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Abstract
Background: Artificial duplicates from pyrosequencing reads may lead to incorrect interpretation of the abundance of 
species and genes in metagenomic studies. Duplicated reads were filtered out in many metagenomic projects. 
However, since the duplicated reads observed in a pyrosequencing run also include natural (non-artificial) duplicates, 
simply removing all duplicates may also cause underestimation of abundance associated with natural duplicates.

Results: We implemented a method for identification of exact and nearly identical duplicates from pyrosequencing 
reads. This method performs an all-against-all sequence comparison and clusters the duplicates into groups using an 
algorithm modified from our previous sequence clustering method cd-hit. This method can process a typical dataset in 
~10 minutes; it also provides a consensus sequence for each group of duplicates. We applied this method to the 
underlying raw reads of 39 genomic projects and 10 metagenomic projects that utilized pyrosequencing technique. 
We compared the occurrences of the duplicates identified by our method and the natural duplicates made by 
independent simulations. We observed that the duplicates, including both artificial and natural duplicates, make up 4-
44% of reads. The number of natural duplicates highly correlates with the samples' read density (number of reads 
divided by genome size). For high-complexity metagenomic samples lacking dominant species, natural duplicates 
only make up <1% of all duplicates. But for some other samples like transcriptomic samples, majority of the observed 
duplicates might be natural duplicates.

Conclusions: Our method is available from http://cd-hit.org as a downloadable program and a web server. It is 
important not only to identify the duplicates from metagenomic datasets but also to distinguish whether they are 
artificial or natural duplicates. We provide a tool to estimate the number of natural duplicates according to user-
defined sample types, so users can decide whether to retain or remove duplicates in their projects.

Background
Metagenomics is a new field that studies the microbes
under different environmental conditions such as ocean,
soil, human distal gut, and many others [1-6]. Using cul-
ture-independent genomic sequencing technologies,
metagenomics provides a more global and less biased
view of an entire microbial community than the tradi-
tional isolated genomics. The earlier metagenomic stud-
ies were largely carried out with Sanger sequencing, but
recently, more studies [7-9] were performed with the new
breaking through next-generation sequencing technolo-
gies [10]. Today, the pyrosequencing by Roche's 454 life

science serves as a dominant sequencing platform in
metagenomics.

However, it is known that the 454 sequencers produce
artificially duplicated reads, which might lead to mislead-
ing conclusions. Exact duplicates sometimes were
removed before data analyses [7]. Recently, in the study
by Gomez-Alvarez et al [11], nearly identical duplicates,
the reads that begin at the same position but may vary in
length or bear mismatches, were also classified as arti-
facts. Exact and nearly identical duplicates may make up
11~35% of the raw reads.

In metagenomics, the amount of reads is used as an
abundance measure, so artificial duplicates will introduce
overestimation of abundance of taxon, gene, and func-
tion. Duplicated reads observed in a pyrosequencing run
include not only artificial duplicates but also natural
duplicates - reads from the same origin that start at the
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same genomic position by chance. Therefore, simply
removing all duplicates might also cause underestimation
of abundance associated with naturally duplicated reads.
The occurrence of natural duplicates can be very low for
metagenomic samples lacking dominant species [11], or
can be very high for other samples like transcriptomic
samples (results in this study). So it is important not only
to identify the duplicates, but also to distinguish whether
they are artificial or natural duplicates.

Exactly identical sequences can be easily found, but
identification of non-exact duplicates requires sophisti-
cated algorithms to process the massive sequence com-
parisons between reads. In Gomez-Alvarez et al's study
[11], the duplicates were identified by first clustering the
reads at 90% sequence identity using cd-hit program [12-
14] and then parsing the clustering results.

In this study, we first implemented a method for identi-
fication of exact and nearly identical duplicates from
pyrosequencing reads. As the original developers of cd-
hit, we reengineered cd-hit into a new program that can
process the duplicates more effectively than the original
program. This method can process a typical 454 dataset
in ~10 minutes; it also provides a consensus sequence for
each group of duplicates. Secondly, we validated this
method using the underlying raw reads from a list of
genome projects utilizing pyrosequencing technology.
We compared the occurrences of the duplicates identified
by our method and the natural duplicates made by inde-
pendent simulations. Lastly, we studied duplicates for
several metagenomic samples and estimated their natural
duplicates under different situations.

