.49
1y8cA 246 -0.1984 15.77 11.56 15.09 27.54 19.51 23.98
2ag4A 164 -0.2084 13.61 11.99 13.86 19.66 19.82 20.58
2awgA 118 -0.1693 19.78 16.46 20.02 29.45 26.48 32.42
2b0aA 186 -0.1747 13.33 11.94 13.62 20.97 18.15 19.49
2bngD 203 -0.1799 13.29 9.90 13.16 25.12 18.35 20.94
2e56A 144 -0.1542 14.06 13.85 14.21 21.53 19.27 19.27
2edmA 161 -0.1638 11.45 11.33 11.77 16.61 16.77 16.46
2nwfA 141 -0.1601 20.39 17.20 21.93 34.04 29.79 33.51
20V0A 105 -0.2059 19.70 17.86 20.37 27.62 30.24 30.00
20wpA 129 -0.1827 22.61 21.33 23.30 34.69 35.47 34.69
2p25A 126 -0.1604 28.74 27.95 30.79 46.03 43.45 55.75
2tgiA 112 -0.2279 18.38 17.64 18.79 24.55 26.56 27.46
3besR 250 -0.1606 11.54 10.88 11.85 17.80 16.80 17.40
3ezmA 101 -0.3241 28.74 20.25 29.04 38.12 36.14 36.14

The mean GDT_TS and maximum GDT_TS for all 1000 decoys produced for each combination of protein and algorithm is shown. For both

the mean and maximum GDT_TS the highest GDT_TS is shown in bold while the lowest is shown in italics.
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http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1aym1
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http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1dy5A
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http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1kf6D
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http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1y8cA
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2ag4A
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2awgA
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2b0aA
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2bnqD
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2e56A
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2edmA
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2nwfA
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http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2owpA
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2p25A
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2tgiA
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Table 3: Summary of results. Pairwise (SAINT vs reverse SAINT and SAINT vs Rosetta) comparison of the algorithms.

Mean Maximum
Positive Negative Positive Negative
SAINT 32 *¥x 32%%x 32%x* 25 **
Reverse SAINT 2 2 9
SAINT 11 19 16
Rosetta 23 * 29 * ** 15 14

The table shows the number of times an algorithm in a pair outperformed the other, separately for the positive and negative sets. Both mean
GDT_TS and maximum GDT_TS are used as measures of performance. Asterisks indicate binomial test p-values where * is < 0.05, ** is < 0.01,

***is <0.001.

yielded a higher mean GDT_TS than reverse SAINT for 32
of the 34 proteins with positive ALR and equally, for 32 of
the 34 proteins with negative ALR.

Plots of the mean scores for SAINT, reverse SAINT and
Rosetta for the positive set are given in Figure 2A, with
proteins ordered from smallest to largest mean SAINT
GDT_TS score. Corresponding plots for the negative set
are given in Figure 3A. The consistent superiority of
SAINT over reverse SAINT is evident, with the difference
being slightly greater for the positive set. The largest such
difference seen in all the data is 8.49%, observed between
the means of SAINT and reverse SAINT for 3ezmA (nega-
tive set), and representing an increase in GDT_TS from
20.25% to 28.74%. Mean performances of SAINT and
Rosetta indicate that Rosetta outperforms SAINT in both
the positive (Rosetta 19.72, SAINT 19.50) and negative
(Rosetta 18.26, SAINT 17.84) sets. The difference is greater
for the negative set (Table 3).

Plots of the maximum scores for SAINT, reverse SAINT
and Rosetta for the positive set are given in Figure 2B,
with proteins ordered from smallest to largest maximum
SAINT GDT_TS score. Corresponding plots for the nega-
tive set are shown in Figure 3B. When considering best
performance, SAINT is again superior to reverse SAINT,
and more so in the positive set. Rosetta is no longer supe-
rior when best performance is considered; SAINT outper-
forms Rosetta, for example, in 19 of the 34 proteins in the
positive set. The most successful SAINT prediction in the
positive set was found for 3vubA. It is shown superposed
on the native conformation in Figure 4, together with
superpositions of the best reverse SAINT and Rosetta pre-
dictions on the native conformation. SAINT captures the
structure better than either reverse SAINT or Rosetta.

A GDT_TS value of 30% or above is generally consid-
ered to ensure that a reasonable prediction is found [4]; a
scan of Table 1 indicates that roughly one half (15 out of
34) of the best SAINT predictions are satisfactory, and
similarly for Rosetta (16 out of 34).

