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Abstract
Background: With the rapid development of new genetic measurement methods, several types of genetic alterations 
can be quantified in a high-throughput manner. While the initial focus has been on investigating each data set 
separately, there is an increasing interest in studying the correlation structure between two or more data sets. 
Multivariate methods based on Canonical Correlation Analysis (CCA) have been proposed for integrating paired 
genetic data sets. The high dimensionality of microarray data imposes computational difficulties, which have been 
addressed for instance by studying the covariance structure of the data, or by reducing the number of variables prior to 
applying the CCA. In this work, we propose a new method for analyzing high-dimensional paired genetic data sets, 
which mainly emphasizes the correlation structure and still permits efficient application to very large data sets. The 
method is implemented by translating a regularized CCA to its dual form, where the computational complexity 
depends mainly on the number of samples instead of the number of variables. The optimal regularization parameters 
are chosen by cross-validation. We apply the regularized dual CCA, as well as a classical CCA preceded by a dimension-
reducing Principal Components Analysis (PCA), to a paired data set of gene expression changes and copy number 
alterations in leukemia.

Results: Using the correlation-maximizing methods, regularized dual CCA and PCA+CCA, we show that without pre-
selection of known disease-relevant genes, and without using information about clinical class membership, an 
exploratory analysis singles out two patient groups, corresponding to well-known leukemia subtypes. Furthermore, the 
variables showing the highest relevance to the extracted features agree with previous biological knowledge 
concerning copy number alterations and gene expression changes in these subtypes. Finally, the correlation-
maximizing methods are shown to yield results which are more biologically interpretable than those resulting from a 
covariance-maximizing method, and provide different insight compared to when each variable set is studied 
separately using PCA.

Conclusions: We conclude that regularized dual CCA as well as PCA+CCA are useful methods for exploratory analysis 
of paired genetic data sets, and can be efficiently implemented also when the number of variables is very large.

Background
The abnormal behavior of cancer cells is in many cases
caused by somatically acquired genetic alterations. Sev-
eral types of genetic changes, such as fusion genes, muta-
tions, copy number changes and abnormal methylation
patterns, have been observed in malignant cells [1-4]. In
most cases the alterations lead, either directly or indi-

rectly, to changes in gene expression. The rapid develop-
ment of oligonucleotide-based array platforms has
enabled robust high resolution measurements of genetic
alterations as well as gene expression. The initial focus
has been on using the data from these methods sepa-
rately, but there is an increasing interest in integrating
different types of array-data generated from the same set
of samples, e.g. by searching for correlated patterns in the
two data sets. Mathematically, this aim can be formulated
as finding the weighted linear combinations of variables
from each of the two variable sets that show the highest
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correlation. The situation is complicated by the high
dimensionality of microarray data sets, rendering the
application of many classical statistical methods unfeasi-
ble.

The aim of this paper is to describe two methods for
multivariate integrative analysis of paired data, based on
Canonical Correlation Analysis (CCA [5]). Both methods
put the main emphasis on the correlation structure of the
data, and can be efficiently implemented also for data sets
with a very large number of variables. First, we propose a
new multivariate integrative method based on a regular-
ized CCA, which is translated to its dual formulation to
permit a computationally efficient implementation also
when the number of variables is extremely large. Second,
we describe the application of a classical CCA preceded
by dimension reduction by Principal Components Analy-
sis (PCA [6]). We evaluate the methods by applying them
to a large paired data set consisting of copy number and
gene expression measurements from 173 leukemia
patients. Here we show that, without imposing prior
knowledge, we are able to extract information which
agrees well with previous knowledge of leukemia and
extends beyond the results found when each variable set
is analyzed separately with PCA. Furthermore we illus-
trate the advantage of emphasizing the correlation struc-
ture, as opposed to the covariance structure, of the data
set.

CCA is a generalization of multivariate linear regres-
sion to the situation where there are more than one
response variable. In its classical formulation CCA
extracts a pair of features, each being a linear combina-
tion of the variables from one variable set, such that the
correlation between the features is maximized. The clas-
sical formulation of CCA requires invertibility of the
sample covariance matrices, making it impossible to
apply e.g. to data sets where the number of variables
exceeds the number of samples. Moreover it can be
severely confounded by collinearities among the vari-
ables. To overcome this limitation Vinod [7] proposed a
ridge regularized CCA where a multiple of the identity
matrix was added to each of the covariance matrices. In
regularized CCA, the criterion that is maximized by the
extracted features is a penalized correlation, and more
emphasis is put on extracting features explaining a large
fraction of the variance in the respective variable sets.
Full regularization, i.e. replacing the covariance matrices
of the variable sets by identity matrices, discards the
internal relations between the variables and yields Partial
Least Squares regression (PLS [8]), which returns feature
pairs with maximal covariance. PLS is computationally
stable, even in cases where there are many or collinear
variables, but the emphasis on covariance rather than
correlation may lead to the extraction of feature pairs
explaining a large fraction of the variance in each individ-

ual variable set, but only a small fraction of the correla-
tion between them.