Results and discussion
Program for identification of duplicates
We implemented a computer program called cdhit-454 to
identify duplicated reads by reengineering our ultra-fast
sequence clustering algorithm cd-hit [12-14]. The algo-
rithm and other details of cdhit-454 are introduced in the
Methods section. Briefly, we constrained cdhit-454 to
find exact duplicates and nearly identical duplicates that
start at the same position and are within the user-defined
level of mismatches (insertions, deletions, and substitu-
tions). We allow mismatches in order to tolerate sequenc-
ing errors. The default parameters of mismatches are
based on the pyrosequencing error model derived in this
study. We provide a tool in cdhit-454 to build a consensus
sequence for each group of duplicates. The model used
for consensus generation is also described in the Methods
section. Cdhit-454 software and web server are available
at http://cd-hit.org/.

Duplicated reads of genomic datasets
We tested and validated cdhit-454 with data from pyrose-
quencing-based genome projects where both the com-

plete genomes and the underlying raw reads are available
from NCBI at RefSeq and Short Read Archive (SRA). For
a project with multiple sequencing runs, only the run
with the most reads was selected. We identified 39 such
genome projects on September 2009, with 15 from GS-20
and 24 from GS-FLX platform (including 1 GS-FLX Tita-
nium). The details of the 39 projects, including their proj-
ect identifiers, SRA accession numbers, genome sizes,
GC contents, and other calculated results, are summa-
rized in Table 1.

For each genome project, we applied cdhit-454 on the
raw reads to identify the duplicates, which include both
artificial and natural duplicates. The number of natural
duplicates was empirically estimated by applying cdhit-
454 on simulated reads, which are fragments randomly
cut from the complete genomes.

A simulated reads set and the experimental raw reads
set in each genome project have the exactly the same
number of sequences of exactly the same lengths. We
generated 1000 sets of simulated reads for each genome
project and selected 100 sets that are most similar to its
corresponding raw reads in GC content. We further
introduced sequencing errors (insertions, deletions, and
substitutions) to the simulated reads according to the
error model derived in this study (Table 2, 3). These pro-
cesses made the simulated read sets as similar as possible
to the real reads set, except that the former only contains
natural duplicates. Using cdhit-454, we identified the
duplicates for the 100 sets of simulated reads of each
project and calculated the average duplicate ratio and the
standard deviations. Figure 1 shows the ratio of all dupli-
cates and the average natural duplicates for these 39 proj-
ects. The results and the standard deviations are also
available in Table 1.

As illustrated in Figure 1, the duplicates make up to 4-
44% of reads. We observed that the ratio of natural dupli-
cates, which ranges from 1-11%, highly correlates with
the read density (number of reads divided by genome
size) with a Pearson correlation factor of 0.99. The ratio
of artificial duplicates (subtract natural duplicates from
all duplicates) varies from 3-42%. On average, artificial
duplicates make up 74% of all duplicates, and this per-
centage varies from 28% to 98% (first left and second
right projects in Figure 1). Artificial duplicates happen
randomly without observed correlation with the sample's
GC content, genome size, or platform (GS-20 or GS-
FLX).

Here, we define the sensitivity and specificity for the
evaluation of duplicate identification. Within the simu-
lated datasets, the reads that start at the same position are
considered as true duplicates. The sensitivity of a method
is the ratio of predicted true duplicates by this method to
all true duplicates. The specificity is the ratio of predicted
true duplicates to all predictions by this method. The
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.4644 13.585 5.032 (0.030)

.3175 17.751 4.999 (0.022)

.2641 9.938 4.464 (0.034)

.2609 12.120 4.418 (0.026)

.2120 26.027 4.293 (0.030)
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Table 1: Genome projects with full genomes from Refseq and pyrosequencing reads from Short Read Archive

IDa SRA
Studya

SRA
Runa

Platform Genome Genome
size (Mbp)

GC
(%)

