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Abstract

Background: To develop protein therapeutics from exogenous sources, it is necessary to mitigate the risks of eliciting
an anti-biotherapeutic immune response. A key aspect of the response is the recognition and surface display by
antigen-presenting cells of epitopes, short peptide fragments derived from the foreign protein. Thus, developing
minimal-epitope variants represents a powerful approach to deimmunizing protein therapeutics. Critically, mutations
selected to reduce immunogenicity must not interfere with the protein's therapeutic activity.

Results: This paper develops methods to improve the likelihood of simultaneously reducing the anti-biotherapeutic
immune response while maintaining therapeutic activity. A dynamic programming approach identifies optimal and
near-optimal sets of conservative point mutations to minimize the occurrence of predicted T-cell epitopes in a target
protein. In contrast with existing methods, those described here integrate analysis of immunogenicity and stability/
activity, are broadly applicable to any protein class, guarantee global optimality, and provide sufficient flexibility for
users to limit the total number of mutations and target MHC alleles of interest. The input is simply the primary amino
acid sequence of the therapeutic candidate, although crystal structures and protein family sequence alignments may
also be input when available. The output is a scored list of sets of point mutations predicted to reduce the protein's
immunogenicity while maintaining structure and function. We demonstrate the effectiveness of our approach in a
number of case study applications, showing that, in general, our best variants are predicted to be better than those
produced by previous deimmunization efforts in terms of either immunogenicity or stability, or both factors.

Conclusions: By developing global optimization algorithms leveraging well-established immunogenicity and stability
prediction techniques, we provide the protein engineer with a mechanism for exploring the favorable sequence space
near a targeted protein therapeutic. Our mechanism not only helps identify designs more likely to be effective, but also

provides insights into the interrelated implications of design choices.

Background

The majority of all therapeutic proteins elicit an anti-bio-
therapeutic immune response (aBIR) in human patients
receiving treatment [1]. The clinical effects of such a
response may include various rapidly manifested anaphy-
lactic responses, a reduction of therapeutic efficacy, and
in rare cases cross-reactivity of anti-drug antibodies with
endogenous patient proteins resulting in a form of
induced autoimmunity [2]. Wide concern over these
issues has focused biopharmaceutical researchers on the
immunogenicity of protein therapeutics, and has driven
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the search for strategies to detect, assess, and ameliorate
potentially deleterious immune responses [3-5].

While there exists a variety of factors that influence a
protein therapeutic's immunogenicity [6,7], we focus here
on the effect of a protein's origins. Specifically, non-
human proteins exhibit a disproportionately high fre-
quency of immunogenicity in humans as a result of the
classical immune response [8]. In contrast, proteins of
human origin are more likely to be recognized as "self," or
to meet the "criteria of continuity" [9]. The goal is thus to
engineer variants of the foreign protein that also are rec-
ognized as "self." For therapeutic antibodies, whose struc-
ture and function are well understood, immunogenicity
reduction may be realized by rational grafting of key
functional residues from an exogenous therapeutic anti-
body onto a human antibody framework [10-14]. The

- © 2010 Parker et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
( BloMed Centra| Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.



Parker et al. BMC Bioinformatics 2010, 11:180
http://www.biomedcentral.com/1471-2105/11/180

resulting chimeric antibody maintains the binding speci-
ficity and affinity of the exogenous therapeutic candidate,
but the majority of the protein is comprised of human-
derived amino acid sequences, thereby reducing the pro-
pensity for aBIR. The prevalence of chimeric and human-
ized antibodies among FDA approved therapeutics [15]
as well as a detailed meta-analysis [16] provide over-
whelming evidence for the efficacy of this approach as a
whole. However, there remains a considerable empirical,
trial-and-error component, even in "rational" approaches
[17]. Rational grafting techniques require a precise
knowledge of structure-function relationships, as well as
a modular structure common to the exogenous therapeu-
tic candidate and a homologous human protein. With the
advanced state of knowledge for immunoglobulin pro-
teins, therapeutic antibodies inherently satisfy these pre-
requisites. However, exogenous enzymes, signaling
peptides, and other classes of non-human proteins repre-
sent a potentially massive pool of biotherapeutic agents.
To effectively tap this reservoir of next generation drugs,
more advanced deimmunization strategies are required
to address the fact that many of these candidates do not
possess common modular structures and frequently have
no homologous human counterpart.

One alternative to humanization by rational grafting is
the identification and modification of immunogenic pep-
tide fragments of a protein, or T-cell epitopes, that drive
the aBIR. These peptides are derived from proteolytic
processing of protein that has been internalized by anti-
gen presenting cells (Trombetta and Mellman [18] pro-
vide a detailed review). The peptide fragments are bound
within the groove of type II major histocompatibility
complex proteins (MHC II), which are then transported
to the surface of the immune cell where the peptide-
MHC II complex is displayed to the extracellular environ-
ment. Should the displayed peptides constitute immuno-
genic sequences, they will form ternary peptide-MHC II-
T-cell receptor complexes with surface receptors of cog-
nate white blood cells. The resulting signaling cascade
leads to a coordinated immune response against the
offending protein. To avoid such a response, it is some-
times possible to identify the most immunogenic peptide
fragments of a candidate protein, and to subsequently
mutagenize one or more of the corresponding residues so
as to disrupt the peptide fragment's capacity to complex
with the MHC II and/or T-cell receptors. This process
has been successfully applied to numerous therapeutic
candidates including staphylokinase [19], factor VIII [20],
and a S-lactamase [21]. Deimmunization by epitope dele-
tion suffers from the limitation of being exceptionally
time and resource intensive. Traditionally, the approach
entails synthesizing and testing the immunogenicity of
large panels of peptides from the native protein, perform-
ing alanine scanning mutagenesis on the most immuno-
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genic fragments to pinpoint critical MHC II binding
residues, incorporating deimmunizing mutations into the
full length protein, and finally testing the functionality
and immunogenicity of the engineered protein variants,
only a small fraction of which are likely to retain high
activity and/or constitute globally deimmunized candi-
dates. More advanced implementations of this strategy
exchange functionally relevant mutations for alanine
mutations, but only late in the experimental cycle.