Larger sample size

Summaries of the distribution of GDT_TS scores indicate
that the size of the decoy sets used (that is, 1000) does not
significantly influence their values (for 1gc7A, sample
size of 1000 has min. 23.0, max. 69.8, mean 40.6, std devn
7.9; sample size of 100,000 has min. 22.0, max. 73.0, mean
40.9, std devn 8.2). When repeated with 1ji4A, similar
results were produced (sample size of 1000 has min.
19.79, max. 49.31, mean 30.37, std devn 4.07; sample size
of 100,000 has min. 17.71, max. 56.94, mean 30.78, std
devn 4.38).

Variability in peptide termini

The results of this test indicate that the differences in
GDT_TS observed are not due to variability in the termi-
nus regions of the peptides (data presented in Tables 4
and 5).

Clash analysis

The results are shown in Table 6. Four of the ten protein
conformations examined have higher steric clashscores
for SAINT than reverse SAINT. The steric clashscore
appears not to be influenced by its mean GDT_TS score,
evidenced by two (Lmf7A and 2d00A) out of the four pro-
teins with higher mean GDT_TS scores for SAINT having
greater steric clashscores than reverse SAINT. Steric
clashes produced by SAINT and reverse SAINT are gener-
ally comparable, so providing no evidence that fewer
steric clashes are the reason for the better performance of
SAINT.

The importance of sense

The differences obtained from both the positive and neg-
ative sets are shown in Figure 5. These results show that
for both types of secondary structure SAINT is generally
producing better predictions, but that the difference is
more pronounced for strand residues. In 28 of the 33 pro-
teins (85%) in the positive set the difference between for-
ward and reverse folding is greater for strands than for


http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=3ezmA
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=3vubA
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1qc7A
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1ji4A
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1mf7A
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2d00A
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Figure 3 Plots of mean and maximum GDT_TS for the negative set. Graphic A shows the mean GDT_TS scores for the 34 proteins in the negative
set, for SAINT (red squares), reverse SaINT (blue circles) and Rosetta (green triangles), with the proteins ordered according to ascending mean SAINT
GDT_TS. Graphic B plots maximum GDT_TS for proteins in the negative set, ordered by ascending maximum saNT GDT_TS. Outcomes are the same
as for the positive set, with all differences less marked.

helices (with 16 (48%) having a -strand difference more
than twice the a-helix difference). Similarly, in 26 of the
30 proteins (87%) in the negative set the difference
between forward and reverse folding is greater for strands
than for helices (with 19 (63%) having a -strand differ-
ence more than twice the a-helix difference). These
results indicate that in general SAINT is more accurate
when predicting strands than is reverse SAINT. These dif-
ferences are small, but they would account for the differ-
ences observed in the results.

Discussion

A consistent difference in prediction accuracy was seen
between SAINT and reverse SAINT. SAINT is markedly
superior to reverse SAINT, and slightly more so for pro-
teins with positive ALR values. When looking in detail at
SAINT and reverse SAINT, the differences observed are
most likely due to the detrimental effect on strand predic-

tion observed when elongating a peptide from the C-ter-
minus to the N-terminus. SAINT produced decoys with a
higher mean GDT_TS than reverse SAINT for more than
94% of proteins in both the positive and negative protein
sets. The differences between mean GDT_TS scores for
SAINT and reverse SAINT decoys were also bigger than
those between SAINT and Rosetta decoys. If directionality
played no part in the folding process it would be expected
that there would be no difference in the predictive accu-
racy of extrusions from the N-terminus to C-terminus
and extrusion from C-terminus to the N-terminus. Three
possible explanations for these results are outlined below.

Peptides, when extruded from the ribosome, start at
the N-terminus. For this reason, fragments near the N-
terminus are less influenced in their folding by the
remainder of the peptide, since this has yet to emerge
from the ribosome. On the other hand, fragments
towards the C-terminus must fold in the presence of the
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a) Native

Figure 4 Superpositions of the best predictions for 3vubA on the native structure. The best decoy produced overall was by SAINT for 3vubA,
whose native conformation is shown in a). The remaining graphics show the superposition of this native conformation with the best decoy produced
by b) SANT (GDT_TS =67.57), ¢) reverse SAINT (GDT_TS =37.62) and d) Rosetta (GDT_TS = 51.24). The saINT decoy best captures the native loop and sheet
conformation; a loop error causes the C-terminal helix to be incorrectly oriented.

b) SAINT

d) Rosetta

bulk of the peptide. Thus the conformation assumed by
the early fragment is a local choice, in that it depends
largely on the amino acid sequence of the fragment. The
conformation reached by a later fragment is determined
by more than its amino acid sequence, in that it also
depends on surrounding structure. This behaviour is
mimicked by SAINT but not by reverse SAINT, so providing
an explanation for the consistently better predictive accu-
racy of SAINT.

