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Abstract
Background: Reproducibility of results can have a significant impact on the acceptance of new technologies in gene 
expression analysis. With the recent introduction of the so-called next-generation sequencing (NGS) technology and 
established microarrays, one is able to choose between two completely different platforms for gene expression 
measurements. This study introduces a novel methodology for gene-ranking stability analysis that is applied to the 
evaluation of gene-ranking reproducibility on NGS and microarray data.

Results: The same data used in a well-known MicroArray Quality Control (MAQC) study was also used in this study to 
compare ranked lists of genes from MAQC samples A and B, obtained from Affymetrix HG-U133 Plus 2.0 and Roche 454 
Genome Sequencer FLX platforms. An initial evaluation, where the percentage of overlapping genes was observed, 
demonstrates higher reproducibility on microarray data in 10 out of 11 gene-ranking methods. A gene set enrichment 
analysis shows similar enrichment of top gene sets when NGS is compared with microarrays on a pathway level. Our 
novel approach demonstrates high accuracy of decision trees when used for knowledge extraction from multiple 
bootstrapped gene set enrichment analysis runs. A comparison of the two approaches in sample preparation for high-
throughput sequencing shows that alternating decision trees represent the optimal knowledge representation 
method in comparison with classical decision trees.

Conclusions: Usual reproducibility measurements are mostly based on statistical techniques that offer very limited 
biological insights into the studied gene expression data sets. This paper introduces the meta-learning-based gene set 
enrichment analysis that can be used to complement the analysis of gene-ranking stability estimation techniques such 
as percentage of overlapping genes or classic gene set enrichment analysis. It is useful and practical when 
reproducibility of gene ranking results or different gene selection techniques is observed. The proposed method 
reveals very accurate descriptive models that capture the co-enrichment of gene sets which are differently enriched in 
the compared data sets.

Background
DNA microarray technology has extended to all fields of
genomic research and has become practically the primary
tool for gene expression analysis [1]. Significant biotech-
nological advances changed that prospective and, with
the recent introduction of the so-called next-generation
sequencing (NGS) technology, a completely different
platform for gene expression measurement has emerged.
With the development of NGS technology, it became
possible to analyze gene expression by direct shotgun

sequencing of complementary DNA synthesized from
RNA samples [2,3]. The new technology rapidly became
very popular mainly because of the enormous time and
cost savings, which could enable a massive throughput in
the gathering of genomic data. Moreover, while earlier
techniques remain very expensive, NGS has the potential
to make genome sequencing a routine medical diagnostic
procedure. In spite of all advantages, there are certain
aspects that need to be explored before the NGS technol-
ogy can be widely applied in gene expression analysis. As
a tool for gene expression analysis, NGS technologies
need to provide reliable gene expression data. Addition-
ally, one should be able to assess the reproducibility of
results from the statistical and biological points of view.
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Ma [4] wrote one of the first papers in gene expression
analysis, comparing different supervised gene selection
methods by bootstrapping the samples of the initial data
set. Ma measured the concordance and reproducibility of
the supervised gene screening based on eight different
gene selection methods. The measurements of concor-
dance were done by overlapping the selected genes with
different settings for n top genes. Among other conclu-
sions, this empirical study once again explained that
rankings of genes that pass through different gene selec-
tion methods may be considerably different. Another
similar study, conducted by Qiu et al. [5], evaluated the
stability of differentially expressed genes using the mea-
surement of frequency, by which a given gene is selected
across subsamples. They showed that re-sampling can be
an appropriate technique to determine a set of genes with
sufficiently high frequency. Furthermore, they recom-
mended using re-sampling techniques to assess the vari-
ability of different performance indicators.

The goal of the recent large reproducibility study
named Microarray Quality Control (MAQC) Project [6]
was to measure and evaluate the differences between
most popular microarray platforms. The authors of the
MAQC study have used a simple and effective reproduc-
ibility metric called percentage of overlapping genes, sim-
ply called POG score. They concluded that a fold change-
based method showed the most reproducible results
when intra-platform reproducibility for differently
expressed genes was measured using the POG score.
Samples A and B from MAQC study were recently used
by Mane et al. [7] to perform deep sequencing using mas-
sively parallel sequencing. Their study focused on techni-
cal reproducibility and mapping of reads to individual
RefSeq genes. Using MAQC metrics in evaluating the
performance of gene expression platforms, they observed
excellent reproducibility, sensitivity, and specificity of the
NGS platform. Data from both studies represent the
appropriate material for demonstration of our proposed
meta-learning-based gene set enrichment analysis.