Several authors have addressed the integration of
paired genetic data sets by posing specific questions, e.g.
whether there are genes that are differentially expressed
in samples possessing a certain copy number alteration,
compared to samples without the alteration [9]. Thereby
these authors adopt a "sequential" approach, in which one
of the variable sets is used to stratify the study popula-
tion, whereafter the other data set is analyzed in relation
to this stratification [9-14]. Regression analyses, evaluat-
ing how the expression of each gene is affected by other
types of genetic changes, have also been proposed
[15,16], as well as studying all pairwise correlations
between expression levels and copy numbers within a
small set of known cancer-relevant genes [17]. Monni and
Tadesse [18] considered a stochastic partitioning algo-
rithm to identify subsets of co-regulated genes as well as
subsets of predictor variables showing a similar influence
on these genes. Different types of multivariate CCA- and
PLS-based analysis methods have been proposed and
applied for exploratory analysis and integration of genetic
data sets. González et al. [19] applied the regularized
CCA introduced by Vinod [7] to a paired nutrigenomic
data set and a multidrug resistance data set. Moreover,
several integrative CCA- and PLS-based methods impos-
ing a sparse structure of the resulting feature vectors have
been described [20-23]. CCA-based methods are sym-
metric in the two variable sets and the main objective is
to find correlated features. This is in contrast to regres-
sion-based methods where the variables in one set are
seen as predictors of those in the other set.

The regularized dual CCA described in this paper
includes a ridge penalty on the covariance matrices. In
this aspect it is similar to the method proposed by
González et al. [19,24]. When the number of variables
becomes very large solving the problem in the original
formulation, as was done by González et al. [19,24],
becomes computationally unfeasible. By translating the
problem to its dual formulation where the computational
complexity mainly depends on the number of samples,
we achieve an efficient implementation also for very large
data sets. Moreover, since the method proposed here is
based on the dual formulation of CCA it can easily be
transformed to search for nonlinear relationships by the
kernel trick [25]. We keep the main emphasis on search-
ing for correlated features also in the large data set con-
text, which is one of the main differences compared to the
sparse CCA-based methods [20-22], where full regular-
ization of the CCA (i.e. replacement of the covariance
matrices by identity matrices) is proposed to make com-
putations feasible. The method proposed by Lê Cao et al.
[23] is based on PLS and hence also covariance-maximiz-
ing. Focusing on correlation rather than covariance can
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be an advantage when the correlated features from the
two variable sets do not contribute a large proportion of
the variance. The features extracted by the regularized
dual CCA will not be sparse, and penalties enforcing
sparsity, such as LASSO constraints [26] or elastic net
constraints [27], are not easily translated to the dual for-
mulation. However, the features extracted by CCA are
not in general used to interpret the biological relevance of
the result since they are sensitive to collinearities [28].
Instead we interpret our results and receive a relevance
ranking of the variables by the correlations between each
variable and the extracted features.

Another approach towards constructing a multivariate
integrative method keeping the emphasis on the correla-
tion structure while being applicable to very large data
sets is to use a classical CCA preceded by dimension
reduction by PCA (discussed e.g. by Muller [29]). This is
intuitively appealing since the PCA reduces the dimen-
sion in such a way that as much as possible of the variance
is retained and returns uncorrelated features which can
be imputed into the classical CCA. Furthermore, since
both PCA and CCA can be expressed in a dual form, also
the PCA+CCA can be efficiently implemented for large
data sets, and by the kernel trick it can be generalized to
search for various types of nonlinear relationships.

Results
We apply regularized dual CCA and PCA+CCA to a
paired data set of gene expression and SNP copy number
measurements in 173 leukemia patients, representing ten
different leukemia subtypes. The results are analyzed first
by the relevance of the gene expression and copy number
variables to the extracted features, and second by the rep-
resentation of the samples in the space of the extracted
features. Since the extracted features in this paper are
used mainly for visualization, we consider only the first
two pairs of features from each method. If the features are
to be used for a more extensive interpretation, a careful
choice on the dimension must be made, which in itself is
a non-trivial matter.

We begin by splitting the data set into a tuning set and a
validation set. The tuning set is used to estimate optimal
regularization parameters and extract features, and the
validation set is used only for visualization of the results
and assessment of the generalization ability of the
extracted features. The tuning set consists of two thirds
of the samples, to provide a large enough basis for extrac-
tion of generalizable features, and the validation set con-
sists of the remaining one third of the samples. The
proportion of samples with a specific leukemia subtype is
chosen to be similar in the two sets, otherwise the parti-
tion is random. The optimal regularization parameters
for the regularized CCA are estimated using cross-valida-
tion on the tuning set. Using the optimal regularization

parameters, we then extract the first two pairs of canoni-
cal features from the tuning set, and interpret their bio-
logical content using the cross-loadings of all variables
with them. Finally, the extracted features are applied to
the tuning set as well as the validation set, yielding two-
dimensional representations of the samples. From these,
we can extract groups of samples which are characterized
by the extracted features, and assess the generalization
ability of the features to the validation set. We compare
the results from the optimally regularized dual CCA and
PCA+CCA to those obtained by fully regularized dual
CCA, un-regularized dual CCA, a sparse CCA method
[21] and separate PCA of each variable set. For all meth-
ods, the features are extracted from the tuning set and
applied to both the tuning and validation set. The low-
dimensional representations of the validation set are
shown in the paper, and the representations of the tuning
set are given as Additional file 1: Supplementary Figures
1, 2, 3 and 4.

Determination of optimal regularization parameters
The optimal regularization parameters for the two vari-
able sets in the regularized dual CCA are considered to be
those maximizing the generalization ability of the first
extracted feature pair, which we define as the canonical
correlation obtained when the extracted feature pair is
applied to a test set. We use a 3-fold cross-validation
strategy to estimate this canonical correlation (denoted

) from the tuning set, following partly the method
introduced by Leurgans et al. [30], and subsequently
applied by González et al. [19,24]. Figure 1 shows the

value of  for different combinations of regularization
parameters τx (for the copy number data) and τy (for the

gene expression data). The largest value,  = 0.877, is
attained for τx = 0.9, τy = 0.3. Apparently, the copy number
data need more regularization than the gene expression
data, which could be anticipated since many copy num-
ber variables are highly correlated.

