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Abstract
Background: Time-of-flight mass spectrometry (TOF-MS) has the potential to provide non-invasive, high-throughput 
screening for cancers and other serious diseases via detection of protein biomarkers in blood or other accessible 
biologic samples. Unfortunately, this potential has largely been unrealized to date due to the high variability of 
measurements, uncertainties in the distribution of proteins in a given population, and the difficulty of extracting 
repeatable diagnostic markers using current statistical tools. With studies consisting of perhaps only dozens of samples, 
and possibly hundreds of variables, overfitting is a serious complication. To overcome these difficulties, we have 
developed a Bayesian inductive method which uses model-independent methods of discovering relationships 
between spectral features. This method appears to efficiently discover network models which not only identify 
connections between the disease and key features, but also organizes relationships between features--and 
furthermore creates a stable classifier that categorizes new data at predicted error rates.

Results: The method was applied to artificial data with known feature relationships and typical TOF-MS variability 
introduced, and was able to recover those relationships nearly perfectly. It was also applied to blood sera data from a 
2004 leukemia study, and showed high stability of selected features under cross-validation. Verification of results using 
withheld data showed excellent predictive power. The method showed improvement over traditional techniques, and 
naturally incorporated measurement uncertainties. The relationships discovered between features allowed preliminary 
identification of a protein biomarker which was consistent with other cancer studies and later verified experimentally.

Conclusions: This method appears to avoid overfitting in biologic data and produce stable feature sets in a network 
model. The network structure provides additional information about the relationships among features that is useful to 
guide further biochemical analysis. In addition, when used to classify new data, these feature sets are far more 
consistent than those produced by many traditional techniques.

Background
The use of mass spectrometry to search for proteins that
are indicative of disease has greatly accelerated the "dis-
covery" phase for biomarkers. However, this increase in
initial discovery has resulted in very few biomarkers that
survive subsequent testing using new data. One of the
major causes of the high false positive rate of biomarker
candidate discovery is the problem of overfitting classifi-
ers built from small sample sets with many observed vari-
ables [1]. A mass spectrum of a biologic sample, such as
those obtained via MALDI-TOF profiling of blood

serum, may have tens or even hundreds of thousands of
time points in the signal. Even after signal processing to
reduce noise and increase sensitivity, we still find up to
hundreds of time positions that have molecular abun-
dance "peaks" representing the existence of a concentra-
tion of some molecule, typically a protein in our
application. Our sample sets, unfortunately, consist of
perhaps a few hundred samples of various disease states -
on the order of the number of features found in the spec-
tra. Much of our group's other work has increased the
efficiency of our signal processing [2-4], resulting in ever
more features--albeit with more precise abundance mea-
surements--through which we must sort to find those
that are diagnostic of a particular disease.
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With such small sample sets (compared to the number
of features), most typical statistical methods will find
many features with correlations to the presence of dis-
ease--some likely to be strong, even through random
chance. We seek to reduce the number of falsely diagnos-
tic candidate features, and simultaneously determine
relationships between features to provide additional
information that may help identify proteins for further
study. To this end, we have developed a relatively simple
method of creating a Bayesian belief network (BN) that
starts with the disease state (or class) as the root node,
and attempts to organize spectral features that impact
knowledge of the disease state. We have chosen model-
free criteria to assess relationships, and criteria on which
to judge the stability of the resulting network, that is, our
confidence that the result will apply to future data, and
not lead to a diagnostic "dead end."

After briefly introducing the major mathematical tools
necessary to perform the Bayesian network analysis, we
will describe our method of building the network struc-
ture and testing the stability of the links. We will then
describe our application of the method to two sets of
mass spectrometry data. The method is first tested on
data that was artificially generated, with pre-chosen diag-
nostic features, specific relationships between features,
and large variability carefully introduced to mimic com-
mon measurement errors and instrumental variability
found in TOF-MS systems [2,5]. The second set of data
was derived from a 2004 Institutional Review Board-
approved leukemia study conducted at the Eastern Vir-
ginia Medical School (EVMS). We will then compare our
method's results to several traditional feature selection
methods. We will show that the feature set selection
using our method is more stable, and, in the case of the
leukemia data, better at predicting the error rates
achieved when previously withheld (lockbox) data is clas-
sified.