Our study focuses on the comparison of gene ranking
result reproducibility, using simple stability metrics and a
more advanced pathway level of comparison of results
obtained from microarray and NGS platforms. In addi-
tion to empirical evaluation, we propose a novel gene set
enrichment-based analysis methodology that can signifi-
cantly facilitate the process of gene set enrichment analy-
sis when one intends to compare results of different
studies, platforms, or even gene-ranking methods. It has
to be noted that, in contrast to Mane et al. and the origi-
nal MAQC study, where technical reproducibility of gene
expression measurement is observed, this study focuses
on reproducibility of gene-ranking results, sometimes
also referred to as gene- ranking stability.

Methods
Microarray Data Sets
Our study used microarray data from Affymetrix data
sets that were used in the MAQC study. This platform
was chosen due to the high number of test sites (six data
sets), allowing more accurate results of reproducibility
and pathway-level analysis. MAQC CEL file data were
analyzed with BioConductor to generate probeset-level
data using the justPlier() function. Probe-level data were
quantile-normalized before PLIER summarization per
test site. An offset value of 16 was added to each probe-
set-level data point. All six normalized data sets, each
containing five replicates of sample A (pooled human cell
lines) compared with sample B (pooled human brain),
were obtained from the official MACQ website.

Affymetrix HG-U133 Plus 2.0 GeneChip probe ids
were collapsed into gene symbols using maximal expres-
sion for multiple probes mapped to a single gene symbol.
This step reduced the dimensionality of data sets from
the original 54,675 probes to 20,647 gene symbols.

Next-generation Sequencing Data Sets
Two data sets from a recent paper by Mane et al. were
used to compare the reproducibility of microarray versus
NGS data sets. Deep sequencing of the MAQC reference
RNA samples was done using Roche's 454 Genome
Sequencer FLX (GS FLX). More than 3.6 million
sequence reads with an average length of 250 bp were
generated for cDNA from the MAQC A and B samples.
Using RefSeq database, 64% of all reads could be matched
to annotated genes using BLAST. Following mapping to
RefSeq IDs, so-called digital gene expression can be mea-
sured by counting the numbers of reads that map to indi-
vidual genes. A supplementary table presenting counts
for all mapped reads from the paper by Mane et al. was
used to compare the NGS and microarray data in this
study. It contains hit counts for the sequencing runs for
the A and B samples processed using either the Tran-
scriptome Sequencing (TSEQ) or Oligo DT (ODT) proto-
cols. The data were divided into two data sets- ODT and
TSEQ. There were 10 samples (five from MAQC A sam-
ple and five from MAQC B sample) in the ODT data set
and 12 samples (MAQC B sample was sequenced seven
times) in the TSEQ dataset. An initial pool of 24,655 Ref-
Seq symbols was mapped to 16,578 gene symbols for
compatibility with microarray data sets, especially for
pathway-based analysis.

The ODT and TSEQ cDNA sample preparation meth-
ods were introduced by Mane et al in their paper compar-
ing more technical aspects of NGS to microarrays. The
TSEQ method used random primers and had to be
applied to heat-fragmented mRNA strands to generate a
single-stranded cDNA library for sequencing using the
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standard Roche GC Amplicon sequencing procedure.
The random primers were used to remove a potential 3'
bias in the ODT preparation. On the other hand, the
ODT preparation method was used to prepare double-
stranded cDNA for the standard Roche GS DNA Library
preparation and sequencing procedure. To eliminate
reads with long poly A strings, modified oligo dT primers
ending with two different additional nucleotides were
used in some sequencing runs for this method. Further-
more, both methods required a thorough depletion of
rRNA, which can constitute as much as 98% of the total
RNA, to minimize the number of sequencing reads from
rRNA contamination. After multiple-reduction steps, the
rRNA reads were finally reduced to less than 10%. Gen-
eral information on data sets used in this study is summa-
rized in Table 1.