Figure 1 also shows clearly that neither a model with no
regularization (τx = τy = 0) nor a model with full regular-
ization (τx = τy = 1) yield a high correlation when the
extracted features are applied to the test data. The unreg-
ularized model extracts spurious features which are very
specific to the training data, while the fully regularized
model extracts features with high variance, but only mod-
erate correlation. As can be seen in Figure 1, there are
several choices of regularization parameters resulting in a
model with a high generalization ability but clearly,
choosing the gene expression regularization parameter
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larger than the copy number regularization parameter
does not give generalizable features.

To estimate the generalization ability that could be
expected for features extracted from paired data without
any truly related components, we permute the samples in
the gene expression matrix of the tuning data. We then
run the 3-fold cross-validation to estimate the generaliza-
tion ability of the features extracted with the regulariza-
tion parameters fixed to the optimal values determined

above. The mean value ± SD for  across 50 instances

with permuted data is  = 0.138 ± 0.074, indicat-
ing that the extracted features in this case are very spe-
cific to the training set which they were extracted from,

and not generalizable. Comparing  to , we
conclude that the first feature pair extracted from the
original data is indeed likely to represent a true linear
relationship between the gene expression and copy num-
ber data.

Since the regularization parameters are determined
based only on the first pair of extracted features, we esti-
mate the generalization ability also for the second pair of
features, with the regularization parameters fixed at τx =
0.9, τy = 0.3. The same 3-fold cross-validation strategy is

applied to the tuning data, giving  = 0.574. The cor-
responding value for permuted data (mean ± SD) is

 = 0.128 ± 0.059. Hence, also the second pair of
features from the regularized dual CCA can be expected
to encode a true linear relationship between the two vari-
able sets.

For the PCA+CCA, we extract twelve principal compo-
nents, independently from each variable set, to use as
variables in a classical CCA. This choice is motivated by
an intention to keep the number of variables for the CCA
low, while still extracting enough information from each
of the variable sets. The first twelve principal compo-
nents explain 52% of the variance in the copy number
data set, and 58% of the variance in the gene expression
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Figure 1 Choosing the optimal regularization parameters. Figure showing the estimated generalization ability of the first pair of extracted fea-
tures from regularized dual CCA, for different combinations of regularization parameters τx (regularization parameter for the copy number variables) 
and τy (regularization parameter for the gene expression variables). The generalization ability is estimated as the correlation between the projection 

of a test set onto the first pair of features extracted from a training set, averaged over three cross-validation folds. The highest value,  = 0.877 is 

attained for τx = 0.9 and τy = 0.3.
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data set, and the scree plots are almost flat (data not
shown), indicating that the rest of the components mostly
contain noise. Applying the 3-fold cross-validation strat-
egy to test the generalization ability of the first two pairs

of PCA+CCA features returns the estimates  = 0.874

and  = 0.743 of the test set canonical correlations.
The corresponding values across 50 instances with per-

muted data matrix (mean ± SD) are  = 0.126 ±

0.063 and  = 0.130 ± 0.056. Hence, we expect
also the first two PCA+CCA feature pairs to encode true
linear relationships.

Relevance of the variables
Given that the first two pairs of features from both regu-
larized dual CCA and PCA+CCA are expected to encode
true linear relationships between the copy number and
gene expression variables, we interpret the biological
content in these by computing the cross-loadings for each
variable with the extracted features, based on the tuning
samples. The cross-loadings for the copy number and
gene expression variables, ordered along the genome, are
shown in Figures 2 and 3, respectively. A visualization of
the gene expression probe sets which are most relevant
(i.e. have the highest cross-loadings) to the two extracted
features are shown in Figure 4. Furthermore, lists of the
150 gene expression probe sets showing the highest
cross-loadings with each of the two features are available
in Additional file 2 and Additional file 3. As can be seen
in Figures 2, 3 and 4, many of the most relevant genes
(although not all) as well as the overall copy number pro-
files are shared between the features extracted using the
two methods. This indicates a certain robustness of the
underlying patterns and strengthens the interpretation
that the results are biologically relevant. Indeed, of the
150 probe sets found to have the highest correlation with
the first extracted feature pair, 128 are identical for the
two methods. For the second feature pair, 116 of the 150
most relevant probe sets are identical for both methods.
Apparently, the features showing the strongest linear
relationship are characterized mainly by whole chromo-
some copy number alterations affecting chromosomes 4,
6, 8, 10, 14, 17, 18, 21 and X, and expression changes for
genes such as IL13RA1, ZCCHC24 and IGHD. The sec-
ond pair of features is associated with a large copy num-
ber alteration on chromosome 1 and a small change on
chromosome 19, oppositely directed. Among the genes
with highest cross-loadings with the second feature we
note PBX1, SLC27A2 and PSEN2.

Canonical correlations and sample representations
So far, we have used only the tuning set to determine the
optimal regularization parameters and extract two pairs
of features from the variable sets. To determine whether
there are specific subgroups of the patients that are sin-
gled out by the extracted features, and to assess the gen-
eralization ability to unseen data, we visualize the
samples from the tuning set and the validation set by
their coordinates in the extracted features.