Mathematical Tools
Two primary mathematical tools were needed to imple-
ment the BN feature selection method. The Bayesian net-
work itself is a method of encoding the (in)dependencies
among random variables. In our application, the variables
were the relative intensities of the peak signal at mass
positions with significant abundances in at least a subset
of sample spectra.

To build the Bayesian network, we borrow from the
information theorists a simple, but powerful, model-free
test for independence--mutual information. Mutual
information is a measure of the information that knowl-
edge of one variable's value (a molecular abundance, say)
provides about another (for example, the disease class).
For two variables X and Y, the mutual information
between them is, in the discrete case,

where x represents all the possible values X can take,
similarly with y, and P(x, y) represents the joint probabil-
ity that X takes on the value x and Y takes on the value y.
The mutual information ranges from zero, representing
independence between X and Y, to the log of the number
of values that X or Y can take. The base of the log is arbi-
trary, and we use 2 as is conventional in information the-
ory. The maximal value is attained when knowledge of X
always provides perfect prediction of the value of Y (or
vice versa).

A Bayesian network is, at its most basic level, a formula
for a joint probability distribution of a set of variables,
such as P(A,B,C,D,...). This formula, which summarizes
all the dependencies among the variables, can be repre-
sented graphically by use of a directed acyclic graph, or
DAG. When the joint probability distribution is deter-
mined by the structure of the BN, it can be rewritten in
the form P(A|B,C,D,...), or "the probability of A given B
and C and D...." When associated with the variables A =
"disease class" and B,C,D,... = "data measurements," this
represents a classifier. Writing the joint probability distri-
bution from the DAG is straightforward; details can be
found in Jensen [6].

The DAG has two elements: nodes for each variable in
the problem, which we will represent as ovals, and arcs,
or lines between nodes. The arcs are directed, so that
they point (with an arrow) from one node to the other.
The graph is acyclic; there are no nodes where it is possi-
ble to start, and then return, by following a set of directed
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Figure 1 Example Bayesian network. A Bayesian network is a direct-
ed acyclic graph whose nodes represent random variables. In our work, 
the root node (A in this figure) always represents the disease state vari-
able, and all other nodes represent the abundance value of specific 
mass spectrum features. Arcs are assumed to represent causality, so 
that the state of A causes a change in the probability that B will take on 
a certain value.
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arcs (also called a path). Figure 1 represents a simple
DAG with five nodes.

The DAG encodes a set of facts about the relationships
between the variables in the distribution it models. Arcs
represent dependencies, so that, in the most basic case of
only two nodes, an arc is drawn if they are dependent and
no arc if they are independent. The DAG is simply a way
to represent all the dependency information in a particu-
lar system of variables; mathematical theorems about
various dependencies are then represented as easily visu-
alized operations on the DAG [6].

The general BN has no particular root node, although it
will have one or more nodes that have no parents (nodes
from which an arc emanates). One aspect of our problem
allows us to simplify the intractable problem [7] of exact
"structure learning," or assembling, the correct BN for
the data. Since we wish to discover features diagnostic of
the disease class, we can place the variable representing
the class at the root of the BN and work downward.

To do this assumes that the presence of the disease (or
more correctly, the diagnosis provided), is causal to the
variability in the ion abundance for a particular feature,
and that the causality will emerge as a link in the BN.
Assumptions of this type underlie much of the work done
with belief networks recently, a good discussion can be
found in Pearl [8].

An important attribute of the Bayesian network allows
a further, and critical, simplification. Connections
between variables of the type we seek encode dependen-
cies between the variables, as we have stated. A connec-
tion such as ATBTC (with no other arcs) encodes the
statement that "although A and C may be dependant, this
dependency disappears when B is known." The equiva-
lent joint probability distribution formula encoded by this
DAG is P(A,B,C) = P(A) P(B|A) P(C|B).

Thus, when the data is divided up into groups sorted by
the possible values of B, we will find that MI(A;C) = 0,
and deduce that they are independent. Of course, build-
ing the BN goes the other way - such independencies are
estimated from observations and built into the resulting
DAG.