Computational methods have been employed to aid the
identification of mutations that can effectively eliminate
MHC II binding. Often computational analyses are per-
formed on only a small subpopulation of peptides that
have been preselected from a much larger pool of possi-
bilities [22,23]. These approaches also typically focus on a
minimal set of only the most immunogenic peptides (typ-
ically 1-3 peptides), and therefore cannot be guaranteed
to provide globally optimal sequences. Alternatively,
numerous computational tools have been developed for
immunogenicity prediction for an entire protein, based
on its amino acid sequence [24], and the efficacies of sev-
eral alternative methods have been evaluated in head-to-
head comparisons [25,26]. Some such algorithms have
been used to identify immunogenic peptides in practical
biotherapeutics [27,28]; our goal is to integrate such
immunogenicity analyses within optimization algo-
rithms that reduce predicted immunogenicity while
accounting for structural and functional consequences.

In order to address the shortcomings of earlier
approaches, this paper presents a novel protein design
method in which protein sequences are computationally
optimized to produce variants that are more likely to
exhibit both low inherent immunogenicity and high level
functionality. These are two competing concerns - muta-
tions introduced to reduce immunogenicity may produce
unstable or inactive proteins. We establish as our primary
optimization objective reduction of immunogenicity,
according to predicted T-cell epitopes within the
sequence [25]. In order to also address the concern of sta-
bility/activity, we identify for each residue position those
mutations that are deemed acceptable according to
sequence and/or structure-based analyses. A dynamic
programming approach then finds globally optimal and
near-optimal sets of these acceptable mutations that min-
imize the occurrence of predicted epitopes.

Our methods provide a number of significant exten-
sions to the state of the art. They are not limited to deim-
munization of antibodies (as are simple rational grafting
techniques), but can also be applied in engineering
immunotolerant versions of more complex proteins, such
as therapeutic enzymes. Our approach seamlessly inte-
grates immunogenic peptide identification, mutagenic
deimmunization, and functional/structural analysis of
potential mutations, employing well-established and
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effective tools for prediction of epitopes and for evalua-
tion of stability changes. Our dynamic programming-
based algorithms are guaranteed to find globally optimal
sets of mutations, avoiding the pitfall of making a muta-
tion to mitigate one epitope but inadvertently introduc-
ing a new overlapping epitope. We provide the protein
engineer with flexibility in setting a desired threshold for
immunogenicity, limiting the number of mutations to
consider, and in targeting specific MHC alleles. Finally, in
contrast to traditional experimental and computational
techniques, our methods preferentially guide mutations
to the most promiscuous immunogenic amino acids, i.e.,
those that are elements of two or more overlapping
immunogenic peptides (Fig. 1).

We apply our methods to optimize variants of several
different protein therapeutics that have previously been
targeted for deimmunization by other approaches. We
characterize the space of sequences near these targets,
identifying variants that are predicted to be less immuno-
genic than wild-type but still stable, i.e., deleting some
predicted epitopes while using only conservative substi-
tutions. We find a number of variants that, in comparison
to earlier designs, contain fewer predicted epitopes for a
given number of substitutions, or, viewed the other way,
use fewer substitutions to delete a similar number of
epitopes. Our approach targets many of the same immu-
nogenic regions as identified by experimental studies,
even when not specifically focused. Furthermore, by
restricting substitutions to be relatively conservative (as

5/8 3/8 Epitope scores
Wild-type
...TAYKEFRVVELDPSAKI...
A 7
FY KQR AILMTV Allowed residues
0/8
Variant 8

...TAYKEFKVTELDPSAKI ...

L= =
1/8

Figure 1 Deimmunization overview. We employ T-cell epitope pre-
dictors to score each 9-mer peptide for potential immunogenicity. In
this example (staphylokinase residues 71-87; see the Results section),
four peptides are deemed immunogenic, as they are predicted to be
recognized by sever-al of the 8 most representative MHC Il alleles. We
employ sequence and structure analysis to identify for each position
which residues are acceptable; only a few examples are shown. Our al-
gorithms select a specified number of mutations (here two mutations,
underlined in the variant) from the acceptable ones, so as to minimize
the resulting epitope score. Note that a single substitution at a "pro-
miscuous" amino acid can reduce recognition of multiple overlapping
epitopes, and need not be at the so-called "anchor" position.
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assessed under several different models), our variants are
likely to maintain greater thermodynamic stability.

Methods

Our overall goal is to select, from the mutations deemed
acceptable, a set that efficiently reduces the occurrence of
predicted T-cell epitopes. We now formalize this prob-
lem; Fig. 1 illustrates.

Problem 1 (Deimmunization) Given a protein

sequence S of length n, determine a variant S’ minimizing

S Ee(S] 14s) » such that i STi) € M(i), where

« e: A% [0, 1] returns the epitope score for a peptide
(we assume a 9-mer; see below) in the range of 0 to 1,
where lower is better

e M: {1, 2, .., n} > 24 provides the allowed residues,
indicating which amino acids (including at least the
wild-type) may be considered at each residue position

Here and throughout, weuse A = {A,C, ..., Y} for the
set of amino acids; sequences are l-indexed; and the
notation X; ; indicates the substring of X from position i
to j, inclusive.

A number of experimentally-validated bioinformatics
tools exist to predict immunogenicity (as encoded in e)
and changes in stability (M). Our current implementation
supports several state-of-the-art tools [29,30], but is
modular and can readily support others [31-33].