Percentage of Overlapping Genes
Reproducibility of experiments is one of the most impor-
tant measures to consider when different gene expression
analysis platforms are compared. This study used the so-
called percentage of overlapping genes (POG) metric that
was already proposed in the original MAQC study. POG
can be calculated from two lists of ranked genes that are
of equal length. It is calculated as the number of genes in
common divided by the number of genes in each of the
two equal-length lists. Usually, all available genes are
ranked and POG is calculated for sublists of different
lengths. Results of such comparison are the most suitable
for visual representation.

In our study, only gene symbols present in both com-
pared platforms (13,632 common genes) were used to

allow an objective comparison of POG score. Initially, k
subsets of original data sets were created using sampling
with replacement, also called bootstrapping. Eleven gene-
ranking methods from the Bioconductor package Gene-
Selector by Boulesteix and Slawski [8] were used to con-
struct the original list of ranked genes lo and k ranked lists
l1, l2, ..., lk of genes on each subset. Average POG score
POGavg was measured by averaging all pairwise compari-
sons of k ranked gene lists with the original ranking on
the initial data set.

Altogether, POG scores were calculated using the 11
gene selection methods from GeneSelector summarized
in Table 2. The R code for the POG score experiment is
available in Additional file 1.

Measuring Gene Set Enrichment
Current high-throughput-based studies usually generate
large lists of differently expressed genes as their outputs.
However, the biological interpretation of such lists (rang-
ing in size from hundreds to thousands of genes) is still a
challenging task. Over the last few decades, bioinformat-
ics specialists have collected a wide spectrum of biologi-
cal knowledge that is deposited in public databases and
scientific papers. It is therefore possible to assemble a
summary of genes that are present in similar clinical con-
ditions in a collection of gene sets that can be used for so-
called functional analysis. A number of high-throughput

POG
POG lo lii

k

kavg = =∑ ( , )1

Table 1: Basic information on MAQC sample A vs B data sets

Name Platform Number of A/B 
samples

Expression 
measurements

Common mapped 
genes

AFX 1 Affymetrix HG-U133 
Plus 2.0

5/5 54,675 15,578

AFX 2 Affymetrix HG-U133 
Plus 2.0

5/5 54,675 15,578

AFX 3 Affymetrix HG-U133 
Plus 2.0

5/5 54,675 15,578

AFX 4 Affymetrix HG-U133 
Plus 2.0

5/5 54,675 15,578

AFX 5 Affymetrix HG-U133 
Plus 2.0

5/5 54,675 15,578

AFX 6 Affymetrix HG-U133 
Plus 2.0

5/5 54,675 15,578

TSEQ Roche 454 Genome 
Sequencer

5/7 24,655 15,578

ODT Roche 454 Genome 
Sequencer

5/5 24,655 15,578
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enrichment tools, like Onto-Express [15], MAPPFinder
[16], GoMiner [17], DAVID [18], and others were devel-
oped in initial studies to help scientists do a functional
analysis of large gene lists. Gene set analysis is also used
to eliminate the effect of generally low overlaps between
different microarray data sets or platforms [19]. For spe-
cific details and an exhaustive coverage of similar tech-
niques, the reader is advised to consult the review papers
by Huang et al. [20], Dinu et al. [21], or Song et al. [22].

This study employed a widely used tool for gene set
enrichment, simply called gene set enrichment analysis.
An earlier version of this approach, also called gene set
enrichment analysis, has been previously described by
Lamb et al. [23] and Mootha et al. [24]. Their technique
was extended by Sweet-Cordero et al. [25] to allow the
analysis of multiple gene sets as well as multiple data sets.
A refinement of the GSEA methodology with a broader
applicability along several kinds of data sets has been
developed by Subramanian et al. [26]. Implementation of
GSEA by Subramanian et al. developed at Broad Institute
is also available as open-source project written in Java.
This was one of the reasons it was selected for gene set
enrichment analysis in our study where it was necessary
to adapt the current implementation to the needs of the
proposed meta-learning-based enrichment analysis.