Application of the features extracted by dual regular-
ized CCA to the tuning data set results in highly corre-
lated sample representations from the copy number and
gene expression data. In fact, the correlation between the
representations of the samples by the first feature pair is

 = 1.000, and for the second feature pair it is

 = 1.000. Nevertheless, based on the cross-valida-
tion we expect these features to have a high generaliza-
tion ability, and when applied to the validation data set

the canonical correlations are indeed  = 0.905

and  = 0.787 for the two feature pairs, respec-
tively. The canonical correlations for the tuning and vali-
dation sets for all methods are given in Table 1. The low-
dimensional representations of the samples from the vali-
dation and tuning set, respectively, are shown in Figure 5
and Additional file 1: Supplementary Figure 1. In these
figures, each sample is represented by two points, joined
by a line segment [31]. One point represents the sample
by its value on the two gene expression features, and the
other point represents the sample by its value on the two
copy number features. A high canonical correlation thus
implies that the two points corresponding to a sample are
very close to each other. This is exactly what we see for
the representation of the tuning set (left panel in Addi-
tional file 1: Supplementary Figure 1), whereas the lower
canonical correlations observed for the validation set
imply larger distances between the two points for each
sample. In both the tuning and the validation set, the first
pair of features (horizontal axis) singles out one group of
samples. Applying the subtype information reveals that it
consists mainly of patients from the HD50 subgroup.
Similarly, the second pair of features (vertical axis) distin-
guishes one, apparently homogeneous, group of samples
from the rest and applying the subtype information this
group is identified as the patients with the E2A/PBX1
fusion gene. The redundancy coefficients for the tuning
and validation sets are shown in Tables 2 and 3, where we
see that the fraction of the variance in the copy number
variables shared by the extracted gene expression features
(Rx|y) is much larger than the fraction of the variance in
the gene expression variables shared by the extracted
copy number features (Ry|x). This may indicate that copy
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number changes are often related to changes in gene
expression, captured by the extracted features, while
changes in gene expression may have many other causes
which are not encoded by the extracted copy number fea-
tures. For the tuning set, the redundancy coefficients Ry|y
and Rx|x are very similar to Ry|x and Rx|y, respectively. This
is due to the high correlation between the extracted gene
expression and copy number features, implying that each
extracted gene expression feature encodes almost the
same information as the corresponding copy number fea-
ture.

With PCA+CCA, the canonical correlations for the
first two component pairs on the tuning data set are

 = 0.925 and  = 0.770, while the canonical

correlations for the validation data set are  =

0.878 and  = 0.657, respectively. The canonical
correlations for the tuning set are considerably lower than
those from the regularized dual CCA, which is an indica-
tion of the lower flexibility in PCA+CCA. Indeed, while
the regularized dual CCA is free to assign weights to the
variables independently, when CCA is applied after PCA
each principal component receives a weight. Highly cor-

related variables are collected with similar weights into
the same principal component, and consequently receive
a similar total weight after PCA+CCA. However, the
canonical correlations for the validation set are similar for
the two methods. The high canonical correlations for the
validation set show that the features have a high general-
ization ability to unseen data. The representations of the
samples of the validation and tuning sets by the first two
pairs of PCA+CCA features are shown in the right panels
of Figure 5 and Additional file 1: Supplementary Figure 1,
respectively. The group characterized by the first pair of
features consists mainly of HD50 patients, as with regu-
larized dual CCA. Notably, the TEL/AML1 sample,
located very close to the HD50 group in the regularized
dual CCA representations (grey symbol, left panel of
Additional file 1: Supplementary Figure 1), now appears
similar to the HD50 group with respect to the coordi-
nates in the copy number features while there is a large
distance to the coordinates in the gene expression fea-
tures. The second feature again characterizes the E2A/
PBX1 group. The redundancy coefficients are shown in
Tables 2 and 3. As with regularized CCA, the gene
expression features share more variance with the original
copy number variables than oppositely.
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2

Figure 2 Relevance of copy number variables to the top CCA features from the leukemia data set. The cross-loadings, indicating the relevance 
of each copy number variable to the first two features extracted using regularized dual CCA, with regularization parameters τx = 0.9, τy = 0.3 (left panel), 
and PCA+CCA (right panel). The upper panels show the cross-loadings with the first feature, and the lower panels show the cross-loadings with the 
second feature. The variables are ordered along the genome and the vertical lines mark the chromosome boundaries. The cross-loadings for a copy 
number variable measure the degree of linear relationship between the log2 ratio of that variable and the respective gene expression features. Hence, 
a higher (in absolute value) cross-loading indicates a stronger correlation between the variable and the gene expression feature. The first feature is 
strongly related to copy number alterations affecting chromosomes 4, 6, 8, 10, 14, 17, 18, 21 and X, while the second feature is strongly related to copy 
number alterations on chromosome 1 and 19, oppositely directed.



Soneson et al. BMC Bioinformatics 2010, 11:191
http://www.biomedcentral.com/1471-2105/11/191

Page 7 of 20
The effect of choosing extreme regularization values
In Figure 6 and Additional file 1: Supplementary Figure 2
we show the effect of choosing τx = τy = 0 and τx = τy = 1,
respectively, on the representation of the validation and
tuning samples by their coordinates with respect to the
first two pairs of features extracted with regularized dual
CCA. In the unregularized case (left panels), although the
correlation between the extracted features is very high
(the two points for each sample in the tuning data coin-
cide, left panel of Additional file 1: Supplementary Figure
2) the generalization ability of the features is very low, as
can be seen by the long distances between points in Fig-
ure 6. This indicates that the features do not encode any
true biological information. Furthermore, the cross-load-
ings for all variables with the first two features are very
low, hence no variables appear to be strongly related to
the extracted features (data not shown).

In the fully regularized, i.e. covariance-maximizing,
case (right panels of Figure 6 and Additional file 1: Sup-
plementary Figure 2), the correspondence between the
features from the two variable sets is much weaker (there
is a long distance between the two points for each sample
also in the tuning set) and the biological information is
less clear than with the optimal choice of regularization
parameters. Studying the redundancy coefficients for this
method (see Tables 2 and 3), we conclude that more

emphasis is put on extracting features which explain a
large part of the variance in the gene expression data set,
compared to the optimally regularized dual CCA and the
PCA+CCA, which put more focus on the correlation
structure. The resulting canonical correlations for the

first two feature pairs are  = 0.531 and  =

0.507 for the tuning data and  = 0.340 and

 = 0.212 for the validation data. Hence, in terms
of the canonical correlations in the validation set, the fea-
tures from fully regularized CCA are much less generaliz-
able than those from the optimally regularized dual CCA
and PCA+CCA.