Immunogenicity evaluation

T-cell epitope predictors encapsulate the underlying spe-
cific recognition of an epitope by an MHC II protein. We
focus here on the human leukocyte antigen group DR

# peptides
\®)

1 2 3 4 5 6 7 8
# alleles

Figure 2 Possible epitopes. Number of 9-mer peptides (out of 20°
possible) recognized by exactly the number of the eight common al-

leles we use for epitope scoring, relative to a 10% threshold (see text).
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(HLA-DR) of MHC II proteins, since they are the pre-
dominant isotype. HLA-DR proteins have a recognition
groove whose pockets form energetically favorable inter-
actions with specific side-chains of peptides approxi-
mately 9 residues in length. Numerous methods are
available for epitope prediction, and they have been
shown to be predictive of immunogenicity [25]. For the
results, we employ two quite different and complemen-
tary methods.

ProPred

Sturniolo et al. [34] experimentally measured the binding
affinity between individual residues and individual pock-
ets of the MHC 1I binding groove on a limited set of
alleles. They then created binding profiles for untested
alleles through sequence and structure alignment with
tested alleles. In this "pocket profile" method, TEPITOPE,
the sum of position-specific weights for each residue in a
9-mer provides a score that is compared against a thresh-
old to determine whether or not the peptide is in a given
percentile of the best-recognized peptides. The approach
was experimentally validated by comparing its predic-
tions against HLA-DR selected and nonselected peptide
repertoires; up to 80% of the selected peptides were cor-
rectly predicted at a threshold that yielded < 5% false pos-
itives. Singh and Raghava then built a tool, ProPred, to
expand the scope of TEPITOPE and make it more easily
accessible and applicable [29]. In a recent independent
evaluation [25], ProPred did quite well in epitope predic-
tion, achieving an average 0.73 area under the curve
(AUCQ) across 14 different alleles. ProPred has also been
successfully employed in a number of different studies;
e.g., it has recently helped identify antigenic sites on a
mosquito midgut glycoprotein, immunoreactive peptides
in prostatic acid phosphatase, and promiscuous T-cell
epitopes of three major secreted antigens of Mycobacte-
rium tuberculosis [35-37]. In all three of these examples,
ProPred facilitated the rapid identification of potential
vaccine targets that were then experimentally character-
ized in detail. In our case study of Erythropoeitin (see
Results), we found a quite striking match between Pro-
Pred predictions and published ELISPOT assay immuno-
genicity results.

SMM-align

Nielsen et al. [30] pursued a different approach to epitope
prediction, developing the SMM-align method by apply-
ing machine learning techniques to large curated data-
bases of experimentally validated epitopes: the Immune
Epitope Database IEDB [38] and SYFPEITHI [39]. While
ProPred uses data from single residues binding to single
MHC II pockets, SMM-align uses data from whole pep-
tides. Furthermore, while ProPred is based on sequence
and structure alignment, SMM-align is uses Gibbs sam-
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pling and a regulated least squares regression to develop
position specific scoring matrices that predict the binding
affinity between an epitope and MHC II allele. In the
independent evaluation mentioned above [25], SMM-
align also achieved a mean 0.73 AUC (SMM-align and
ProPred were the top two methods).

While there are over 50 different HLA-DR alleles, we
have focused on 8 common alleles (DRB1*0101,
DRB1*0301, DRBI1*0401, DRB1*0701, DRB1*0801,
DRB1#1101, DRB1#1301, and DRB1*1501) that represent
the majority of human populations world-wide [40]. Thus
our epitope score is the fraction of these 8 alleles pre-
dicted to recognize a peptide. In order to evaluate the
potential for finding an epitope, we scored each of the 20°
possible 9-mer peptides under ProPred at a 10% thresh-
old. We found that 1.4 - 1011 (26.63%) are predicted to be
recognized by one or more alleles, including 5.7 -
10%(1.12%) by all 8 alleles; see Fig. 2 for a complete histo-
gram.

Stability evaluation

Evaluating the effects of mutations on a protein's stability
and activity is at the heart of all rational protein engineer-
ing techniques. For the results, we consider three differ-
ent methods using different sources of information to
determine acceptable residues likely to maintain wild-
type qualities.

BLOSUM

Given sequence alone, standard substitution tables such
as BLOSUM [41] can evaluate the overall acceptability of
a mutation, according to substitutions in sets of natural
sequences. We compute a "relative” BLOSUM-62 score -
the difference between the wild-type/wild-type score
(diagonal) and the wild-type/mutant score. We obtain a
reasonably conservative set of acceptable residues by only
taking those with score differences of at most 4.
Conservation

A set of sequences related to the target protein reveals
which positions are highly conserved, and to which
amino acid(s), vs. which are more variable. In turn, this is
indicative of which residues are riskier to mutate and
which ones are safer. The utility of sequence alignments
in engineering thermostablilized and functional protein
variants has been proven in numerous experimental stud-
ies [42-46]. We use a multiple sequence alignment and
phylogenetic tree to compute position-specific amino
acid frequencies in a family. To avoid over-counting
highly-related sequences, we weight sequences using a
bottom-up tree-based algorithm [47]. The weighted posi-
tion-specific score for amino acid a at position i, accord-
ing to a multiple sequence alignment F of sequences s
with (non-normalized) weights w;is then:
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We permit residues such that ¢, , exceeds a user-speci-
fied threshold, defaulting to -log 0.05 (i.e., 5% weighted
frequency)

FoldX

When a structure is available, we employ the FoldX AAG®
predictor [48] to evaluate the change in free energy for
each possible substitution. FoldX was demonstrated to
achieve of 0.83 correlation between predicted and experi-
mental AAG® over 95% of a database after outlier
removal. FoldX has since been successfully used to aid
protein design, e.g., for custom DNA kinases and poten-
tial anticancer drugs [49,50]. It is important to note that
our method does not need precise AAG® prediction, but
only an indication of whether a possible substitution is
relatively "safe" (destabilizing by at most a little bit). We
allow those residues whose predicted AAG® values are at
most a user-specified threshold, defaulting to 0.25 kcal/
mol, more than the wild-type value (i.e., the mutant is
nearly as good as, or even slightly better than, the wild-
type).