An analysis of gene set enrichment using GSEA appli-
cation was performed on each of the eight data sets as
described in [26]. As recommended by the GSEA
authors, gene set permutation was used instead of pheno-
type permutation due to the small sample size. Original
data set ids were collapsed into gene symbols before
GSEA was run. For easier reproducibility of results, the
same permutation random seed (149) was used in all
GSEA runs. Based on POG score results, where it pro-
duced the most stable lists of ranked genes, fold change
was also the method used for gene selection in GSEA to

compare pathway analysis results between NGS and
microarray-based gene expression analysis. MSigDB C2
v2.5 gene sets database [27] was used to evaluate 1410
gene sets after short (< 15) and long (> 500) gene lists
were removed.

Meta-Learning Analysis
Our proposed meta-learning-based GSEA originates
from the idea to automate comparisons of multiple GSEA
results that have to be done manually. The novel
approach is called gene set enrichment meta-learning
analysis (GSE-MLA), inspired by the meta-learning the-
ory [28]. By definition, this subfield of machine learning
introduces the term meta-data that is used to derive
meta-knowledge from the results of the studied algo-
rithm. In our case, GSEA is the source of meta-data that
is represented as normalized enrichment scores (NES)
measured for gene sets of interest. Different supervised
machine learning methods can be further applied to the
meta-data to capture the knowledge. Of course, it is very
important that such models represent extracted knowl-
edge in comprehensible form. Our study used decision
tree algorithms for the interpretation of meta-knowledge
and visualization of significant patterns that are charac-
teristic of the compared gene expression analysis plat-
forms. In other words, the GSE-MLA tries to extract and
visualize the knowledge describing the characteristics of
GSEA when run on microarray or NGS data sets.

From a technical point of view, one needs enough
meta-data samples to build a reliably supervised classifi-
cation model. In our study, GSEA was run 100 times on
bootstrapped samples for each of two compared original
data sets. Each sample, containing NES measurements
for all observed gene sets where FDR <25%, was labeled
according to the data set of origin and deposited in a
meta-learning data set. This data set was then used to

Table 2: Gene selection methods used in calculating percentage of overlapping genes

Selection method Short name Reference

T-statistic TTest Boulesteix and Slawski, 2009 [8]

Fold change FC Boulesteix and Slawski, 2009 [8]

Wilcoxon statistic Wilcoxon Boulesteix and Slawski, 2009 [8]

Welch T-statistic WelchT Boulesteix and Slawski, 2009 [8]

Bayesian t-statistic 1 BaldiLong Baldi and Long, 2001 [9]

Bayesian t-statistic 2 FoxDimmic Fox and Dimmic, 2006 [10]

Shrinkage t-statistic ShrinkageT Opgen-Rhein and Strimmer, 2007 [11]

Soft-threshold t-statistic SoftthresholdT Wu, 2005 [12]

Parametric empirical Bayes Limma Smyth, 2004 [13]

Nonparametric empirical Bayes Ebam Efron et al., 2001 [14]

Permutation test Permutation
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build a final knowledge representation model that was
built using 200 meta-data samples. Figure 1 presents a
diagram explaining the GSE-MLA workflow from the ini-
tial data set to the final decision tree model. However, it is
also possible to analyze the results from GSE-MLA purely
statistically instead of building a decision tree model. A
simple statistical test like the student t-test could also be
used to rank the gene sets and observe their ability to sep-
arate the two observed collections of meta-data.

The ability to track and evaluate every step in the deci-
sion-making process is the most important factor for
trusting the decisions gained from data-mining methods.
Examples of such techniques are decision trees that pos-
sess an important advantage in comparison with compet-
itive classification methods-i.e., the symbolic
representation of the extracted knowledge. Decision
trees, along with rule-based classifiers, represent a group
of classifiers that perform classification by a sequence of
simple, easy-to-understand tests whose semantics are
intuitively clear to domain experts [29]. Data analysis
described in this paper was performed using libraries
from Weka machine learning environment [30]. Two
classical decision tree-building techniques (J48 [31] and
SimpleCART [32]), along with an advanced alternating
decision tree (ADTree [33]), were used to build decision
tree models.