If we consider B to be not a single variable, but instead
the set of all variables whose knowledge isolates A from
all other variables C, we have found the "Markov blanket"
of A. If we can find a Markov blanket of the class variable,
we have built a minimal classifier--knowledge of the vari-
ables in set B are sufficient to determine the probability of
A, without using any of the variables in C. We have used
this concept of the Markov blanket of the disease class to
perform feature set selection. We will look further, how-
ever, as variables which connect to the Markov blanket
might still be of biochemical importance in understand-
ing the disease, even though they are not the primary
"biomarkers" in the usual sense.

Another important statistical technique we used is that
of k-fold cross-validation (CV). We desired to study the
stability of the feature selection method, and this type of
cross-validation was well suited for that purpose. We
repeated the cross-validation a number of times, ran-
domizing the groups each pass. Using that protocol, each
case is classified using a different training set. For 10-fold
CV, for example, 90% of the cases are used to find classi-
fier parameters to classify the other 10%. By choosing
new groups each repetition, a different 90% of cases are
used to create the parameters, and a different classifica-
tion may result.

While "leave one out" cross-validation is intrinsically
more stable, it cannot be used in this fashion. Other
methods such as bootstrap sampling were considered,
but we chose k-fold CV (with k = 10) for its low bias and
variance in this type of problem [9]. To further reduce
variance, we used stratified CV, in which a training group
is chosen to have approximately the same distribution of
classes as the original population.

Methods
Using these two tools of a Bayesian belief network and
mutual information, we have taken the output of our
advanced signal processing methods [3,4] and attempted
to find diagnostic features, as well as build a classifier that
could be used to separate future samples. More detail on
the method can be found in Kuschner [10].

The first step in our implementation is to determine all
variables that show dependency with the class. We origi-
nally attempted to determine a threshold for mutual
information significance by repeatedly and randomly per-
muting the class assignment of our data, computing the
mutual information MI(class;feature) for each permuta-
tion, and finding the largest "random" mutual informa-
tion which results. However, due to the mutual
information maximization described below, strictly using
this baseline mutual information value as a threshold to
declare significance resulted in an unrealistic number of
features with some connection to the class. The final
methodology was empirical, increasing the threshold
while monitoring the number of first level features, as
well as the fraction of cases misclassified under cross-val-
idation. Feature set sizes uniformly decreased, while error
rates had a local minimum, pointing to a stable threshold
value. Resource constraints prevented further investiga-
tion into a rule-based method of determining a signifi-
cance threshold, and we hope to improve this aspect of
our work at a later date. In the leukemia data described in
the next section, a threshold of 3.2 times the "random-
ized" baseline provided stable feature sets with a reason-
able number of features and minimal error rates.

The abundance values for each feature were discretized
into 3 bins - high, medium, and low - by maximizing the
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mutual information of that feature with the class. Thus
for each feature, bin boundaries are swept from the maxi-
mum to the minimum empirical values, the data is dis-
cretized, and MI(class; discretized feature) is found. The
bin boundaries that maximize this value are noted and
the discrete values of the variables are used for all further
calculations.

The three bin method was selected in order to isolate
central values which provide little or no discrimination
between groups. If a protein has higher abundance in dis-
ease samples, for instance, the high bin will have a large
difference in the probability of occurrence given disease
vs. normal, as will the low bin. The central bin will have
nearly the same probability of occurrence regardless of
disease state. Diagnostic features will have few cases in
the central bin, and the maximized MI will reflect this.
Figure 2 illustrates this technique.

With a significance threshold set, all features with
MI(class;feature) greater than the threshold are initially
considered to have connection to the class variable.
Graphically, directed arcs are created in the BN from the
class node to each node representing a feature passing
this test.

Once a set of features having significant mutual infor-
mation with the class is established (the "first level fea-
tures"), they are individually tested against all other
features. The MI threshold and discrete values found pre-
viously are used (after adjusting for variations in the scale
of maximum MI) to determine if connections between
features exist. If MI(first-level feature; other feature)
exceeds the significance threshold, an undirected arc is
placed on the Bayesian network to represent this depen-
dency.