Comparison to a sparse covariance-maximizing method
To further evaluate the regularized dual CCA and con-
trast its findings to those from a sparse covariance-maxi-
mizing method, we compare it to the diagonal penalized
CCA described by Witten et al. [21] using the R package
implemented by the authors. This method is fully regu-
larized, hence covariance-maximizing. For computa-
tional feasibility, the comparison was performed on a
subset of the data, including only those SNPs that are sit-
uated within the boundaries of a gene from the gene
expression data set. The genes not harboring any SNPs
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Figure 3 Relevance of gene expression variables to the top CCA features from the leukemia data set. The cross-loadings, indicating the rele-
vance of each gene expression variable to the first two features extracted using regularized dual CCA, with regularization parameters τx= 0.9, τy = 0.3 
(left panel), and PCA+CCA (right panel). The upper panels show the cross-loadings with the first feature, and the lower panels show the cross-loadings 
with the second feature. The variables are ordered along the genome and the vertical lines mark the chromosome boundaries. The cross-loadings for 
a gene expression variable measure the degree of linear relationship between the log2 expression value of that variable and the respective copy num-
ber features. Hence, a higher (in absolute value) cross-loading indicates a stronger correlation between the variable and the copy number feature.
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were also removed, leaving a total of 57,814 copy number
variables and 11,685 gene expression probe sets. The
optimal regularization parameters for the regularized
dual CCA are in this case τx = 0.75, τy = 0.3, reflecting the
considerable reduction in the number of variables, in par-
ticular for the copy number variable set. As before, we
extract two pairs of features. The optimal degree of spar-
sity for the sparse CCA is estimated using the permuta-
tion routine implemented in the R package. In this
package, the sparsity parameters are estimated based on
the first feature pair.

The regularized dual CCA described in this paper and
the sparse CCA of Witten et al. [21] have different objec-
tives, which is clearly seen in the results. The regularized
dual CCA puts more emphasis on maximizing the corre-
lation of the extracted features, which becomes apparent
when studying the samples from the tuning set (Addi-
tional file 1: Supplementary Figure 3). In the sparse CCA,
since the covariance matrices of the variables are replaced
by identity matrices, the covariance of the extracted fea-
tures is maximized instead. This means that the canonical
correlations are expected to be lower, which is also seen
by the longer distances between the points for each sam-
ple in the right panel of Figure 7. We also note that the

E2A/PBX1 group is less discernible with the sparse CCA
features, especially with respect to the gene expression
features (open markers, right panel of Figure 7). Further-
more, while the regularized dual CCA evaluates the rele-
vance of all variables using the cross-loadings with the
extracted features, thereby creating relevance ranking
lists for the two variable sets, the sparse CCA attempts to
find a suitable subset of the variables, necessary for
explaining each feature. This is shown in the right panel
of Figure 8, where many variables which are not needed
to explain the first component receive a zero weight. The
copy number variables which receive a non-zero weight
in the first sparse CCA component all have high cross-
loadings in the dual regularized CCA. Figure 9 shows the
cross-loadings and weights, respectively, for the gene
expression variables in the features extracted with the
regularized dual CCA and the sparse CCA.

The canonical correlations for the first two feature pairs

from the sparse CCA are  = 0.886 and  =

0.513 for the tuning data and  = 0.820 and

 = 0.185 for the validation data, respectively. For
the regularized dual CCA we get the canonical correla-
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Figure 4 Relevance of selected gene expression probe sets to the top CCA features. Graphical representation of the cross-loadings, indicating 
the relevance of the most important gene expression probe set to the first two features extracted using regularized dual CCA, with regularization pa-
rameters τx = 0.9, τy = 0.3 (left panel), and PCA+CCA (right panel). The value on the horizontal axis indicates the cross-loading with the first feature, and 
the value on the vertical axis indicates the cross-loading with the second feature. The circle has radius 1, indicating perfect correlation between the 
expression of a probe set and a copy number feature. The lines show the cross-loadings for the probe sets with the highest relevance to each of the 
two features, and the genes corresponding to the ten probe sets with highest positive and negative correlation with each feature, respectively, are 
given. The overall highest correlation is found with regularized dual CCA (left panel), between a probe set corresponding to the PBX1 gene and the 
second feature.
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tions  = 1.000 and  = 1.000 for the tuning

data and  = 0.910 and  = 0.800 for the
validation data. From the redundancy coefficients, we
note that the sparse CCA features encode slightly more of
the variance in the associated data set, but a lower frac-
tion of the variance in the other data set compared to the
regularized dual CCA features.