A second explanation arises from the way that the two
algorithms allocate fragment insertions. At any stage, due
to the constraints of Rosetta, fragment insertions are
made uniformly across the currently extruded peptide
length. The upshot is that more fragment insertions are
attempted at the N-terminus than the C-terminus for
SAINT while the opposite is true for reverse SAINT. Should
it be the case that the N-terminus of the peptide is harder
to predict than the C-terminus, SAINT would be more

successful than reverse SAINT since SAINT puts in effort
where it is needed. Due to the reasons stated above, how-
ever, we expect the N-terminus to be more easily pre-
dicted than the C-terminus.

A third possibility is that Rosetta itself has some inher-
ent directionality, so favouring SAINT over reverse SAINT.
A study of Rosetta, however, provides no indication of
such a directional bias.

A strong correlation between mean GDT_TS and chain
length is seen for both the positive and negative sets and
for all three algorithms: as the chain length increases the
GDT_TS decreases. 1oaaA is the only target over 200 res-
idues in length that produced a set of decoys with mean
GDT_TS greater than 20%, indicating that the versions of
the algorithms employed in this study are not sufficient to
accurately predict the structure of chains with more than
200 residues (this accounts for 50% of the positive set and
24% of the negative set). Excluding this data from the
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Code Length ALR Maximum GDT_TS

SAINT Reverse SAINT Rosetta
1bmtA 246 0.1509 31.28 24.79 27.23
1hjrA 158 0.1777 42.33 31.00 37.67
1ji4A 144 0.1851 50.18 48.75 50.71
1k5nA 276 0.1997 18.08 18.37 16.35
1mf7A 194 0.2106 29.05 27.97 31.76
1n2zA 245 0.1668 20.26 18.21 20.37
loaaA 259 0.1909 35.60 25.70 32.90
1qc7A 101 0.2762 70.12 67.38 62.20
1ryp2 233 0.2030 23.98 21.25 27.39
1rypl 222 0.3251 27.65 25.13 29.50
1tcaA 317 0.1592 22.27 18.09 2245
1wehA 171 0.1635 33.18 28.87 31.55
1y1lA 124 0.2226 36.67 32.71 35.83
1yqgA 263 0.1723 26.74 22.10 27.41
1yw5A 177 0.1637 28.81 2591 29.42
1zxxA 319 0.1576 19.60 15.95 18.10
2d00A 109 0.2345 53.32 45.92 50.77
2d1pB 119 0.1581 39.13 31.96 36.96
2ehgA 149 0.2088 46.03 31.03 33.62
2euiA 153 0.2054 42.88 41.54 45.96
2f1kA 279 0.1664 28.75 22.34 28.02
2g64A 140 0.1676 31.44 29.17 32.58
2h0rA 216 0.1555 20.05 20.89 25.85
2hy5A 130 0.1693 37.60 31.10 37.20
2imfA 203 0.1810 28.55 29.19 25.63
2jdjA 105 0.1666 41.84 38.16 50.26
20cgA 254 0.1793 24.20 21.71 24.20
2pd2A 108 0.2397 52.12 50.47 55.42
2935A 243 0.2346 23.52 19.09 20.46
2rcyA 262 0.1922 25.79 21.75 24.51
2rhwA 283 0.1538 21.88 17.77 21.25
3beoA 375 0.1637 16.41 14.29 16.48
3vubA 101 0.1550 70.31 39.06 52.34

Among the 1000 decoys produced for each protein with ALR > 0.15 by each of SAINT, reverse SAINT, and Rosetta the best model (with highest
GDT_TS) was found (as indicated in Table 1 by Maximum GDT_TS). Each of these selected models was then altered by chopping off the first
N-terminus and last C-terminus secondary structure elements identified in its native structure. GDT_TS scores were then recalculated for each
algorithm and are displayed below. The highest GDT_TS is shown in bold while the lowest is shown in italics. Sample size was reduced to 33
as no secondary structural element at least five residues in length was found at either terminal of the protein chain 2j01Vpdb2j01V.
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http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1oaaA
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1qc7A
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Table 5: Variability in peptide termini: Results from negative set.
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Code Length ALR Maximum GDT_TS