While J48 and SimpleCART represent two classical
decision tree-building techniques that were widely used
in the past, ADTree deserves a short introduction. It is an
advanced decision tree-building technique based on
boosting [34] algorithms that are usually used when
ensembles of classifiers [35] are built. In this specific case,
boosting is used to "boost" the extraction of knowledge in
the form of separate branches in a decision tree. There-
fore, the complexity of decision tree interpretation is
higher, but, on the other hand, ADTree also performs
much better in terms of classification accuracy and other
performance metrics.

The performance of each decision tree built during this
study was evaluated by measuring the classification accu-
racy (ACC) and area under ROC curve (AUC) metrics.
Cross-validation with ten folds was used to calculate both
performance metrics. J48 and SimpleCART trees were
used with default Weka parameters, while the number of
ADTree boosting iterations was lowered from 10 to 5 to
allow better comprehensibility of the built models. Our
empirical results showed no significant loss of ACC or
AUC when using only five boosting iterations.

The pseudo-code of the algorithm used is summarized
below:
1) Repeat the bootstrapping of the sam-

ples from each of the two compared gene
expression data sets (GED) n times.

Figure 1 GSE-MLA workflow. Workflow of the GSE-MLA procedure describing the process from the initial data sets (e.g. next-generation sequencing 
vs. microarrays) to the final decision tree model.
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2) For each of the 2n bootstrapped data
sets, calculate normalized enrichment
scores (NES) for all gene sets.
3) Label NES vectors by their origin

(GED1 or GED2).
4) Build comprehensible classifica-

tion model using all 2n labeled NES vec-
tors (decision tree is recommended).

In addition to knowledge extraction and classification
performance evaluation, GSE-MLA results can be used as
input data for GeneSelector to assess overlap of gene sets
between different data sets. In our case, we can measure
the POGS between gene set enrichment analysis on
microarray versus NGS data sets.

Results
Gene Ranking Stability
In the initial experiment, we tried to find the gene rank-
ing method with the highest reproducibility score. It is
important to check whether NGS data follow similar
characteristics to microarray data sets (the MAQC study
determined that simple fold change ranking guarantees
the highest reproducibility scores). To our knowledge,
there is no similar study that would evaluate the stability
of NGS of MAQC data using the POG metric. Therefore,
POG was calculated for 11 gene selection methods imple-
mented in GeneSelector. Altogether, there are 15 gene
selection methods, but due to technical reasons (mainly
the small number of samples), we were not able to run all
of them on our data. Figure 2 represents initial results
from affymetrix (AFX1) and two different NGS data sets
(ODT and TSEQ). Only the four most interesting gene
selection methods are presented here. But, using a script
in R that can be found in Additional file 2, one can also
observe the results from the remaining methods.

As already noted in the MAQC study, fold change gives
the most stable results overall. One can notice that AFX1
provides a higher level of stability than ODT or TSEQ;
however, POG for all data sets still lies above 80%. This is
not the case for the second (Wilcoxon) and third (Baldi-
Long) most stable metrics where significantly lower POG
scores were achieved, especially for top ranked genes.
Again, microarrays outperformed NGS in terms of POG.
There was actually only a single gene ranking method
where results on microarrays were not the most stable,
the Ebam (a mixture model gene-ranking technique pro-
posed by Efron et al. [36]). However, Ebam belongs to a
group of gene selection methods that all perform signifi-
cantly worse than a simple fold change and are therefore
of little use when high reproducibility is required. Due to
better visualization, we only used one of six available
affymetrix data sets in Figure 2. To demonstrate the high
concordance of selected genes from different microarray

test site data sets, a heatmap using fold change was pro-
duced in GeneSelector (Figure 3).

Gene Set Enrichment Analyses
To compare the reproducibility of the two abovemen-
tioned platforms for gene expression measurements, clas-

Figure 2 POG scores. Comparison of POG scores for microarray AFX1 
(red), ODT (green), and TSEQ (blue) data sets.

Figure 3 Heat map of top ranked genes. Heat map of the top 50 
ranked genes using fold change gene selection where similarity of 
gene ranks is observed.
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sical GSEA was performed on six microarray data sets
measured on Affymetrix platform and two different NGS
data sets included in this study (Additional Files 3 and 4).
The TSEQ and ODT enrichment results were compared
with those of AFX1-AFX6 and also against each other for
two different phenotypes, respectively.