Our problem specification treats substitutions inde-
pendently of each other. While this is certainly a simplifi-
cation, as residue interactions do affect stability and
activity, it enables us to more quickly generate a number
of solutions that are optimal (or near-optimal) with
respect to epitope score. These solutions can then be sub-
jected to more expensive analyses for non-additive
effects.

Dynamic programming algorithms

Given immunogenicity and stability predictions, repre-
sented in an epitope score e and set of allowed residues
M, our goal (Problem 1) is to choose a set of mutations to
minimize the total epitope score. In order to solve this
problem by dynamic programming, let us define T [i, X]
as the best possible total epitope score for the prefix of S
ending at position i, such that the last 8 amino acids form
the string X. T can be defined recursively:

T[8,X] =0 2)

T[i, X]= min )(T[i -la-X, ;]+e(a-X)),i>8
e M(i-8

ae M(
(3)
where - represents concatenation.

Optimal substructure holds: the best score ending at
some position with some string must extend the best
score ending at the previous position with a compatible
string. Thus we can solve the recurrence by dynamic pro-
gramming. Ultimately we want to find the minimum

Page 5 of 15

value in the last column (i.e., miny77[|S|, X]), and trace
back to reconstruct the sequence. One small note of prac-
tical importance: when there is a tie for the minimum in
Eq. 3, we should of course keep the wild-type amino acid.

The calculation for each cell requires constant time,
and in the worst case there are # - 208 cells. However, in
practice we only need to fill in the entries that use allowed
substitutions; if these are reasonably conservative, the
table is much smaller. In the BLOSUM-based approach
described above, there are an average of 3.2 amino acids
to consider for each position. The Results section pro-
vides position-by-position details for a specific protein,
using BLOSUM, conservation, and FoldX.

In order to restrict the total number of substitutions
made, an additional column can be added to the dynamic
programming table. Now define R[, X, s] as the best pos-
sible total epitope score for the prefix of S ending at posi-
tion i, such that the last 8 amino acids form the string X,
and that exactly s substitutions have been made from S. R
can be defined recursively:

ds x,q = |0 15= D HM=S}

o otherwise

Ri, X, s] = rE(iI—ls)(R[i -l,a-X, 5, s—H{X[8] =S[i+7]}]
+e(a-X)),i>8 (5)

where I{} is the indicator function, returning 1 if the
predicate is true and O if it is false. Here we ensure that
the s index of R counts the total number of substitutions,
starting in the base case with the number in the N-termi-
nal 8-mer, and then in the recursive case adding 1 iff the
most C-terminal residue of X is different from the corre-

20

Il BLOSUM
[ JFamily
Il FoldX
157 ]

10; |

Number of Legal Substitutions

Ll Al

71 75 80
Sequence Position

11l
87

Figure 3 Position-specific allowed residues in SakSTAR peptide.
Number of allowed residues for each position of SakSTAR 71-87 by
BLOSUM, conservation, and FoldX.
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sponding wild-type residue. The extension only affects
the size of the table (scaled by a factor of », unless s is
restricted a priori); the cost for computing each cell
remains constant. We can readily extend this approach to
calculate an (integer) substitution score for each muta-
tion, using s to track the total substitution score rather
than the number of mutations.

While a standard dynamic programming backtrace
returns a single optimal solution, there may in fact be
multiple variants with the same score. It may also be ben-
eficial to consider near-optimal variants, as it is unlikely
that our epitope score and evaluation of mutations are
perfect, and thus near-optimal variants are worth consid-
ering. Upon finding the set of optimal and near-optimal
solutions, we can subject them to further analysis, e.g., to
model the effects of multiple substitutions, or to consider
the ease of construction. Furthermore, by comparing and
contrasting the good variants, we can better assess the
robustness of a variant (do similar substitution patterns
show up among the good ones?), as well as the general
utility of a substitution (does it show up in many good
variants?).

Table 1: SakSTAR 71-87 Peptide.
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The problem of extracting multiple optimal and near-
optimal solutions in dynamic programming has been
extensively studied, from the early days of the field [51]. It
has also received attention specifically in the bioinfor-
matics community, as dynamic programming is at the
heart of sequence alignment (among other significant
problems). For example, Waterman and Byers [52] modi-
fied the standard dynamic programming backtracing pro-
cedure to produce near-optimal solutions, Naor and
Brutlag [53] presented an alternative approach for repre-
senting (rather than enumerating) all alignments whose
score is within a factor of optimal, and Gusfield [54]
explicitly accounted for the objective function parameters
that yield different optimal solutions.

Our current implementation employs the approach
described by Waterman and Byers [52] in order to gener-
ate multiple possible variants.

Implementation

We have implemented our method in platform-indepen-
dent Java code. The program takes as input a target pro-
tein sequence, along with specifications of how to

Variant SakSTAR 71-87 E B C AAG° S
wild type TAYKEFRVVELDPSAKI 16 0 0.00 0.00 9
1 substitution
Warmerdam  ...... Avivenennns 12 1 0.75 0.43 7
BLOSUM L....... Teoeevens 8 0 -0.74 1.13 5
Conservation ~ ........ Devennnnn 5 1 0.72 1.90 3
FoldX ... Kivevonnn 9 1 0.94 0.00 5
2 substitutions
Warmerdam ~ ...... A..A....... 15 2 248 1.00 1"
BLOSUM L....... T.Feveunn 5 0 0.28 3.12 2
Conservation ~ ..... K..Devvvenno 1 2 0.51 4.14 1
FoldX ..., K....T... 5 1 243 0.18 6
3 substitutions
Warmerdam — ...... A..A.A..... 20 3 4.96 0.22 14
BLOSUM S - P A 3 0 0.45 3.73 1