SAINT Reverse SAINT Rosetta
JaocA 175 -0.2193 24.83 20.72 23.12
laym1 285 -0.2877 11.54 10.02 12.45
laym3 238 -0.1526 15.32 11.75 15.55
1ddIA 188 -0.2148 19.24 19.24 22.04
1dwkA 156 -0.1839 34.48 33.62 35.52
1dy5A 124 -0.1685 26.46 25.00 26.25
1e0cA 271 -0.1927 16.97 14.26 20.38
1kfeD 119 -0.1764 41.51 42.45 38.21
1kptA 105 -0.1756 34.84 30.32 32.98
1kyfA 247 -0.2037 20.27 18.80 20.48
171A 121 -0.1779 21.37 20.94 22.65
1mkaA 171 -0.1794 25.64 26.91 25.96
InekC 129 -0.2053 54.21 49.07 53.97
1p0zA 131 -0.1594 46.01 43.49 60.92
1qgp3 220 -0.3876 21.20 15.06 18.86
1seiA 130 -0.2636 41.47 36.31 41.27
1tt8A 164 -0.1881 25.32 24.52 26.61
lumhA 184 -0.1630 18.37 16.99 16.85
1uz3A 102 -0.1711 49.41 51.47 45.00
1wt9B 123 -0.1723 35.81 30.18 27.25
1y8cA 246 -0.1984 27.67 19.52 24.38
2ag4A 164 -0.2084 20.09 20.41 21.04
2awgA 118 -0.1693 31.65 25.46 33.26
2b0aA 186 -0.1747 23.33 20.15 21.97
2bngD 203 -0.1799 26.24 20.44 2293
2e56A 144 -0.1542 22.01 19.40 20.34
2edmA 161 -0.1638 18.28 18.28 18.10
2nwfA 141 -0.1601 35.04 29.56 3431
20V0A 105 -0.2059 29.17 31.25 30.95
20wpA 129 -0.1827 36.67 37.29 3542
2p25A 126 -0.1604 48.08 46.37 58.12
2tgiA 112 -0.2279 26.21 28.88 29.61
3besR 250 -0.1606 17.58 16.36 16.77
3ezmA 101 -0.3241 37.37 36.86 35.82

Among the 1000 decoys produced for each protein with ALR < -0.15 by each of SAINT, reverse SAINT, and Rosetta the best model (with
highest GDT_TS) was found (as indicated in Table 2 by Maximum GDT_TS). Each of these selected models was then altered by chopping off
the first N-terminus and last C-terminus secondary structure elements identified in its native structure. GDT_TS scores were then recalculated

for each algorithm and are displayed below. The highest GDT_TS is shown in bold while the lowest is shown in italics.
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Table 6: Clash analysis.
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Code Forward SAINT mean Reverse SAINT mean
SAINT better 1mf7A 18.894 1.525
loaaA -2.441 4579
2d00A 13.922 -4.265
1qc7A -5.440 2.238
Reverse SAINT better 1ji4A -8.578 -5.016
1uz3A -7.861 29.370
2h0rA 3.683 -6.645
SAINT and Reverse SAINT laocA -1.327 -3.650
comparable
1kf6D -8.691 -1.861
2edmA -6.029 -0.610

Mean difference in clashscores for each protein sequence; the larger the mean difference, the more clashes created by the extrusion. The first
four proteins in the table have higher mean GDT_TS scores for SAINT, the next three have higher mean GDT_TS scores for reverse SAINT and
the remaining three have comparable mean GDT_TS scores for SAINT and reverse SAINT. There is no evidence that SAINT creates more

clashes.

analysis, however, makes no difference to the overall find-
ings.