Analyzing the data sets separately using PCA
In this section, we compare the results obtained with the
integrative correlation-maximizing methods, i.e. regular-
ized dual CCA and PCA+CCA, to those obtained by
applying only PCA to each variable set separately. As
before, we extract the first two principal components
from the tuning set and apply them to the validation set.
Figure 10 and Additional file 1: Supplementary Figure 4
show the projection of the validation and tuning samples
onto the first two principal components from the copy
number data (left panels) and the gene expression data
(right panels). Using only the copy number data (left pan-
els), the HD50 subgroup is distinguishable in the first
component. However, no further subtype information is
visible with this representation. Using only the gene
expression data (right panels), the second feature is
mainly characterizing the T-ALL subgroup while there is
no clearly interpretable information provided by the first
feature. With PCA the features are not extracted to be

related to the other data set. This agrees with the low
canonical correlations, both for the tuning and validation
set (Table 1). The redundancy coefficients Rx|y and Ry|x are
also very low (see Tables 2 and 3). On the other hand, the
features are extracted to share as much variance as possi-
ble with the variable set they are extracted from, yielding
high values of Rx|x and Ry|y. Note that since the principal
components are required to be uncorrelated, in this case
the sum of the fraction of the total variance of the associ-
ated data set shared by the first two features (i.e. Rx|x and
Ry|y) is lower with PCA than with fully regularized CCA.
The fraction of variance shared by the first feature only is
higher with PCA than with any of the other methods, as
expected.

Discussion and Conclusions
With the rapid development of new genetic measurement
methods, there is an increasing interest in combining sev-
eral types of genetic markers measured in the same sam-
ples. Previously, several multivariate methods have been
applied to this type of data. For microarray data these
methods are mostly covariance-maximizing [20-23]
which facilitates application to large data sets. However,
as we have shown in this study covariance-maximizing
methods may return features which explain a large part of
the variance in the individual data sets but show only
moderate correlation. A regularized correlation-maxi-

r tuning
1 r tuning

2

r validation
1 r validation

2

Figure 5 The extracted features characterize well-known leukemia subtypes. Representation of the samples from the validation set by their co-
ordinates in the first two pairs of features extracted from the tuning set using regularized dual CCA, with regularization parameters τx= 0.9, τy = 0.3 (left 
panel), and PCA+CCA (right panel). We show the representations with respect to both the copy number features and the gene expression features in 
a superimposed way, where each sample is represented by two markers. The filled markers represent the coordinates in the features extracted from 
the copy number variables, and the open markers represent coordinates in the features extracted from the gene expression variables. Samples with 
different leukemia subtypes are shown with different colors. The first feature pair distinguishes the HD50 group from the rest, while the second feature 
pair represents the characteristics of the samples from the E2A/PBX1 group.
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mizing method was applied by González et al [19,24], but
when the number of variables increases the computa-
tional complexity of this method may become prohibi-
tive. In this paper we have discussed two methods for
integrating paired genetic data sets comprising a very
large number of variables, while putting the main empha-
sis on the correlation of the extracted features, instead of
the covariance. First we presented a ridge regularized
CCA which was translated to its dual formulation to per-
mit application to data sets with many variables. Second
we demonstrated the applicability of a classical CCA, pre-
ceded by separate dimension reduction of the two vari-
able sets by PCA, to extract correlated features from a
large data set.

We applied the regularized dual CCA and PCA+CCA
to a large paired data set consisting of gene expression
and SNP copy number measurements from 173 patients
with leukemia. With both regularized dual CCA and
PCA+CCA we extracted two pairs of highly correlated
features from the gene expression and copy number vari-
able sets. We interpreted the biological content of the fea-
tures using the cross-loadings of all variables with them.
Importantly, we noted that even though the feature vec-
tors extracted with the two methods, and hence the rep-
resentation of the samples, were quite different the
interpretation in terms of the cross-loadings of all vari-

ables with the extracted features showed a high degree of
similarity.

Furthermore, we represented the samples, both from
the tuning set used to extract the features and from a val-
idation set, by their coordinates in the CCA features and
extracted groups of patients with characteristic gene
expression and copy number profiles. The first feature
pair, characterized by copy number alterations on chro-
mosomes 4, 6, 8, 10, 14, 17, 18, 21 and X and expression
changes for genes such as ZCCHC24, IL13RA1 and
IGHD, distinguishes a group of patients from the rest.
This group consists mainly of patients from the HD50
subgroup. Notably, the copy number effects dominating
this feature agree well with those reported in a large study
of patients with the HD50 subtype [32]. Furthermore, in a
previous study of the gene expression component of the
data set we have used [33], probe sets corresponding to
the ZCCHC24, APOOL, HUWE1 and SMAGP genes were
found among the top 100 probe sets characterizing the
HD50 subtype.

The second pair of features is characterized by a large
copy number alteration on chromosome 1, and a small,
oppositely directed, alteration on chromosome 19. The
gene which is most highly related to the extracted copy
number pattern is PBX1, followed by e.g. SLC27A2 and
PSEN2. This feature pair (together with the first pair)

Table 1: Canonical correlations for tuning and validation data. 

Method Canonical correlations

Optimally regularized 
dual CCA

1.000 1.000 0.905 0.787

Fully regularized dual 
CCA

0.531 0.507 0.340 0.212

Non-regularized dual 
CCA

1.000 1.000 0.187 0.295

PCA+CCA 0.925 0.770 0.878 0.657

PCA 0.112 0.117 0.0004 0.080

*Sparse CCA [21] 0.886 0.513 0.820 0.185

*Optimally regularized 
dual CCA

1.000 1.000 0.910 0.800

The canonical correlations for methods indicated by * are calculated using a subset of the gene expression and copy number variables.
Canonical correlations for the tuning and validation data set, for the different methods applied in this paper. 
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clearly separates one group of samples from the rest.
Applying the subtype information, this group is seen to
consist exclusively of samples from the E2A/PBX1 group.
This subtype is indeed characterized by a translocation
between chromosomes 1 and 19 which gives rise to the
E2A/PBX1 fusion gene. While balanced translocations
cannot be detected by SNP-arrays, the 1;19 translocation
is in most cases (and in the present data set, all cases)
present as an unbalanced translocation, resulting in gain
of 1q and loss of 19p material. Furthermore, many of the
genes showing high cross-loadings with the second fea-
ture (see Figure 4) have been shown to be characteristic
to E2A/PBX1-positive ALLs [33,34]. The higher subtype
specificity of the genes associated with the second feature
is consistent with the clear separation of the samples with
the E2A/PBX1-positive subtype from the rest in Figure 5.
Notably, without prior knowledge of subgroups in the
data set, and without pre-selection of variables, we have
used the correlation structure between copy number
alterations and gene expression changes to extract two
well-known subtypes having specific gene expression as
well as copy number profiles.