Number
reads De

20067 SRP000091 SRR000351 GS_20 NC_010741 1.13946 52 529181 0

20739 SRP000868 SRR017616 GS_FLX NC_013170 1.61780 50 513712 0

29525 SRP000571 SRR013433 GS_FLX NC_013124 2.15816 68 570098 0

19265 SRP000036 SRR000223 GS_20 NC_010085 1.64526 34 429372 0

19981 SRP000204 SRR001584 GS_20 NC_010830 1.88436 35 399515 0

20655 SRP000207 SRR001568 GS_20 NC_012803 2.50109 72 528437 0

20833 SRP000867 SRR017612 GS_FLXe NC_013174 2.74965 58 574027 0

18819 SRP000035 SRR000219 GS_20 NC_009637 1.77269 33 332809 0

29443 SRP000895 SRR017790 GS_FLX NC_013166 2.85207 43 529344 0

29419 SRP000560 SRR013388 GS_FLX NC_012785 2.30212 41 416146 0

19543 SRP000205 SRR001565 GS_20 NC_010483 1.87769 46 321938 0

29381 SRP000558 SRR013382 GS_FLX NC_011832 2.92292 55 461295 0

29403 SRP000584 SRR013477 GS_FLX NC_013162 2.61292 39 400460 0

29177 SRP000442 SRR007446 GS_FLX NC_011901 3.46455 65 438386 0

29493 SRP000569 SRR013431 GS_FLX NC_011883 2.87344 58 362855 0

29175 SRP000928 SRR018125 GS_FLX NC_011661 1.85556 33 225795 0
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31289 SRP000919 SRR018042 GS_FLX NC_012917 4.86291 51 517593 0

20635 SRP000049 SRR000266 GS_20 NC_011666 4.30543 63 401125 0

31295 SRP000921 SRR018051 GS_FLX NC_012912 4.81385 54 441287 0

29527 SRP000893 SRR017783 GS_FLX NC_013173 3.94266 58 352814 0

20039 SRP000209 SRR001574 GS_FLXf NC_010524 4.90940 68 422674 0

19701 SRP000046 SRR000255 GS_20 NC_010644 1.64356 39 136514 0

19743 SRP000045 SRR000254 GS_20 NC_011145 5.06163 74 409136 0

20095 SRP000054 SRR000278 GS_20 NC_011891 5.02933 74 404796 0

30681 SRP000922 SRR018054 GS_FLX NC_012947 4.57094 50 367491 0

21119 SRP000208 SRR001573 GS_FLXf NC_012032 5.26895 56 392222 0

18637 SRP000034 SRR000215 GS_20 NC_010172 5.47115 68 395973 0

20167 SRP000053 SRR000277 GS_20 NC_011004 5.74404 64 413261 0

19989 SRP000211 SRR001579 GS_20 NC_010571 5.95761 65 378824 0

19449 SRP000043 SRR000248 GS_20 NC_011768 6.51707 54 395672 0

33873 SRP000554 SRR013372 GS_FLX NC_012691 3.47129 49 191873 0

27951 SRP000587 SRR013487 GS_FLX NC_013132 9.12735 45 496792 0

20827 SRP000582 SRR013470 GS_FLX NC_012669 4.66918 73 246279 0

33069 SRP000920 SRR018045 GS_FLX NC_012880 4.67945 55 226208 0

Table 1: Genome projects with full genomes from Refseq and pyrosequencing reads from Short Read Archive (Con
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29975 SRP000443 S 3.79657 66 161655 0.0425 9.938 4.464 (0.034)

17265 SRP000067 S 1.89572 32 28221 0.0148 12.120 4.418 (0.026)

20729 SRP000267 S 4.74581 60 22822 0.0048 26.027 4.293 (0.030)
aProject IDs, SRA study accessions d Archive at http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi.
bRead Density is the number of re
dσ is the standard deviation, whic he "Duplicated reads of genomic datasets" section).
eThe platform provided by SRA is GS_FLX Titanium.
fThe platform provided by SRA is G S_FLX.

Table 1: Genome projects with ncing reads from Short Read Archive (Continued)
RR013137 GS_FLX NC_011992

RR000311 GS_20 NC_008369

RR004103 GS_FLX NC_012918

, and SRA run accessions are from NCBI Short Rea
ads divided by the genome length.
h is based on the results of 100 simulations (see t
GS_FLX, and the read length (~400 bp) suggests 

S_20, but the read length (~200 bp) suggests G

 full genomes from Refseq and pyroseque

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi
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averaged sensitivity and specificity for the 39 datasets are
both ~98.0% using the default parameters of cdhit-454.

Pyrosequencing errors
The original 454 publication reported an error rate at
~4% [15]. But later studies yielded much higher accuracy.
For example, Huse et al. concluded an error rate at ~0.5%

for GS20 system [16]. Quinlan et al. provided a similar
error rate at about ~0.4% [17].