Given that SAINT outperforms reverse SAINT it might be
expected that SAINT would also outperform Rosetta,
Rosetta being, in some senses, midway between the two.
In best performance, arguably more important than
mean performance, there is weak evidence that SAINT
does outperfom Rosetta; for the positive set SAINT out-
perfoms Rosetta in 19 out of 33 instances (there is one tie)
and for the negative set SAINT outperforms Rosetta in 16
out of 30 instances (there are four ties). An explanation
why this remains weak at this stage is that SAINT remains
crude, barely exploiting spatial and temporal advantages
which may be available in cotranslational folding; we have
simply used an iterative version of Rosetta. For example,
at each extrusion, fragment insertions are chosen uni-
formly along the extruded peptide, whereas use of an
insertion location distribution skewed towards the car-
bon terminus might be more realistic. To its credit, how-
ever, the SAINT versus reverse SAINT investigation exploits
the power of a "paired comparison" design more effec-
tively than does the SAINT versus Rosetta investigation, in
that it contrasts opposites and so is more likely to reveal
an effect.

Conclusions

This study has presented an algorithm that builds
cotranslation into protein structure prediction. To assess
the importance of the direction of translation the sequen-
tial algorithm was compared to a reverse sequential algo-

rithm where the protein was produced from the C-
terminus to N-terminus. Two sets of proteins were cho-
sen: one where the residues have, on average, more con-
tacts with previous residues than successive residues and
the other where the residues have, on average, more con-
tacts with successive residues than previous residues. The
performance of the sequential algorithm for protein
structure prediction was also compared with Rosetta,
which folds from a fully elongated chain.

When SAINT was compared to reverse SAINT a very pro-
nounced difference was observed. When mean GDT_TS
was used as the performance measure SAINT outper-
formed reverse SAINT for over 94% of targets from both
the positive and negative sets. These figures were still
high when the maximum GDT_TS was used as the per-
formance measure, with SAINT outperforming reverse
SAINT in over 91% of targets from the positive set and
over 73% of targets from the negative set.

The results show that Rosetta produces decoy sets with
higher mean GDT_TS scores than SAINT for both the
positive and negative protein sets, but that this superior-
ity of Rosetta is not seen when the models with the high-
est GDT_TS scores are compared. If it were possible to
always select the most accurate structure from the set of
decoys then SAINT would, overall, produce a better pre-
diction than Rosetta. The selection of the best decoy from
a set, however, is a separate problem that is not addressed
in this study. While Rosetta is producing decoy sets with
higher mean GDT_TS scores than SAINT, examination of
the differences between the means shows that the differ-
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Figure 5 Accuracy of helix and strand predictions. Accuracy of helix and strand predictions separately for (A) positive and (B) negative sets. Plots
show the difference (reverse saAINT minus saINT) in the secondary structure distance measure for helical (grey) and strand (black) residues. Positive values
here indicate that saiNT is producing predictions that are more accurate than those of reverse SaINT. Evidently SAINT outperforms reverse SaINT for both
types of secondary structure, but more strongly for strands and the negative set.

1wt 9B p—

2agd4p
Z2awgA
2b0a A
2bngD
2e56A
2edmAy—
2nwT Ay
20v0A
20WpA
2p25A
2tgiA
3besR §
3ezmA —

Protein

ence is always small. Only on one occasion does a Rosetta
decoy set have a mean GDT_TS greater than 2% above
the corresponding SAINT decoy set (an increase in mean
GDT_TS from SAINT to Rosetta of 2.4% for 1ji4A). It has
been established that the size of the decoy set and flexibil-
ity of peptide terminus residues do not affect the distribu-
tion of GDT_TS scores.

The sequential algorithm described in this study is in
its earliest stages of development. Future work will
include investigation of the effect of translation speed,
allowing extruded segments to have variable length and
the number of fragment insertion attempts at each itera-
tion to vary. Improvements should also include incorpo-
ration of spatial restrictions to simulate the constraint of
the ribosome tunnel.

Authors' contributions
Conceived and designed the experiments: FPEH, GRW, CMD and JJE. Per-
formed the experiments: JJE, FPEH and SS. Analyzed the data: JJE, GRW, FPEH

and CMD and SS. Wrote the paper: JIE, FPEH, GRW, SS and CMD. All authors
read and approved the final manuscript.

Author Details

"Department of Statistics, Macquarie University, Sydney, NSW 2109, Australia
and 2Department of Statistics, Oxford University, T South Parks Road, Oxford
OX1 3TG, UK

Received: 22 December 2009 Accepted: 7 April 2010
Published: 7 April 2010

References

1. Vincent JJ, Tai CH, Sathyanarayana BK, Lee B: Assessment of CASP6
predictions for new and nearly new fold targets. Proteins 2005,
61(Suppl 7):67-83.