In the case where this test is between a first-level fea-
ture and a non-first-level feature, the arc can be directed
immediately, given our simplification to the BN based on
the causality assumption. However, if this feature-feature
link occurs between two first-level features, an additional
test is required.

To direct such arcs, we used conditional mutual infor-
mation. This measurement determines the mutual infor-
mation remaining between two variables when a third
variable is known. In practice, the data is partitioned by
the third variable's value, and mutual information is mea-
sured by

If the connection to the class C is of the form
CTV1TV2, then the feature V2 will become independent
of the class when the data is partitioned on the values of
V1, as discussed previously. In that case, the mutual
information MI(C;V2|V1) will drop to zero, indicating
the independence and the initial link CTV2 is removed. If
this connection accurately reflects the causal situation,
however, it will not be true that MI(C;V1|V2) drops to
zero--and this link is kept.

This provides a means to organize first-level features
with dependencies between them. We compute the con-
ditional MI values and look for MI(C;V2|V1)<<MI(C;V2).
If such a drop occurs, we conclude a serial connection
CTV1TV2 exists. While we did not find that the condi-
tional mutual information vanished, indicating pure inde-
pendence, significant drops (>75% of the original value)
were often observed. Our results were relatively insensi-
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Figure 2 Three bin discretization. A histogram of a variable when separated by group shows how central values with little discrimination are isolat-
ed, thereby maximizing mutual information between the variable's values and the class.
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tive to the exact threshold used, but fewer expected con-
nections (like multiply charged states) were organized
correctly with this threshold above 90%.

First level feature pairs where such drops were not sig-
nificant were maintained at the first level, but the arc
between them was directed based on the greater of the
conditional mutual information results.

These two simple tests resulted in a Markov blanket of
features around the class variable and information about
correlations between these and other features. The
resulting DAG is recorded during each cross-validation
trial and is used to classify the test cases. After k trials, all
cases in the data are classified and an error rate for that
trial is recorded. To find that error rate, the probabilistic
classification given by the BN (e.g. "probability of disease
given this data") is changed to a deterministic classifica-
tion ("this sample comes from the disease group") using
some value, which is 0.5 in all of our results.

By randomizing the list of samples in each of the k-fold
cross-validation groups n times, n*k Bayesian networks
are recorded, along with n cross-validated error rates.
The stability of the Bayesian network is examined by not-
ing the frequency with which various links appear in this
set of results, and the stability of the direction of the arcs
between features. An "average" network of most frequent
connections can be built, thus enabling the classification
of new samples with the most stable connections and
parameters found.

The MATLAB code which implements the algorithm
described above can be obtained from the MATLAB
Central file exchange under the title "WMBAT" http://
www.mathworks.com/matlabcentral/fileexchange/24345,
or by contacting the authors.

Data
Two data sets are examined, one artificial and one real.
The real data set used is from an Eastern Virginia Medical
School (EVMS) study aimed at discriminating between
subsets of patients infected with Human T-cell Leukemia
Virus type 1 (HTLV-1). Blood sera samples were collected
under a protocol developed by the National Institute of
Health and EVMS. The samples derived from three major
clinical sites and were collected using centralized proto-
cols and kept frozen until processed. The diagnosis and
classification of Adult T-cell leukemia (ATL) was made
using the World Health Organization classification and
Shimoyama criteria. In addition to ATL and healthy indi-
viduals the cohort included HTLV-1-infected asymptom-
atic individuals from the same clinical sites. The
acquisition of MS spectra was performed according to
protocols described in [11].

EVMS investigators employed an in-house program to
assign samples in a randomized matrix pattern to prevent
bias between replicates, or clinical status, and chip spot

position. All samples were processed in triplicate and the
arrayed chips were read in a 48-h period. The matrix
codes were assigned by an individual separate from the
team that processed the samples so that each phase of the
study was blinded with respect to the operator. The code
was broken during the classification stage.