Conservation ..D.K..Decuvn.n... 0 3 1.46 4.52

FoldX ...A . KoL LT 3 2 3.44 0.08 4
4 substitutions

Warmerdam ..0..5..58....8.. 15 2 437 2.12 7

BLOSsUM ..., OMA.F...... 1 0 3.91 4.66 2

Conservation n/a

FoldX ...AD...K....T... 2 2 1.50 -0.30 4

Variants of SakSTAR 71-87 by Warmerdam et al. B1919, as well as by our dynamic programming algorithm, optimizing for ProPred and
allowing mutations according to BLOSUM, conservation, or FoldX. E: number of ProPred epitopes; B, C, and AAG®: total substitution penalty
under BLOSUM, conservation, and FoldX, resp.; S: number of SMM-align epitopes.
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Figure 4 Exhaustive 2-mutation search scores for SakSTAR pep-
tide. Histogram of predicted epitope scores for all 2-mutation variants
of SakSTAR 71-87 under BLOSUM.

evaluate stability and immunogenicity. As discussed
above, the program can evaluate stability with BLOSUM,
conservation (given the family multiple sequence align-
ment and phylogenetic tree), or FoldX (given the posi-
tion-specific AAG® values output from that program),
and immunogenicity with ProPred (at a user-specified 1-
10% threshold) or SMM-align (at a user-specified 1Cy,
from 50-5000). The user must indicate which methods to
employ, along with any necessary inputs (MSA and tree,
or FoldX output) and can adjust the thresholds for
acceptable stability scores (defaults are provided as
described above). The program outputs all tied-for-opti-
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mal and near-optimal variants up to a user-specified
limit, along with stability and immunogenicity evalua-
tions of each variant according to the various predictors.
The software can be freely obtained for academic use
by request from the authors. A demonstration web-based

version is available at http://www.cs.dartmouth.edu/
~cbk/deimm/.

Results and Discussion

We demonstrate our approach by applying it to a number
of proteins that have been the object of previous deim-
munization efforts. We explore the favorable sequence
space of these proteins by evaluating epitope score under
the ProPred method at a 10% threshold, and considering
allowed residues under one of BLOSUM, conservation, or
FoldX. We then independently assess each variant under
SMM-align for epitope score and each of the other mea-
sures for stability.

In presenting stability predictions, we separately sum
the value of each metric (BLOSUM, conservation, FoldX)
over all the chosen substitutions. This enables assessment
of a plan under different and potentially complementary
measures; developing a consensus method in the future
might yield even better results. The BLOSUM score for
each substitution is either 0 (allowed) or 1 (disallowed).
The negative-log conservation score for a substitution
ranges from roughly 0.01 to 4.61 (99% to 1% weighted fre-
quency), with a maximum of roughly 3 (5% weighted fre-
quency) for allowed substitutions. For FoldX, the score
for a substitution ranges from roughly -3 to 3 (negative

8, _
6, _
[}
o
2
© 4 T
*+*
2, _
0 | | . | | .\ | . | .\ | | | . | . |
0 10 20 30 40 50 60 70 80 90 100 110 120 130
peptide starting position
Figure 5 Full-length SakSTAR variant profile. Optimized 6-substitution full-length SakSTAR variant with ProPred epitope scoring and conservation-
based substitutions. x-axis: starting position of each 9-mer; y-axis: predicted number of alleles recognizing the 9-mer. Thin black bars indicate wild-type
scores and thick orange bars indicate variant scores. Note: wild-type epitope scores are always greater than or equal to corresponding variant ones;
i.e, we never introduce new epitopes. Blue ellipses indicate mutated positions (refer to Table 2).
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implies stabilizing), with a maximum of 0.25 for allowed
substitutions.

Staphylokinase (SakSTAR)

Warmerdam et al. [19] sought to deimmunize the fibrin-
selective thrombolytic agent staphylokinase, specifically
the SakSTAR wild-type variant derived from a lysogenic
S. aureus strain. They targeted the C3 region, spanning
residues 71-87, which was recognized by 90% of the T-
cells cloned from a set of donors. Based on results from
alanine scanning mutagenesis, sets of 2-4 alanine substi-
tutions were selected to produce new variants designed
to reduce immunogenicity.

Table 2: Full-length SakSTAR.
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We applied our approach to the original wild-type 71-
87 peptide, using the Staphylokinase/Streptokinase fam-
ily (Pfam accession PF02821) for conservation statistics
and SakSTAR crystal structure (pdb id 2SAK) for FoldX
calculations. Fig. 3 shows the amount of freedom in plan-
ning, in terms of the number of allowable residues at each
position under our three evaluation methods. BLOSUM
is typically more conservative and is overall more uni-
form; conservation depends on the position-specific
diversity in the family; and FoldX allows more mutations
when analysis of the structure at hand indicates that they
would not be too destabilizing. On average, BLOSUM