2. Moult J, Fidelis K, Kryshtafovych A, Rost B, Hubbard T, Tramontano A:
Critical assessment of methods of protein structure prediction-Round
VIl. Proteins 2007, 69(Suppl 8):3-9.

3. Jauch R, Yeo HC, Kolatkar PR, Clarke ND: Assessment of CASP7 structure
predictions for template free targets. Proteins 2007, 69(Suppl 8):57-67.

4. Kryshtatovych A, Fidelis K, Moult J: CASP8 results in context of previous
experiments. Proteins 2009, 77(9 Suppl):217-228.

5. Anfinsen CB, Haber E, Sela M, White FH Jr: The kinetics of formation of

native ribonuclease during oxidation of the reduced polypeptide
chain. Proc Natl Acad Sci USA 1961, 47:1309-14.


http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1ji4A
http://www.biomedcentral.com/1471-2105/11/172
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16187347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17918729
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17894330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19722266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13683522

Ellis et al. BMC Bioinformatics 2010, 11:172
http://www.biomedcentral.com/1471-2105/11/172

10.
11.

20.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

Anfinsen CB: Principles that govern the folding of protein chains.
Science 1973, 181(96):223-230.

Fedorov AN, Baldwin TO: Cotranslational protein folding. JBiol Chem
1997, 272(52):32715-32718.

Basharov MA: Cotranslational folding of proteins. Biochemistry (Mosc)
2000, 65(12):1380-1384.

Basharov MA: Protein folding. J Cell Mol Med 2003, 7(3):223-237.

Kolb VA: Cotranslational protein folding. Mol Biol 2001, 35(4):584-590.
Giglione C, Fieulaine S, Meinnel T: Cotranslational processing
mechanisms: towards a dynamic 3D model. Trends in Biochemical
Sciences 2009, 34:417-426.

Kadokura H, Beckwith J: Detecting folding intermediates of a protein as
it passes through the bacterial translocation channel. Cell 2009,
138:1164-1173.

Pedersen S: Escherichia coli ribosomes translate in vivo with variable
rate. EMBOJ 1984, 3(12):2895-2898.

Wilson KS, Noller HF: Molecular movement inside the translational
engine. Cell 1998, 92(3):337-349.

Clarke T, Clark P: Rare codons cluster. PLoS ONE 2008, 3:e3412.

Zhang G, Hubalewska M, Ignatova Z: Transient ribosomal attenuation
coordinates protein synthesis and co-translational folding. Nature
Structural and Molecular Biology 2009, 16:274-280.

Zhang G, Ignatova Z: Generic algorithm to predict the speed of
translational elongation: implications for protein biogenesis. PLoS ONE
2009, 4:¢5036.

Kriger MK, Pedersen S, Hagervall TG, Serensen MA: The modification of
the wobble base of tRNAGIu modulates the translation rate of
glutamic acid codons in vivo. J Mol Biol 1998, 284(3):621-631.

Sarensen MA, Pedersen S: Absolute in vivo translation rates of individual
codons in Escherichia coli. The two glutamic acid codons GAA and GAG
are translated with a threefold difference in rate. J Mol Biol 1991,
222(2):265-280.

Varenne S, Buc J, Lloubes R, Lazdunski C: Translation is a non-uniform
process. Effect of tRNA availability on the rate of elongation of nascent
polypeptide chains. J Mol Biol 1984, 180(3):549-576.

Roder H, Eléve GA, Englander SW: Structural characterization of folding
intermediates in cytochrome c by H-exchange labelling and proton
NMR. Nature 1988, 335(6192):700-704.

Briggs MS, Roder H: Early hydrogen-bonding events in the folding
reaction of ubiquitin. Proc Nat/ Acad Sci USA 1992, 89(6):2017-2021.

Lu J, Dahlquist FW: Detection and characterization of an early folding
intermediate of T4 lysozyme using pulsed hydrogen exchange and
two-dimensional NMR. Biochemistry 1992, 31(20):4749-4756.

Kiho Y, Rich A: Induced enzyme formed on bacterial polyribosomes.
Proc Natl Acad Sci USA 1964, 51:111-118.

Nicola AV, Chen W, Helenius A: Co-translational folding of an alphavirus
capsid protein in the cytosol of living cells. Nat Cell Biol 1999,
1(6):341-345.

Sanchez IE, Morillas M, Zobeley E, Kiefhaber T, Glockshuber R: Fast folding
of the two-domain semliki forest virus capsid protein explains co-
translational proteolytic activity. J Mol Biol 2004, 338:159-167.