Before analysis, the data were divided into two sets. The
training set consisted of 145 different patients, of which
78 were classified during the clinical portion as "normal,"
and 67 with various stages of ATL. After removing spec-
tra from the triplicate processing that had poor signal-to-
noise due to instrument problems, we were left with 417
cases for the study. This constituted approximately two-
thirds of the data taken; the remaining one-third (with all
corresponding replicates) was withheld for validation
until a final classifier was created. The data are available
at ProteomeCommons.org, under the title "Leukemia'04
TOF spectra parsed into Rdata files."

Signal processing of the spectra was performed using
tools created by our group and its collaborators and
reported elsewhere [4]. The procedure followed several
steps: (1) Removal of an exponentially decaying pedestal
(with a time constant of 10000 time steps) presumably
created by the low mass matrix products; (2) Peak loca-
tion and amplitude fitting for each spectra by using a
Gaussian line shape with a full-width at half maximum of
11 time steps. This fit weighted each data point's squared
error by the inverse of the expected signal to simulate the
expected Poisson statistics. Whenever a peak amplitude
exceeded 2 times the root-mean-square (RMS) noise in
the spectra, that location and amplitude were recorded.
(3) All the recorded peaks were aligned across the spectra
by shifting the start time of each spectrum to minimize
the variation in peak positions found in the spectra. This
typically required shifts of as large as ± 6 time steps. (4) A
master peak list was generated by including peak loca-
tions found in at least 5% of the spectra. (5) Fitted ampli-
tudes were recorded for all spectra at the master peak
locations, even those which did not exceed the earlier
SNR threshold of 2. (6) The remaining background was
removed by smoothing and interpolating each spectrum,
after excluding those regions that were within 3 FWMH
of a peak or an expected peak. (7) The peak amplitudes
were corrected for a systematic decay that was observed
in the QC (pooled serum) spectra by increasing each
spectrum's amplitude by 0.04% in the order they were
taken. This resulted in a net increase of approximately a
factor of 2 by the end of the list of spectra. We believe
that this was necessary to correct for a laser power
decrease over the course of the experimental run. The
final result was an array of abundance values for each case
at a number of mass-to-charge positions (the peaks). This
processing of leukemia data set led to detection of 96
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aligned peaks in all 417 spectra in m/z range from 2 to 13
kDa.

The artificial data was created to test the ability of the
method to reproduce known relationships. No signal pro-
cessing is done, but the typical challenges associated with
the analysis of real mass spectra are introduced, such as
strong correlations between peaks, high variability, con-
volution of the values of nearby peaks, and the presence
of many peaks that are non-diagnostic. Data is generated
from Gaussian distributions with means and variances
drawn from the leukemia data (which itself has no known
underlying distribution). Specific features are chosen to
be primary markers, and the mean values of the distribu-
tions the two groups are drawn from are one to two stan-
dard deviations apart, as was found in the leukemia data.
The distribution between groups shown in Figure 2 is
from this data set, and simulates the most diagnostic fea-
ture found in the leukemia data set. Several other features
are chosen to be modifications of the primary features,
and random, but bounded, amounts of the primary fea-
tures are placed in the secondary features. This simulates
protein modifications, multiple ionizations, and other
systematic events MALDI events [5]. The remaining fea-
tures are drawn from a single distribution, regardless of
class. Other common TOF-MS problems are introduced.
For example, one feature has a portion of its values
moved to a neighboring feature to replicate signal convo-
lution of nearby peaks. Detail of the creation of the gener-
ated data and the MATLAB code used to generate it is at
http://kwkusc.people.wm.edu/dissertation/CreateGen-
Data.html.

Results
The leukemia data set was examined with several tradi-
tional feature selection methods, using a classifier as a
wrapper, to create a baseline for our method's results.
These methods were the naïve Bayesian classifier (NBC),
linear and quadratic discriminate analysis (L/QDA), and
classification by Mahalanobis distance. The wrapper
method of feature selection uses the classifier result to
choose which features to include. We used the forward

selection method, which adds to the feature set which-
ever remaining feature best minimizes the error rate of
the classifier, and stops when no better feature set can be
found.

With this baseline established, the data was processed
using the Bayesian network algorithm. Our primary
objective was to maximize the stability of feature net-
works under randomized k-fold cross validation, with
minimizing error rate a secondary goal.