Tables 3 and 4 present the top five gene sets with the
highest NES from the TSEQ enrichment results and their
corresponding ranks. They are compared with the AFX
and ODT analysis results, considering NES. The AFX1-
AFX6, as expected, showed very high levels of similarity
between them and some differences when compared with
TSEQ or ODT data. Gene sets from ODT gene set
enrichment analysis had a negative NES, which indicates
gene set enrichment at the bottom of a ranked list of
genes and correlation with the opposite phenotype.

A comparison of microarray-based gene expression
analysis and NGS showed rather similar enrichment of
the top gene sets, although the obtained results also sug-
gest a non-negligible influence of the cDNA preparation
method selection on result variability when using NGS.

Meta-learning from GSEA Results
As already mentioned, this paper focuses on a novel
method for analyzing GSEA results. To demonstrate the
use of the proposed GSE-MLA methodology, we com-
pared TSEQ and ODT against AFX1 and finally TSEQ
and ODT against each other. Table 5 presents the strati-
fied 10-fold cross-validation-based performance of the
built decision trees. Even without the analysis of decision
trees, one can see the difference between the compared
platforms only by observing the ACC and AUC for the
three comparisons. It is evident that both J48 and Simple-
CART managed to build very accurate decision trees
when microarrays were compared with NGS. On the
other hand, they struggled when extracting knowledge
from the TSEQ vs. ODT comparison as there are obvi-
ously very few gene sets that are significantly differently
enriched in TSEQ and ODT in the bootstrapped GSEA
runs.

Interpretation of Results
From the biological point of view, the decision trees
themselves are more interesting than their performance.
The ADTree shown in Figure 4 demonstrates the gene
sets that are differently expressed in ODT and TSEQ data
preparation protocols. By this example, we illustrate
another possible use of GSE-MLA analysis where two dif-
ferent preparation protocols for NGS are used and com-
pared at the gene set enrichment level. There are two
types of nodes in alternating decision trees-decision and
prediction nodes. Our sample tree contains five decision
nodes as a result of five boosting iterations used to build a
tree. Twelve prediction nodes were used to assign weights
to each sample to be classified. Positive samples indicate
ODT preparation of samples and the negative ones repre-
sent TSEQ. All nodes in the first layer of the tree (num-
bered 1-4) have to be evaluated. Decision node number 5
was evaluated only for samples where expression of
PEPTIDE_GPCRS was below 2.154. The sum of weights
for all evaluated decision nodes represents the final
answer-i.e., ODT for positive sums and TSEQ for nega-
tive weighted samples.

While one can already notice some of the differences in
enrichment by comparing the overlaps of the most
enriched gene sets, this example also demonstrates some
co-enrichments that cannot be seen from a direct com-
parison-i.e., overlap of gene sets. As described above,
only samples with PEPTIDE_GPCRS enrichment scores
below 2.154 would also significantly differ in enrichment
scores calculated for POMEROY_MD_
PTREATMENT_GOOD_VS_POOR_DN.

Additionally, the gene sets shown in Figure 4 are of two
different types, gene sets representing metabolic or sig-
naling pathways and ones representing a chemical or
genetic perturbation. The first group contains gene sets
that are usually canonical representations of a specific
biological process curated and compiled from several
online pathway databases by domain experts [26], for
example, HSA04910_INSULIN_ SIGNALING_ PATH-
WAY gene set containing 135 genes involved in the insu-

Table 3: Top 5 gene sets from TSEQ with corresponding ranks for enrichment in sample A

Gene set (phenotype A) TSEQ AFX1 AFX2 AFX3 AFX4 AFX5 AFX6 ODT
(abs)

PENG_GLUTAMINE_DN 1 3 3 3 3 3 5 5

PENG_LEUCINE_DN 2 11 11 9 11 9 12 13

TARTE_PLASMA_BLASTIC 3 6 4 4 4 5 3 22

CHANG_SERUM_RESPONSE_UP 4 8 8 8 8 8 13 28

BHATTACHARYA_ESC_UP 5 5 7 7 6 7 7 7
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lin-signaling pathway [37]; also to be mentioned is the
PEPTIDE_GPCRS pathway with 75 genes, involved in the
transduction of extracellular stimuli into intracellular sig-
nals [38].