Variant SakSTAR 1-136 E B C AAG° S
wild type SakSTAR 929 0 0.00 0.00 49
1 substitution
Warmerdam R77A 95 1 0.75 043 47
BLOSUM V27T 88 0 0.89 2.08 48
Conservation M26D 79 1 1.15 1.89 41
FoldX V112P 90 1 0.93 -0.03 47
2 substitutions
Warmerdam R77A,E80A 98 2 248 1.00 51
BLOSUM V27T,S84E 79 0 3.18 2.70 43
Conservation M26D,V79D 68 2 1.87 3.79 35
FoldX Y24H,V112P 82 2 1.89 0.04 43
3 substitutions
Warmerdam R77A,E80A,D82A 105 3 4.96 0.22 55
BLOSUM V27T,S84E,V112A 70 0 1.98 3.16 41
Conservation M26D,I49D,V79D 58 3 1.51 7.46 31
FoldX Y24H,V79K,V112P 75 3 2.83 0.04 39
4 substitutions
Warmerdam K74Q,R77S,E80S,D82S 103 3 5.93 1.28 52
BLOSUM V27T,V45A,S84E,V112A 63 0 2.36 3.98 42
Conservation M26D,I49D,V79D,V112K 49 4 1.28 6.72 29
FoldX Y24H,N28E,V79K,V112P 69 4 4.28 0.00 35
5 substitutions
BLOSUM V27T,V45A,S84E,V112A,K130E 58 0 3.12 541 40
Conservation M26D,I49D,V79D,V112K,F125E 41 5 1.74 12.60 25
FoldX Y24H,N28E,Y62R,V79K,V112P 63 5 4.37 0.12 33
6 substitutions
BLOSUM Vv27T,V45A,V79T,V89T,V112A,K130E 54 0 0.74 8.26 41
Conservation M26D,I49D,Y62D,V79D,V112K,F125E 34 6 1.92 13.56 23
FoldX Y24H,N28E,Y62K,V79K,S84T,V112P 58 5 5.32 0.01 34

Variants of the full SakSTAR protein by Warmerdam et al. [19], as well as by our dynamic programming algorithm, optimizing for ProPred and
allowing mutations according to BLOSUM, conservation, or FoldX. E: number of ProPred epitopes; B, C,and AAG®: total substitution penalty under
BLOSUM, conservation, and FoldX, resp.; S: number of SMM-align epitopes.
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permits 4.2 residues per position, conservation 6.4, and
FoldX 6.9. Table 1 summarizes some of our optimized
variants, one per allowed residue predicate (BLOSUM,
conservation, and FoldX). Our objective function is the
number of ProPred-predicted epitopes, so this number
naturally decreases with the number of substitutions,
though it is worth noting that each substitution actually
deletes several predicted epitopes. Furthermore, the
independent predictor SMM-align (not part of the objec-
tive function) likewise trends downward with an increas-
ing number of substitutions. Since ProPred was derived
from pocket profiles and sequence alignments, while
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SMM-align was trained on specific experimentally identi-
fied epitopes, they provide complementary assessments
of immunogenicity, and their agreement suggests that we
are indeed likely to be deleting actual epitopes. By com-
paring results for the different allowed residue predicates,
we can gain insights into how best to delete these
epitopes, from a stability-preservation viewpoint. For
example, we see that V79 was chosen for the first substi-
tution under all three approaches. With BLOSUM, the
conservative V79T was chosen; with conservation, D79
was recognized as sufficiently common in the sequence
record; and with FoldX, K79 was predicted to maintain
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Figure 6 SakSTAR peptide with ProPred 5% and 10% thresholds. Optimized SakSTAR peptide variant with ProPred epitope scoring at 5% (top)
and 10% (bottom) thresholds. x-axis: starting position of each 9-mer; y-axis: predicted number of alleles recognizing the 9-mer. Thin black bars indicate
wild-type scores and thick orange bars indicate variant scores. Note: wild-type epitope scores are always greater than or equal to corresponding vari-
ant ones; i.e, we never introduce new epitopes. The blue ellipse indicates BLOSUM-based substitution V79T.
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stability. On the other hand, the three-substitution con-
servation-based variant eliminates all epitopes (and of
course looks good from a conservation analysis), but
incurs a large AAG® penalty relative to the solutions from
the other metrics. It is worth noting that currently only
the epitope score is the objective function (though we
could readily employ a linear combination with a substi-
tution score), and the goal is to delete as many epitopes as
possible using substitutions allowed by a particular predi-
cate. Thus, for example, in order to delete more epitopes,
a conservation-based design may actually end up with a
larger conservation penalty than a BLOSUM-based
design, by using less common substitutions (but ones still
meeting the weighted 0.05% frequency threshold) that are
not allowed by BLOSUM. Further insights can be gained
by considering all tied-for-optimal variants (Additional
file 1, Table S1). For example, we can identify commonly
selected mutations, e.g., V79T and V79K, and might con-
sider variants incorporating them to be of higher quality.

Our method identifies the favorable region of the
sequence space, but a natural question is what portion of
the space is favorable. In other words, are many or most
variants likely to be good anyway? Fig. 4 shows the distri-
bution of epitope scores for all 2-mutation variants of
SakSTAR, using all acceptable mutations according to the
BLOSUM evaluation. (Of course, with larger numbers of
mutations and longer sequence, the exhaustive approach
would not be feasible.) The figure makes clear that most
variants have scores much worse than the optimal ones
designed by our approach: the median score is 16 and
only 5 of the 1338 sequences (0.37%) achieve the optimal
score of 5. Thus experiment planning techniques are
required, as stochastic methods are unlikely to produce
high-quality variants.

Our designs show dramatic reduction in predicted T-
cell epitope content (under both ProPred and SMM-
align) compared to the variants chosen by Warmerdam et
al. Their variants minimally decrease, or even introduce
new predicted T-cell epitopes, due in part to limitations
in their selection of amino acids (using only alanine for
the 2- and 3-substitution variants).