Traditional Feature Selection and Classification methods
Each of the traditional methods was repeated 30 times
using the training data, with feature sets and resulting 10-
fold cross-validated error rates recorded for each trial.
The best error rate achieved was with QDA. Using an
average of just over 9 features, the error rate averaged
3.8%. The results from each method are presented in
Table 1. For the NBC, we were able to achieve cross-vali-
dated error rates as low as 7% with about 10 features. Fig-
ure 3 shows a typical error rate profile as features are
systematically added to an NBC feature set.

One common factor among all these methods was that,
with each new trial and subsequent randomization of the
group membership for the k-fold cross-validation, the
features that were selected changed dramatically after the
first several choices. Two typical trials of the NBC are
shown in Table 2. Additionally, between the various
methods, the primary features--those occurring in more
than 50% of the trials--were often different. LDA, for
example, found features 46, 87, and 96 in 63%, 100%, and
100% of the trials, respectively. Mahalanobis, on the other
hand, found only features 95 (100%) and 37 (83%) in more
than half the trials.

In this form of feature selection, features that are highly
correlated to features already selected are often not sub-
sequently selected. To illustrate, if a new feature is a
duplicate of one already chosen, the new feature will
show no additional diagnostic power added to the feature
set, and will be passed over in favor of another, less diag-
nostic, feature. We know that feature 95 and 96 are highly
correlated, in fact, they represent modified forms of the

Table 1: Traditional Classifiers Used for Feature Set Selection

Method Features Selected Min Error Lockbox Error

LDA 7.2 7.8 ± 1.2% 21.0 ± 2.6%

QDA 9.7 3.8 ± 0.5% 38.5 ± 1.4%

Mahalanobis 2.8 11.1 ± 0.5% 28.3 ± 2.8%

NBC 6.8 8.4 ± 0.7% 18.9 ± 1.4%

Four different methods of classification are used to select features from the leukemia data set. 30 trials were performed for each. Features 
Selected represents the average number of features in a feature set when the wrapper determined no better feature set was available. Min 
Error represents the average 10-fold stratified cross-validated error rate achieved by the final feature set. Lockbox Error is the average error 
achieved by using the final feature set (and associated parameters) to classify the data which was withheld until the final classifier was built.
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same protein. In LDA, feature 96 was chosen, but rarely
95. The opposite was true for the Mahalanobis method.
Since it is critical to the overall goal of biomarker discov-
ery to understand how each of these modifications is
related, this is a near-fatal weakness of these traditional
approaches.

Even more critically, the feature sets chosen using the
training data failed to effectively predict the disease state
of the withheld (lockbox) data once it was released. The
error rates in classifying the 191 cases from the withheld
data far exceeded the cross-validated errors from the
training data. QDA, for example, had CV error rates of
3.8+/-0.5%, but was only able to classify the withheld data
to about 38% error. All the methods had true errors far
outside the predicted range, as shown in Table 1. Such
results have been common disappointments in our previ-
ous biomarker discovery work.

Trials of the artificial data showed similar results. For
example, use of an NBC to select features drove the error
rate down to about 1%, but chose many "randomly diag-
nostic features"--those in which both disease classes were
drawn from the same Gaussian distribution and were
only selected due to overfitting.

Bayesian Network Approach
Results using a BN approach with a mutual information
score as a filter were more stable. To measure feature
selection and error rate stability, a 10-fold stratified cross-
validation was run 100 times, with each trial's cross-vali-
dation groups randomized.

The method was able to completely recreate the
intended network for the artificial data, with two excep-
tions. One feature that was intended to simulate a multi-
ply-charged ion of a protein modification of a primary
diagnostic feature was found connected to the class in a
small number of trials. The algorithm was not built to
search for such "third-level" features, and the small num-
ber of times this feature was connected would have kept
it from being added to the final classifier in our method-
ology. Two features were intended to simulate fragments
of a large protein outside the range of measurement (a
"hidden variable" in the BN), and one was found fre-
quently connected to the disease class, with the other as
its child. The algorithm is not built to detect such hidden
variables. One of these features would have been added to
the final classifier using our methodology. However, the
existence of these fragments in the network may itself
lead a researcher to discover the larger, non-measured
protein.