Accurate estimation of the pyrosequencing error rate is
very important for this study, because we use the error
rate to optimize the parameters for cdhit-454 program to
identify the duplicated reads with sequencing errors. The
error model is also used to guide the generation of

Figure 1 Ratio of all duplicates and average natural duplicates to all reads from genome projects. X-axis is project identifier of datasets, which 
are ordered by decreasing read density (number of reads divided by genome size). Y-axis is the ratio of duplicated reads to all reads.

Table 2: pyrosequencing error rate of GS-20 platform

Percentage by error types (%)

Project IDa Error Rateb Insertion Deletion Substitution

17265 0.00774 27.06 17.28 55.67

18637 0.00250 60.94 22.24 16.82

18819 0.01194 36.91 19.62 43.47

19265 0.00893 41.32 14.51 44.18

19449 0.00569 38.98 20.23 40.79

19543 0.00522 49.07 18.97 31.96

19701 0.01097 32.89 17.93 49.18

19743 0.00287 57.51 28.29 14.21

19981 0.00530 28.85 17.73 53.42

19989 0.00216 54.29 22.33 23.38

20067 0.00679 46.67 12.15 41.19

20095 0.00216 50.48 28.75 20.77

20167 0.00157 53.65 26.70 19.65

20635 0.00231 57.82 18.25 23.93

20655 0.00211 51.31 29.94 18.75

Average 0.00522 45.85 20.99 33.16

aProject ID is the same as in Table 1.
bError rate is calculated for aligned reads as the number of errors (insertion, deletion, and substitution) divided by the number of bases of 
reads.
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sequencing errors in the simulated datasets in above
analysis. Therefore, we re-evaluated the pyrosequencing
error rate using the data from Table 1.

We used Megablast [18] with the default parameters to
align the raw reads back to the corresponding reference
genomes. Only the reads with at least 90% of the length
aligned were selected to calculate the error rates. Other
reads were treated as from contamination material, and
therefore discarded. The error rates and fractions by
error types (insertion, deletion, and substitution) for all
projects are shown in Table 2 for GS-20 and Table 3 for
GS-FLX.

We found that the error rate (number of errors divided
by total bases) for pyrosequencing is from 0.4% to 0.5%.
About 75% of the reads have no error; and about another

20% of the reads have ≤ 2% errors. If the sequencing error
rate is 2%, two reads may have up to 4% mismatches. We
set the default mismatch cutoff at 4% for cdhit-454 so that
about 95% of reads can be covered. We examined several
mismatch cutoffs from 95% to 98% on the simulated data-
sets; the 96% cutoff gave the best sensitivity and specific-
ity. The mismatch cutoff parameter in cdhit-454 is a user-
configurable parameter. If the low-quality reads are
already filtered out, a higher cutoff such as 98% may be
used.

Duplicated reads of metagenomic datasets
We studied the pyrosequencing reads for 10 metage-
nomic datasets (Table 4) of different environments from
NCBI SRA or from CAMERA metagenomic project

Table 3: pyrosequencing error rate of GS-GLX platform

Percentage by error types (%)