While Warmerdam et al. focused effort on the C3
region, our method is able to globally optimize an entire
protein and thereby address a weakness identified in the
earlier method: the "vast majority of humans recognize
additional immunogenic SakSTAR regions" [19]. Fig. 5
profiles a 6-mutation full-protein variant identified by
our method. Notice that even though it was not specifi-
cally targeted, the C3 immunogenic region was addressed
with substitution V79D. In addition, mutations were
selected in five other regions of high predicted immuno-
genicity. Each mutation deletes an average of 6.5 epitopes,
overlapping the substituted position and/or for different
MHC-II alleles. Furthermore (Table 2), all substitutions
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are to amino acids with weighted frequency greater than
.05 at those positions in the staphylokinase family. Table 2
and Additional file 1, Table S2 detail a number of the full-
protein variants for different numbers of mutations.
Again the SMM-align epitope evaluation correlates very
well with the optimized ProPred score, trending down-
ward with increasing numbers of substitutions. The dif-
ferent allowed residue predicates all hit the C3 region
(71-87) within the first few substitutions (again often
picking V79), but also delete epitopes in a number of
other predicted immunogenic regions (see again Fig. 5).
The designs compare favorably with the Warmerdam
designs in terms of both epitope predictors. The conser-
vation-based variants tend to be particularly aggressive in
deleting epitopes by choosing other residues represented
in the family, but sacrifice more in predicted stability
under FoldX.

ProPred Threshold

Epitope predictors employ thresholds in deciding to label
peptides as MHC-II binders or non-binders. To illustrate
our algorithm, we have employed the "loosest" ProPred
threshold of 10%, erring on the side of predicting spuri-
ous epitopes instead of on the side of missing epitopes.
We also evaluated plans for SakSTAR based on a tighter
threshold of 5%. As expected, with the 5% threshold, Pro-
Pred predicts fewer epitopes than with the 10% threshold:
SakSTAR 71-87 has 16 predicted epitopes at 10% but only
8 at 5%. At 5% our algorithm finds completely deimmu-
nized variants for the peptide within 4 substitutions
(Additional file 1, Table S3). The substitution V79T elimi-
nates 75% of the epitopes predicted in the 71-87 peptide
at the 5% threshold and 50% of those predicted at the 10%
threshold (Fig. 6). For full-length SakSTAR, both thresh-
olds predict the same regions to be immunodominant
(Fig. 5 and Additional file 1, Fig. S1). Changing the
threshold from 10% to 5% seems to evenly attenuate the
epitope signal across the protein. Of particular signifi-
cance, we note that our optimization algorithm selects
exactly the same full-length 6-substitution conservation-
based variant with the 5% threshold (Additional file 1,
Table S4) as it did for 10% (Table 2). The plan eliminates a
strikingly high proportion of epitopes, 66% at the 10%
threshold and 88% at 5%.

Allele Analysis

A detailed analysis of predicted SakSTAR epitopes by
binding allele shows that our 6-substitution conserva-
tion-based variant eliminates some of the epitopes pre-
dicted for each different allele (Figs. 7 and 8). At the
ProPred 5% threshold, our design eliminates all epitopes
predicted to bind to alleles HLA-DRB1*0101 and HLA-
DRB1*1501. Total allele elimination does not occur at the
10% threshold, although in the variant, alleles 0101 and
1501 are predicted to bind only 1 and 2 epitopes, respec-
tively. The plots further underscore the observation that
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the 5% and 10% thresholds yield similar epitope profiles
across the whole protein both by sequence and by allele.
As mentioned above, the optimal deimmunizing muta-
tions are identical for plans under both thresholds, but a
greater percentage of predicted epitopes are eliminated at
the 5% threshold. In general, it is easier to eliminate an
epitope that lies between the 5% and 10% threshold than
one that exceeds the 10% threshold. For example, in the
5% plan, the V79T mutation eliminates 3 of 4 epitopes
beginning at residue 76, but none of these four epitopes
are eliminated at the 10% threshold.

Erythropoietin (Epo)

Tangri et al. [22] focused on two regions in the protein
therapeutic erythropoietin (Epo), residues 101-115 and
136-150, which they experimentally determined to be
immunogenic during an intensive analysis of peptide
fragments spanning the entire length of the protein. They
engineered four variants targeting the anchor residues of
identified T-cell epitopes in these regions: L102P/S164D
(named G2), T107D/S146D (G3), L102G/T107D/S146D
(G4), and L102S/T107D/S146D (G5).

We applied our methods to explore the favorable
sequence space of Epo, using the Erythropoietin/throm-
bopoietin family (Pfam accession PF00758) for the con-
servation statistics and the crystal structure of human
Epo (pdb id 1EER) for the FoldX analysis. As demon-
strated above for SakSTAR, our method is not restricted
to optimizing only targeted regions, but can instead seek

to delete epitopes throughout the protein. Since both the
ProPred and SMM-align epitope predictors and Tangri et
al.'s in vitro assays showed that there are many immuno-
genic regions in Epo, we performed full-protein optimi-
zation, rather than restricting the allowed substitutions to
the 101-115 and 136-150 regions. Fig. 9 illustrates a 10-
mutation BLOSUM-based variant. The black line is an
experimentally determined immunogenicity plot from
Tangri et al. [22] and trends well with the ProPred model
of immunogenicity. Some deviations may be explained by
the difference in alleles tested (we share 6 of their alleles),
and by the fact that they analyze 15-mers at every 5 posi-
tions while we analyze 9-mers at every position. None-
theless, the correlation is quite striking, as is the ability of
our design to target most of the highly immunogenic
regions with only a small number of substitutions. Each
substitution is quite effective, deleting an average of 6.3
epitopes.