Figure 3 Error rate as features added. The cross-validated error rate 
decreases steadily as features are added according to their ability to in-
crease the accuracy of a naïve Bayesian classifier. Two typical trials are 
shown. It is possible with a large number of variables to continue to 
choose ever-larger feature sets with ever-lower error rates, but these 
larger feature sets are caused by over-fitting and have unstable mem-
berships.

Table 2: Features sets, naïve Bayesian classifier

Set Size Features Selected

Trial 1 Trial 2

1 96 96

2 87 87

3 90 90

4 11 32

5 54 54

6 40 11

7 15 6

8 46 35

9 21 60

10 48 53

Two typical trials of a naïve Bayesian classifier wrapper. After the first three features, selection is very unstable. Similar results occurred for all 
the traditional classifiers.
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All the intended primary diagnostic features were con-
nected to the disease class in 95-100% of trials, showing
excellent stability and a nearly perfect discrimination
between "real" and "randomly" diagnostic features, unlike
the conventional wrapper methods.

Figure 4 shows the frequency of primary connection
between features and the disease class for the leukemia
data. The feature labels along the horizontal axis of this
figure indicate which of the 96 global m/z positions that
feature represents. Only the 20 most frequently selected
features are shown; beyond that, features were selected
less than 1% of the trials. Only 7 features are selected
more than one-half of the trials; the 8th most frequently
selected feature had a 30% lower selection rate. Only one
of these features was selected frequently by the NBC,
LDA, and Mahalanobis wrapper methods, two by the
QDA method.

Using a nominal 50% threshold, we can immediately
build the first level of the BN below the root node, which
represents the disease state. Figure 5 shows the initial BN
as thick solid arcs connected to the disease class node,
"C." It is important to note that more features may have
initially passed the significance test and been placed on
the first level of the BN, but subsequent tests showed
them to be children of these 7 remaining features.

In addition to the primary feature set, the method
allows discovery of relationships between primary fea-
tures and all other features. The thin arcs in Figure 5
show additional relationships found by testing mutual
information between features, and organized by testing
for conditional mutual information with the disease class.
Figure 6 shows the selection rate of the 10 features most
frequently selected as children of feature 95, a first level
feature. In previous leukemia data study, Semmes et al.
[11] had found the cluster containing this feature (among
12) with very low p-values as a discriminator of disease
state. Table 3 lists the M/Z values for the features found
in Figure 5.

For this data set, families of features were discovered
that allowed a preliminary identification of a primary fea-
ture based not only on its mass, but on the mass values of
related features. Feature 39, for example, has a mass-to-
charge ratio almost exactly 1/2 of that of feature 96, indi-
cating that it is the same molecule in a doubly ionized
state.

Other features such as 94 and 96 have masses that differ
from feature 95 by values that may indicate, for example,
loss of an arginine residue. Investigating each of these
"children" allows more preliminary information about the
"parent" ion and may lead to a more rapid chemical iden-
tification. This information is not readily obtainable by a
more traditional feature selection method. In fact, we
noticed consistent literature reports [12] for a protein (at
11.696 kDa) with this family of modifications, and further
experimental testing validated that identification and
assignment to serum amyloid A. Thus, the combination
of better data processing and analysis improved bio-
marker ID capabilities [11,12]

As a final test of the technique, an approximate Bayes-
ian network (Figure 5) was created for this data set, using

Figure 4 Feature selection rates. This graph shows the frequency 
that features were selected as first level features (connected to the dis-
ease class node) during 100 cross-validation trials, resulting in 1000 
networks. Seven features have been selected in more than 50% of the 
trials, and these are used for the final classifier. The 76 features not 
shown were selected in less than 1% of trials.
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Figure 5 First level Bayesian network, leukemia data. This diagram 
shows the most-likely network as derived from the frequency and sta-
bility of the network nodes found during cross-validation. All features 
show high mutual information with the class variable. The first level 
features are those which cannot be made independent of the class 
when conditioned on other features. Features placed on the second 
(lowest) level below the class have little mutual information with the 
class when conditioned on the parent feature.