Project IDa Error Rateb Insertion Deletion Substitution

20039 0.00196 51.35 26.49 22.16

21119 0.00360 60.85 22.18 16.97

19705 0.00189 53.24 31.03 15.73

20729 0.00413 19.49 23.86 56.65

20739 0.00244 55.33 24.00 20.66

20827 0.00122 46.32 32.48 21.20

20833 0.00540 53.55 37.38 9.07

27731 0.00280 34.28 19.11 46.61

27951 0.00377 42.11 14.75 43.14

29175 0.00909 40.33 16.96 42.72

29177 0.00645 68.49 16.74 14.76

29381 0.00607 59.57 17.15 23.29

29403 0.01035 58.48 19.48 22.04

29419 0.00689 39.99 17.75 42.26

29443 0.00396 39.97 16.41 43.62

29493 0.00741 46.69 17.81 35.50

29525 0.00196 55.62 28.66 15.72

29527 0.00613 57.44 21.91 20.66

29975 0.00391 57.17 19.47 23.36

30681 0.00605 60.41 20.04 19.55

31289 0.00389 53.18 17.61 29.21

31295 0.00444 58.20 15.56 26.24

33069 0.00508 60.19 18.06 21.76

33873 0.00540 63.31 16.22 20.47

Average 0.00476 51.48 21.30 27.22

aProject ID is same as in Table 1.
bError rate is calculated for aligned reads as the number of errors (insertion, deletion, and substitution) divided by the number of bases of 
reads.
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http://camera.calit2.net. We identified their duplicates
with cdhit-454 (Figure 2). The duplicates make up 5-23%
of reads. As concluded earlier in this study, the quantity
of natural duplicates of metagenomic samples depends
on the read density of their individual species, and there-
fore can vary significantly. Since the exact species compo-
sition and genome sequences are unknown for
metagenomic samples, we could not calculate the amount
of natural duplicates as we did for the genome projects.
So, we simulated the occurrence of natural duplicates
under several hypothetical sample types.

Metagenomic samples are roughly grouped into low-,
moderate-, and high-complexity samples, which repre-
sent samples dominated by a single near-clonal popula-
tion, samples with more than one dominant species, and
those lacking dominant populations respectively[19]. We
constructed 6 hypothetical sample types: M-3 mb, M-100
kb, M-10 kb, H-3 mb, H-100 kb, and H-10 kb; here the
name of a sample type starts with M or H (for moderate-
or high-complexity) followed by the average genome size.
Therefore, M-3 mb represents a moderate-complexity

microbial sample with 3 MB genomes; and H-10 kb may
represent a high-complexity small viral sample. We
assumed that each hypothetical sample contained 100
different genomes of certain length. Given a set of reads,
in order to calculate the natural duplicates under a high-
complexity hypothetical sample type, we assigned these
reads to the 100 genomes randomly at arbitrary positions
on either strand. For a moderate-complexity type, 50% of
the reads were randomly assigned to 3 dominant
genomes, and other reads were randomly mapped to the
remaining 97 low-abundance genomes. The natural
duplicates were identified by comparing the mapping
coordinates. We applied this method to the 10 metage-
nomic datasets to calculate the ratio of their natural
duplicates under different hypothetical sample types (Fig-
ure 2 and Table 4).

From Figure 2, we can see that if these metagenomic
samples match H-3 mb, M-3 mb, and H-100 kb, their nat-
ural duplicates only make up 0.2%, 1.5%, and 7.4% of all
duplicates on average; so it is appropriate to filter out the
duplicates. However, if a metagenomic sample matches

Figure 2 Ratio of all duplicates and natural duplicates under different hypothetical types for metagenomic samples. X-axis is the name or 
project identifier of metagenomic samples. For the real metagenomic dataset, the duplicates include both artificial and natural duplicates. For other 
hypothetical sample types, the duplicates are natural duplicates.

http://camera.calit2.net
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Table 4: Metagenomic datasets used in this study

% of natural duplicates under
hypothetical sample types

High-complexityb Moderate-complexityc

Project/Samplea Environment Platform Number
Reads

% of total
Duplicates

3 mb 100 kb 10 kb 3 mb 100 kb 10 kb

16339/SRR000905 Marine GS_20 208633 5.74 0.01 0.52 4.98 0.10 3.22 24.88

28969/SRR000674 Coastal water GS_FLX 201671 17.65 0.02 0.51 4.87 0.10 3.13 24.27

29421/SRR001308 Waste water GS_FLX 378601 12.39 0.03 0.93 8.94 0.20 5.65 37.09

30445/SRR001663 Marine GS_FLX 369811 15.39 0.03 0.93 8.68 0.19 5.49 36.53

30563/SRR001669 Human gut GS_20 41649 7.26 0.00 0.11 1.00 0.03 0.65 6.16

33243/SRR006907 Freshwater GS_FLX 255722 20.57 0.02 0.61 6.07 0.13 3.88 28.71

38721/SRR023845 Phyllosphere GS_FLX 543285 11.17 0.05 1.33 12.41 0.29 7.93 45.07

Western channel/
Apr_Day_gDNA

Saline water Titanium 421004 23.38 0.04 1.04 9.80 0.20 6.23 39.42

Ocean viruses/
Arctic_Shotgun

Ocean viruses GS_20 688590 7.14 0.05 1.67 15.46 0.36 9.86 50.15

North Atlantic/
BATS-174-2

Ocean gyre GS_20 288735 17.56 0.02 0.73 6.92 0.16 4.43 31.24

aDatasets are either from NCBI Short Read Archive with project IDs and run accession numbers at http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi 
or from CAMERA with project and sample names at http://camera.calit2.net.
bHigh-, cmoderate-complexity microbial (or viral) environment with average genome length of 3 mb, 100 kb, and 10 kb

other types, the number of anticipated natural duplicates
may be similar or even larger than the artificial dupli-
cates.