The representations of the samples by the values of the
extracted features (Figure 5) show the qualitative similari-
ties and differences between the regularized dual CCA
and PCA+CCA. As shown in Figures 2, 3 and 4, the
cross-loadings for the variables are similar for the regu-
larized dual CCA and PCA+CCA, which implies that the

extracted features encode the same underlying biological
information. This can also be seen by comparing the sam-
ple representations from the two methods (compare the
two panels of Figure 5), where the overall distributions of
the samples are similar. Despite this, the actual weights of
the variables in the features from the two methods are
quite different due to the higher flexibility in choosing the
weights in the regularized dual CCA as compared to
PCA+CCA. For example, although one TEL/AML1 sam-
ple is similar to the HD50 samples with regards to the
copy number profile and not as similar with regards to
the gene expression profile, the regularized dual CCA
anyway succeeds in finding a pair of features which has a
high correlation, due to the high flexibility in assigning
weights to the variables. Unlike in PCA+CCA, correlated
variables do not necessarily receive similar weights, and it
is thus possible to choose a suitable subset from a set of
correlated variables to increase the correlation, at the
expense of a lower variance of the extracted features.

Previously, gene expression profiling has been applied
to extract subgroups of leukemia samples (see e.g. [33]).
In such studies the T-ALL subgroup often emerges as
having a different gene expression pattern than the other
subtypes. Since the methods applied in our study focus
on correlations between gene expression and copy num-
ber changes and patients from the T-ALL subgroup do
not have a characteristic copy number profile, they will
not emerge as a deviating group in our analysis. On the

Table 2: Redundancy coefficients for tuning data. 

Method Redundancy coefficients

Rx|y Ry|x Rx|x Ry|y

Optimally regularized 
dual CCA

(0.168, 0.038) (0.030, 0.035) (0.168, 0.038) (0.030, 0.035)

Fully regularized dual 
CCA

(0.051, 0.008) (0.029, 0.050) (0.199, 0.094) (0.237, 0.278)

Non-regularized dual 
CCA

(0.004, 0.005) (0.009, 0.004) (0.004, 0.005) (0.009, 0.004)

PCA+CCA (0.131, 0.028) (0.026, 0.031) (0.153, 0.043) (0.030, 0.049)

PCA (0.008, 0.021) (0.023, 0.011) (0.202, 0.065) (0.291, 0.053)

*Sparse CCA [21] (0.126, 0.018) (0.026, 0.040) (0.172, 0.093) (0.040, 0.253)

*Optimally regularized 
dual CCA

(0.153, 0.038) (0.031, 0.038) (0.154, 0.038) (0.031, 0.038)

Redundancy coefficients for the tuning data set, for the different methods applied in this paper. The redundancy coefficients for methods 
indicated by * are calculated using a subset of the gene expression and copy number variables.
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other hand the characteristics of the HD50 and E2A/
PBX1 subgroups are considerably weaker if we study gene
expression or copy number data separately using PCA.
Since both of these groups have strong copy number pro-
files as well as specific changes in the expression of char-
acteristic sets of genes, integrative analysis of these two
variable sets allows for them to be extracted. We point
out the advantage of analyzing a data set with several dif-
ferent methods, since they may very well yield different
biological information. We conclude that CCA, either
regularized and translated to its dual formulation or com-
bined with PCA, can be applied to high-dimensional
paired data sets to allow for efficient exploratory integra-
tive analysis without using prior knowledge or pre-selec-
tion of variables. As such, it is a valuable tool for
generating hypotheses from high-dimensional data sets.
Furthermore, while we in this study only have searched
for linear relationships between the copy number and
gene expression variable sets the dual formulation of
CCA can be generalized to extract nonlinear relation-
ships by the kernel trick. Compared to previously pro-
posed sparse integrative methods, where computational
problems often lead to a focus on maximizing the covari-
ance instead of a penalized correlation, the methods pro-
posed in this paper may be valuable for finding closely
related patterns which do not necessarily correspond to a
large part of the variance in the data set.

Methods
Data and pre-processing
The data set used in this study was generated and first
described by Mullighan et al [35]. It includes 173 child-
hood acute lymphoblastic leukemia (ALL) patients, for
which both gene expression and SNP copy numbers were
measured. The leukemias were classified, using lineage
information (B-cells or T-cells), karyotyping, reverse
transcriptase PCR and fluorescence in situ hybridization,
into the following subtypes: T-ALL, hyperdiploidy (more
than 50 chromosomes on karyotyping, abbreviated here
as HD50), E2A/PBX1-positive, TEL/AML1-positive,
BCR/ABL1-positive, MLL-rearranged, low hyperdiploidy
(47-50 chromosomes, abbreviated here as HD47-50),
hypodiploidy, pseudodiploidy or other [35].

The gene expression data set was generated using
Affymetrix HG-U133A arrays, providing mRNA levels of
more than 18,000 transcripts. The copy number data set
was generated using Affymetrix Human Mapping 250 K
Sty SNP-arrays which give copy number and genotype
information for more than 230,000 SNPs.

The CEL-files containing raw intensity signals from the
Affymetrix HG-U133A arrays and the CEL- and CHP-
files containing raw intensity signals and genotype infor-
mation from the Affymetrix Human Mapping 250 K Sty
arrays were downloaded from http://hospital.stjude.org/
forms/genome-download/request/. The raw intensity sig-

Table 3: Redundancy coefficients for validation data. 