Table 3 summarizes a number of our optimized vari-
ants, as with SakSTAR listing just one for each allowed
residue predicate (see Additional file 1, Table S5 for a full
list). The first substitution made under BLOSUM and
conservation is to R110, in the 101-115 region, while that
under FoldX is to N147, in the 136-150 region, though
neither of these regions was specifically targeted. As
more substitutions are added, other predicted epitopes
are deleted, including more in those regions. Thus our
objective function, the ProPred score, continues to
decrease; the trend is roughly the same for both the Tan-
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Table 3: Full-length Epo.
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Variant Epo 1-166 E B C AAG® S
wild type Epo 136 0 0.00 0.00 74
1 substitution
BLOSUM R110Q 126 0 2.87 0.70 72
Conservation R110G 128 1 2.81 1.87 75
FoldX N147D 124 1 222 -0.33 70
2 substitutions
Tangri G2 L102P,S146D 118 1 4.97 6.06 65
Tangri G3 T107D,S146D 121 1 4.67 1.02 62
BLOSUM R110Q,S146D 119 0 4.92 0.92 65
Conservation R76A,R110G 120 2 5.48 347 76
FoldX F48D,N147D 115 2 5.07 -0.59 65
3 substitutions
Tangri G4 L102G,T107D,S146D 113 2 7.59 6.09 57
Tangri G5 L102S,T107D,S146D 115 2 7.59 4.89 58
BLOSUM R76Q,V82T,R1100Q 111 0 8.91 1.78 72
Conservation V56E,R76A,R110G 113 3 7.95 3.29 69
FoldX F48D,V82K,N147D 108 3 6.96 -1.18 63
4 substitutions
BLOSUM R76Q,V82T,R110Q,S146D 104 0 10.96 2.00 65
Conservation V56E,R76A,V82A,R110G 106 3 7.62 3.06 68
FoldX F48D,V82E,L93E,N147D 101 4 10.01 -0.87 60
5 substitutions
BLOSUM S71E,R76K,V82T,R110Q,5146D 98 0 1291 1.31 62
Conservation V56E,R76A,V82A,L91G,R110G 101 4 10.40 4.77 66
FoldX F48D,V82E,L93E,S146D,N147D 95 4 12.05 -0.65 57
10 substitutions
BLOSUM R53Q,S71D,R76K,V82T,S104D, 73 0 23.90 293 49

R1100,R143Q,5146D,R150Q,K154E

Variants of the entire Epo protein by Tangri et al. [22] as well as by our dynamic programming algorithm, optimizing for ProPred and allowing
mutations according to BLOSUM, conservation, or FoldX. £: number of ProPred epitopes; B, C, and AAG®: total substitution penalty under
BLOSUM, conservation, and FoldX, resp.; S: number of SMM-align epitopes.

gri variants and ours. In some cases the independent
SMM-align score fluctuates more than others, e.g., BLO-
SUM alternates between using S164D or not. This obser-
vation highlights the fact that some substitutions may be
particularly good for the SMM-align score but not as
important for the ProPred objective function.

As with SakSTAR, comparison of the different predi-
cates yields insights into positions and substitutions that
appear to be good in general; e.g., V82T under BLOSUM,
V82A under conservation, and V82E under FoldX, delet-
ing 7, 6, and 7 epitopes respectively. Notably, none of the
V82 mutations eliminates the epitope anchored at L80 on
allele HLA-DRB*0401. Otherwise V82T and V82A elimi-

nate all of the epitopes in the region overlapping position
82. Our global optimization recognizes diminishing
returns at this area on the protein. While adding addi-
tional mutations in the region may eliminate the final
regional epitope at L80; it is only one epitope, and muta-
tions elsewhere eliminate more epitopes.

Therapeutic Antibodies

Lazar et al. [23] introduced the concept of "human string
content,” or the percent identity between peptides
derived from a test antibody sequence and corresponding
peptides taken from a multiple sequence alignment of
homologous human antibodies. We applied our method-
ology to anti-Her2/neu antibody 4D5, the anti-EGFR



Parker et al. BMC Bioinformatics 2010, 11:180
http://www.biomedcentral.com/1471-2105/11/180

antibody 225, and the anti-EpCAM antibody 17-1A. At
the 16-substitution level, we are able to reduce epitope
score by about 70-90%; this compares favorably to the
previous work, which required more than four times that
many substitutions. See Additional file 1 for a more
detailed description of the case study and our results.

Conclusions

We have shown that dynamic programming can address
the problem of designing protein variants predicted to
have reduced immunogenicity while maintaining stabil-
ity. Our method found a number of variants that compare
favorably to those developed in previous efforts. In many
cases, our designs delete more epitopes than previous
efforts, as measured by the ProPred pocket profile
method and independently assessed with the SMM-align
method. At the same time, the capacity of our algorithm
to integrate stability analysis with deimmunization
resulted in variants predicted to maintain greater ther-
modynamic stability. We further showed our optimiza-
tion methods to be highly efficient, eliminating on
average over 6 epitopes per mutation. Finally, one of the
most powerful features of our methods is that we achieve
global deimmunization as opposed to targeted deletion of
a single epitope regardless of other immunogenic or func-
tional consequences.

The algorithm guarantees that our variants are prov-
ably optimal with respect to the epitope and stability pre-
dictors, but this does not guarantee optimal properties in
vivo. Instead, our algorithm should be viewed as a way to
suggest variants worth studying experimentally. It pro-
vides a tool for the protein designer to explore the space
of designs and focus in what appears to be a beneficial
region, according to the best available predictions.

Future experimental work will focus on selection of one
or more therapeutic targets that will be subjected to an
exhaustive optimization under several mutational loads.
Based on the resulting plans, small libraries of candidate
variants will be constructed, expressed and purified,
tested for functionality, and experimentally evaluated for
immunogenic potential. Further computational work will
develop other classes of optimization algorithms for
incorporating properties not strictly local in terms of the
primary sequence, such as residues that covary in the
sequence record or form strong interactions in the three-
dimensional structure.

Availability and requirements
Project name: DP2 dynamic programming for deimmu-
nizing proteins
Project home page: http://www.cs.dartmouth.edu/
~cbk/deimm/
Operating system(s): Platform independent
Programming language: Java

Page 14 of 15

Other requirements: Java 1.6 or higher

License: GNU GPL

Any restrictions to use by non-academics: Please
contact the authors before non-academic use.

Additional material

Additional file 1 Additional variants. The file includes additional variants
for SakSTAR 71-87, full-length SakSTAR, and full-length Epo, as well as an
additional case study for Abs 4D5, 225, and 17-1A.
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