Komar AA, Kommer A, Krasheninnikov IA, Spirin AS: Cotranslational
folding of globin. JBiol Chem 1997, 272(16):10646-10651.

Hsu STD, Fucini P, Cabrita LD, Launay H, Dobson CM, Christodoulou J:
Structure and dynamics of a ribosome-bound nascent chain by NMR
spectroscopy. Proc Natl Acad Sci USA 2007, 104(42):16516-16521.

Voelz VA, Shell MS, Dill KA: Predicting peptide structures in native
proteins from physical simulations of fragments. PLoS Comput Biol
2009, 5(2):e1000281.

Bergman LW, Kuehl WM: Formation of an intrachain disulfide bond on
nascent immunoglobulin light chains. JBiol Chem 1979,
254(18):8869-8876.

Bergman LW, Kuehl WM: Formation of intermolecular disulfide bonds
on nascent immunoglobulin polypeptides. JBiol Chem 1979,
254(13):5690-5694.

Lim VI, Spirin AS: Stereochemical analysis of ribosomal
transpeptidation. Conformation of nascent peptide. J Mol Biol 1986,
188(4):565-574.

Jenni S, Ban N: The chemistry of protein synthesis and voyage through
the ribosomal tunnel. Curr Opin Struct Biol 2003, 13(2):212-219.

Voss NR, Gerstein M, Steitz TA, Moore PB: The geometry of the ribosomal
polypeptide exit tunnel. J Mol Biol 2006, 360(4):893-906.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Page 15 of 16

Tsalkova T, Odom OW, Kramer G, Hardesty B: Different conformations of
nascent peptides on ribosomes. J Mol Biol 1998, 278(4):713-723.

Ziv G, Haran G, Thirumalai D: Ribosome exit tunnel can entropically
stabilize alpha-helices. Proc Natl Acad Sci USA 2005,
102(52):18956-18961.

Seckler R, Fuchs A, King J, Jaenicke R: Reconstitution of the thermostable
trimeric phage P22 tailspike protein from denatured chains in vitro. J
Biol Chem 1989, 264(20):11750-11753.

Fedorov AN, Baldwin TO: Process of biosynthetic protein folding
determines the rapid formation of native structure. J Mol Biol 1999,
294(2):579-586.

Evans MS, Clarke TF, Clark PL: Conformations of co-translational folding
intermediates. Protein Pept Lett 2005, 12(2):189-195.

Frydman J, Erdjument-Bromage H, Tempst P, Hartl FU: Co-translational
domain folding as the structural basis for the rapid de novo folding of
firefly luciferase. Nat Struct Biol 1999, 6(7):697-705.

Evans MS, Sander IM, Clark PL: Cotranslational folding promotes B-helix
formation and avoids aggregation in vivo. J Mol Biol 2008,
383(3):683-692.

Tsou CL: Folding of the nascent peptide chain into a biologically active
protein. Biochemistry 1988, 27(6):1809-1812.

Fedorov AN, Baldwin TO: Contribution of cotranslational folding to the
rate of formation of native protein structure. Proc Natl Acad Sci USA
1995, 92(4):1227-1231.

Frydman J: Folding of newly translated proteins in vivo: the role of
molecular chaperones. Annu Rev Biochem 2001, 70:603-647.

Hartl FU, Hayer-Hartl M: Molecular chaperones in the cytosol: from
nascent chain to folded protein. Science 2002, 295(5561):1852-1858.
Deuerling E, Schulze-Specking A, Tomoyasu T, Mogk A, Bukau B: Trigger
factor and DnaK cooperate in folding of newly synthesized proteins.
Nature 1999, 400(6745):693-696.

Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D, Fischer G, Blum P,
Georgopoulos C, Hartl FU: Polypeptide flux through bacterial Hsp70:
DnaK cooperates with trigger factor in chaperoning nascent chains.
Cell 1999, 97(6):755-765.

Srinivasan R, Rose G: LINUS: A hierarchical procedure to predict the fold
of a protein. Proteins 1995,22:81-99.

Bornberg-Bauer E: How are model protein structures distributed in
sequence space? BiophysJ 1997, 73(5):2393-2403.

Morrissey MP, Ahmed Z, Shakhnovich El: The role of cotranslation in
protein folding: a lattice model study. Polymer 2004, 45:557-571.
Huard FPE, Deane CM, Wood GR: Modelling sequential protein folding
under kinetic control. Bioinformatics 2006, 22(14):¢203-e210.