The second group contains gene sets that represent
gene expression signatures of genetic and chemical per-
turbations, each containing genes induced or repressed
by a particular perturbation:

• HDACI_COLON_SUL16HRS_DN gene set with 72
genes which are down-regulated by sulindac, a trial
nonsteroidal anti-inflammatory drug, potentially a
chemopreventive agent for colon cancer, at specific
conditions in SW260 colon carcinoma cells [39];
• ZHAN_MM_CD138_HP_VS_REST gene set con-
taining 48 genes, the top ranked SAM (significance
analysis of microarray)-defined overexpressed genes
in CD138-enriched plasma cells for a subgroup of
multiple myeloma patients [40]; and
•
POMEROY_MD_PTREATMENT_GOOD_VS_POO
R_DN gene set containing 24 genes highly associated
with medulloblastoma treatment failure [41].

A collection of the remaining decision trees for results
from Table 5 is available at the supplementary website.

Discussion and Conclusions
GSE-MLA represents a novel approach to gene set
enrichment analysis where reproducibility of results is
observed at the pathway level. This paper demonstrates
an effective way of uncovering the differences in enriched
gene sets, comparing microarray and NGS experiments
using decision tree-based knowledge extraction. Classic
GSEA allows a comparison of different platforms by com-
paring NES or ranks of single gene set enrichments
between platforms, whereas GSE-MLA also uncovers the
hidden co-enrichments of gene sets from two compared
data sets.

Additionally, this study demonstrates that one should
be very careful when choosing a gene-ranking method for
NGS data analysis. Even the simplest techniques like fold
change give lower POG scores in comparison with
microarray-based POG. Therefore, it is advised that one
must consider specialized NGS gene-ranking methods
tailored to count data instead of continuous gene expres-
sion values.

Classical gene set enrichment analysis shows only
minor differences when TSEQ data are compared with
AFX1-6 data. Relatively different enrichment levels in the
top enriched gene sets between ODT and other data sets

Table 4: Top five gene sets from TSEQ with corresponding ranks for enrichment in sample B

Gene set 
(phenotype B)

TSEQ AFX1 AFX2 AFX3 AFX4 AFX5 AFX6 ODT
(abs)

CALCIUM_REGULA
TION_IN_CARDIAC
_CELLS

1 2 2 2 2 2 2 1

HSA04020_CALCI
UM_SIGNALING_
PATHWAY

2 7 5 4 3 3 4 16

HSA04912_GNRH_
SIGNALING_PATH
WAY

3 4 4 3 6 4 7 20

HSA04740_
OLFACTORY_
TRANSDUCTION

4 5 3 6 5 7 5 2

HDACPATHWAY 5 10 7 7 8 8 10 3

Table 5: Results of GSE-MLA performance on three pairwise comparisons

J48 SimpleCART ADTree

GSE-MLA 
Comparison

ACC AUC ACC AUC ACC AUC

ODT vs. AFX1 89.50 92.31 91.00 88.98 100.00 100.00

TSEQ vs. AFX1 90.50 91.72 90.50 94.27 100.00 100.00

TSEQ vs. ODT 66.50 73.92 83.00 83.28 99.00 99.94
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might also be contributed by a potential 3' bias in the
ODT sample preparation procedure.

With the GSE-MLA results, one can notice that even
the most enriched gene sets tend to suffer from instability
of polarity-i.e., in some bootstrap samples, their value is
extremely enriched in one direction and in some, in the
opposite direction. Therefore it would also be possible to
work with absolute values of NES and avoid the instability
of NES polarity. There are still many ways to improve and
extend the current GSE-MLA methodology. One of the
promising possibilities is discretization of NES values to
three (positive, negative, no enrichment) or two (positive,
negative) classes.

Availability and requirements
All data sets and source code (in R and Java) used for the
experiments described in the paper are available at this
supplementary website: http://ri.fzv.uni-mb.si/nextGene/
sup. Java source code for GSE-MLA is also available in
Additional File 5.
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