Class

95

57-59 90-94 96

602 18 56

395562 67

87

Figure 6 Features connected to feature 95. Seven features are fre-
quently found to be children of feature 95 (11,696 Daltons). Feature 39 
is a doubly charged ion; others are likely various modifications of the 
primary molecule. This knowledge allows the researcher to narrow the 
search to proteins that have the mass of the parent and have modifi-
cations that match the masses of the child molecules.
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the most frequent results. The entire training set was dis-
cretized and probability parameters for the network were
estimated empirically from the result. With the final clas-
sifier parameters "frozen," the lockbox of previously with-
held data was opened, and the spectra pre-processed
using the same techniques and parameters as the training
data, including using the same global peak list as features.

The resulting list of observed variable values for each
case was discretized using the boundaries determined
from the training data and then classified using the final
classifier. Probabilistic results were converted to deter-
ministic using 0.5 as a threshold, as was done for the
training set. The results were recorded and then assessed
against medical diagnoses recorded in the database. The
error rate for this classifier was 15.2%, within the 13.7 ±
1.9% predicted by the cross-validation of the training
data. ROC curves for the classification of both the origi-
nal training set, and the withheld data, are shown in Fig-
ure 7. The same feature lists, discretization, and
probability tables were used for both sets of data.

The ability of the final classifier to classify the withheld
data at a rate similar to the cross-validated error rates for

the training data was an important improvement from
the poor classification results of the conventional feature
selection and classification methods.

Discussion
The problems expected of more conventional feature
selection methods were found in the leukemia data set
when the classifier-wrapper methods were applied. Cor-
related feature groups (such as 90-96) had one feature
selected, while the others in the group were overlooked.
Subsequent feature selection was unstable due to the high
dimensionality of the data and small sample size. This
problem is well documented, but often ignored [13].

More problematically, resulting classifiers produced
good results on the data they were derived from, but poor
results when applied to new data. Given the resources
required to validate biomarker candidates, this approach
is an inadequate technique for biomarker discovery.

The Bayesian network/mutual information approach
provided a much clearer partition between stable and
unstable features. In the experiment using artificial data,
the BN clearly identified all parent features. It also cor-
rectly showed the relationship of nearly all correlated fea-
tures, including those that were designed to replicate MS-
specific effects such as the convolution of peak shapes
separated by less than the shape width.

Most promisingly, error rates predicted by many trials
of cross-validation were found to agree well with the
results of the training data derived BN classifier used on
withheld data. This was not true of the traditional meth-
ods. The NBC, for example, was not useful for finding

Table 3: M/Z values for key features in leukemia data

Feature Number M/Z value

2 2799

18 3898

39 5879

55 7579

56 7651

57 7780

58 7821

59 7846

60 7864

62 7986

67 8322

70 8455

87 10547

90 11404

91 11486

92 11507

93 11539

94 11641

95 11696

96 11742

96 features were found in the range of mass-to-charge values we 
used for this. The list of features that were found to be important 
and the corresponding m/z values are given in this table.

Figure 7 ROC curves. ROC curves of the final classifier, which is con-
structed using the most frequent and stable results from the cross-val-
idation trials. Parameters for the classifier have been learned from the 
complete training data set; the resulting classifier has been used to re-
classify the training data (solid line) and a set of withheld data. The re-
sults from the training data are better than the average cross-validated 
results since the bin boundaries and probability parameters used in 
the final classifier come from the entire training data set, not a cross-
validation subset.
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diagnostic information past two or three features, even
thought the error rate could be driven artificially low by
overfitting.

Conclusions
The process of chemically validating the selected features
in the search for biomarkers is costly and time-consum-
ing. Feature selection methods that prevent false positive
results are critical to making progress in this field. Feature
selection methods using traditional classifiers as wrap-
pers suffer from overfitting in small sample sets, and mis-
handle information about highly correlated variables. The
Bayesian network approach, combined with model-free
mutual information scoring, appears to highlight stable
features, as well as provide the opportunity to examine
relationships between diagnostic features that may assist
in identification.
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