Lu HM, Liang J: A model study of protein nascent chain and
cotranslational folding using hydrophobic-polar residues. Proteins
2008, 70(2):442-449.

Wang P, Klimov DK: Lattice simulations of cotranslational folding of
single domain proteins. Proteins 2008, 70(3):925-937.

Elcock AH: Molecular simulations of cotranslational protein folding:
fragment stabilities, folding cooperativity, and trapping in the
ribosome. PLoS Comput Biol 2006, 2(7):e98.

Senturk S, Baday S, Arkun Y, Erman B: Optimum folding pathways for
growing protein chains. Phys Biol 2007, 4(4):305-316.

Norcross T, Yeates T: A framework for describing topological frustration
in models of protein folding. JMB 2006, 362:605-621.

Alexandrov N: Structural argument for N-terminal initiation of protein
folding. Protein Sci 1993, 2(11):1989-1991.

Laio A, Micheletti C: Are structural biases at protein termini a signature
of vectorial folding? Proteins 2006, 62:17-23.

Taylor WR: Topological accessibility shows a distinct asymmetry in the
folds of Ba proteins. FEBS Lett 2006, 580(22):5263-5267.

Deane CM, Dong M, Huard FPE, Lance BK, Wood GR: Cotranslational
protein folding-fact or fiction? Bioinformatics 2007, 23(13):i142-1148.
Winstanley HF, Abeln S, Deane CM: How old is your fold? Bioinformatics
2005, 21(Suppl 1):1449-458.

Simons KT, Kooperberg C, Huang E, Baker D: Assembly of protein tertiary
structures from fragments with similar local sequences using
simulated annealing and Bayesian scoring functions. J Mol Biol 1997,
268:209-225.

Simons KT, Bonneau R, Ruczinski |, Baker D: Ab initio protein structure
prediction of CASP Ill targets using ROSETTA. Proteins 1999:171-176.


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4124164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9407040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11173509
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14594547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19647435
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19766568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6396082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9476894
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18923675
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19198590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19343177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9826503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1960727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6084718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2845279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1312711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1591236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14104595
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10559960
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15050831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9099713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17940046
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19197352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=113402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=109440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3637248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12727515
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16784753
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9614937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16357202
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2526122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10610781
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15723645
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10404229
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18674543
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3378031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7862665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11395418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11884745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10458167
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10380927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7567969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9370433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873473
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17680696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17803235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16789821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18185008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8268809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16281293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16979627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17646290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961490
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9149153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10526365

Ellis et al. BMC Bioinformatics 2010, 11:172 Page 16 of 16
http://www.biomedcentral.com/1471-2105/11/172

64. Chivian D, Kim DE, Malmstrém L, Bradley P, Robertson T, Murphy P, Strauss
CEM, Bonneau R, Rohl CA, Baker D: Automated prediction of CASP-5
structures using the Robetta server. Proteins 2003, 53(Suppl 6):524-533.

65. Chivian D, Kim DE, Malmstrom L, Schonbrun J, Rohl CA, Baker D:
Prediction of CASP6 structures using automated Robetta protocols.
Proteins 2005, 61(Suppl 7):157-166.

66. Wang G, Dunbrack RL: PISCES: a protein sequence culling server.
Bioinformatics 2003, 19(12):1589-1591.

67. Zemla A: LGA: A method for finding 3D similarities in protein
structures. Nucleic Acids Res 2003, 31(13):3370-3374.

68. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW,
Arendall WB IIl, Snoeyink J, Richardson JS, Richardson DC: MolProbity: all-
atom contacts and structure validation for proteins and nucleic acids.
Nucleic Acids Research 2007:W375-W383.

doi: 10.1186/1471-2105-11-172
Cite this article as: Ellis et al, Directionality in protein fold prediction BMC
Bioinformatics 2010, 11:172



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14579342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16187358
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12912846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17452350

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Structure prediction algorithms
	Sequential algorithm
	Reverse sequential algorithm
	Non-sequential algorithm

	Selection of targets
	Larger sample size
	Variability in peptide termini
	Clash analysis
	The importance of sense

	Results and Discussion
	Larger sample size
	Variability in peptide termini
	Clash analysis
	The importance of sense

	Discussion
	Conclusions
	Authors' contributions
	Author Details
	References