Here, we want to discuss a particular type of samples -
metatranscriptomic samples. Similar to metagenomics,
metatranscriptomics is a field that studies the microbial
gene expression via sequencing of the total RNAs
extracted directly from environments. Recent metatran-
scriptomic studies [8,20,21] were performed with pyrose-
quencing. Since most microbial transcript sequences are
only 102~104 bases in length and one transcript can have
many copies in a cell, so the read density of metatran-
scriptomic samples is several orders of magnitude higher
than the read density of metagenomic samples. It is
expected that metatranscriptomic samples have high
occurrence of natural duplicates. For example, 61% of
reads in the mRNA samples from [21] are found as dupli-
cates by cdhit-454; it is reasonable to believe most of
them are natural duplicates and therefore should be kept
for abundance analysis.

Conclusions
In this study, we present an effective method to identify
exact and nearly identical duplicated sequences from

pyrosequencing reads. But since the identified duplicates
contain natural duplicates, it is important to estimate the
proportion of natural duplicates. In the cdhit-454 pack-
age, we provide a tool to estimate the number of natural
duplicates under any hypothetical sample type defined by
users, so users can decide whether to retain or remove
duplicates in their projects.

Methods
Algorithm of cdhit-454
In cdhit-454, we use the original clustering algorithm of
cd-hit [12-14]. Briefly, reads are first sorted in decreasing
length. The longest one becomes the seed of the first
cluster. Then, each remaining sequence is compared to
the seeds of all existing clusters. If the similarities with
existing seeds meet pre-defined criteria, it is grouped into
the most similar cluster. Otherwise, a new cluster is
defined with the sequence as the seed. The pre-defined
criteria includes: (1) they start at the same position; (2)
their lengths can be different, but shorter one must be
fully aligned with the longer one (the seed); (3) they can
only have 4% mismatches (insertion, deletion, and substi-
tution); and (4) only 1 base is allowed per insertion or
deletion. Here, (3) and (4) are set according to the pyrose-

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi
http://camera.calit2.net
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quencing error rate derived in this study (Result and dis-
cussion) and can be adjusted by users.

Generate consensus
We provide a program to build a consensus sequence for
each group of duplicates. This tool takes the output of
cdhit-454 and original FASTA or FASTQ file. It builds a
multiple sequence alignment for each group of duplicates
with program ClustalW[22], then generate consensus
based on following model:

If a FASTA file is used, the most frequent symbol in
each column of the alignment is used as the consensus,
and then symbols representing gaps are removed from
the consensus sequence. If a FASTQ file is used, the qual-
ity score for each base is converted into its error probabil-
ity to improve the consensus generation.

In a column of a multiple alignment, the count for gaps
is calculated as the real count, while the counts for letters
{'A','C','G','T'} are "corrected" by the error probabilities,
with contribution from letter 'N' which is not counted for
itself. Suppose there are M letters in one position of a M-
sequence alignment: b(i)  {'A', 'C', 'G', 'T'}, i = 1, ..., M ,
with quality scores si and error probabilities pi, where,

The count c(α) for α  {'A', 'C', 'G', 'T'} is calculated as,

where δ(x, y) is a function that takes value one when x
equals to y, and take zero otherwise. Namely, if the bi is α,
a fraction count of 1-pi is added for letter α, and a fraction
count of pi is equally distributed on the other letters
among {'A', 'C', 'G', 'T'}, which reflects the nature of the
error probability.

Then for each column, if there is a dominant letter or
gap with frequency equal to or greater than 0.5, this dom-
inant symbol is used in that column in the consensus,
otherwise letter 'N' is used, and then symbols represent-
ing gaps are removed from the consensus sequence.

Estimate natural duplicates in hypothetical metagenomic 
samples
We provide a program to estimate the number of natural
duplicates under any hypothetical sample type. A user
provides the number of reads and the size and abundance
of genomes in a hypothetical sample. Our tool gives the
number of simulated natural duplicates.
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