Method Redundancy coefficients

Rx|y Ry|x Rx|x Ry|y

Optimally regularized 
dual CCA

(0.113, 0.034) (0.033, 0.027) (0.145, 0.053) (0.042, 0.064)

Fully regularized dual 
CCA

(0.031, 0.015) (0.027, 0.028) (0.175, 0.086) (0.233, 0.268)

Non-regularized dual 
CCA

(0.027, 0.027) (0.023, 0.012) (0.077, 0.048) (0.057, 0.020)

PCA+CCA (0.100, 0.033) (0.032, 0.031) (0.118, 0.048) (0.037, 0.078)

PCA (0.012, 0.018) (0.026, 0.022) (0.179, 0.068) (0.281, 0.069)

*Sparse CCA [21] (0.092, 0.014) (0.033, 0.023) (0.142, 0.087) (0.051, 0.252)

*Optimally regularized 
dual CCA

(0.107, 0.036) (0.034, 0.029) (0.131, 0.054) (0.042, 0.062)

Redundancy coefficients for the validation data set, for the different methods applied in this paper. The redundancy coefficients for methods 
indicated by * are calculated using a subset of the gene expression and copy number variables.

http://hospital.stjude.org/forms/genome-download/request/
http://hospital.stjude.org/forms/genome-download/request/
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Figure 6 The effect of choosing extreme regularization values. Representation of the samples from the validation set by their coordinates in the 
first two pairs of features extracted from the tuning set using regularized dual CCA, with regularization parameters τx = 0, τy = 0 (left panel), and τx = 1, 
τy = 1 (right panel). The filled markers represent the coordinates in the features extracted from the copy number variables, and the open markers rep-
resent coordinates in the features extracted from the gene expression variables. Samples with different leukemia subtypes are shown with different 
colors. Without regularization (left panel) the extracted features, although being highly correlated (see Additional file 1: Supplementary Figure 2), do 
not encode any biological information and are not generalizable to extract correlated information from the validation set. With maximal regularization 
(right panel), the agreement between the extracted features is weak, although they contain a large part of the variance in the data sets.

Figure 7 Comparison of sample representations with regularized dual CCA and sparse CCA. Representation of the samples from the validation 
set by their coordinates in the first two pairs of features extracted from the tuning set using regularized dual CCA (left panel, τx = 0.75, τy = 0.3) and the 
sparse CCA proposed by Witten et al. [21] (right panel). The filled markers represent the coordinates in the features extracted from the copy number 
variables, and the open markers represent coordinates in the features extracted from the gene expression variables. Samples with different leukemia 
subtypes are shown with different colors. For computational reasons, the comparison is performed using a subset of the copy number and gene ex-
pression variables. The features extracted using regularized dual CCA have a higher correlation, as shown by the shorter distance between the points 
corresponding to each sample in the left panel. Moreover, the E2A/PBX1 group is more easily discernible using regularized dual CCA.
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Figure 8 Relevance of copy number variables to features extracted using regularized dual CCA and sparse CCA. The relevance of the copy 
number variables to the extracted features. For regularized dual CCA, the relevances are measured by the cross-loadings with the extracted features 
(left panel). For sparse CCA, the relevances are measured by the weights of the variables in the extracted features (right panel). The sparse method 
includes only a subset of the variables, necessary for explaining the information encoded in each feature. The regularized dual CCA (left panel) pro-
vides a relevance ranking of all variables. Note that only a subset of the original variable set was used in this analysis.

Figure 9 Relevance of gene expression probe sets to features extracted using regularized dual CCA and sparse CCA. The relevance of the 
gene expression probe sets to the extracted features. For regularized dual CCA, the relevances are measured by the cross-loadings with the extracted 
features (left panel). For sparse CCA, the relevances are measured by the weights of the variables in the extracted features (right panel). The sparse 
method includes only a subset of the variables, necessary for explaining the information encoded in each feature. The regularized dual CCA (left panel) 
provides a relevance ranking of all variables. Note that only a subset of the original variable set was used in this analysis.
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nals from the gene expression arrays were normalized
using gcRMA [36] which is a part of the Bioconductor
[37] package for R (R Development Core Team, 2008). To
avoid difficulties with interpretation, 2,234 probes corre-
sponding to more than one genomic location were
removed from the analysis.

The CEL- and CHP-files from the SNP-arrays were
imported into dChip [38], where the raw signals were
normalized to a baseline level using an invariant set of
probes and the "expression level" of each SNP was calcu-
lated using model based expression with perfect match/
mismatch difference. A reference copy number for each
SNP was calculated from all samples by trimming the
25% extreme values in both ends. The copy number
changes were calculated using median smoothing with a
10 SNP window and the dChip option "scale copy num-
ber mode to 2 copy". Copy number calculations were per-
formed in small batches based on the creation dates of
the CEL-files to eliminate strong batch-specific effects
observed if all data were analyzed together.

In all analyses, we use the log2 ratios from the copy
number data set and the log2-transformed gene expres-
sion values for the gene expression probe sets. Before
entered into the canonical correlation analysis, each vari-
able is mean-centered and standardized to unit variance
across the samples used for feature extraction. Whenever
a training set and a test set are used, both sets are stan-
dardized using the mean value and standard deviation

from the training set. The final data set, to which we
apply the integrative methods, consist of 20,021 gene
expression probe sets and 238,304 copy number vari-
ables.

Canonical Correlation Analysis
Canonical Correlation Analysis (CCA [5]) is a generaliza-
tion of multiple linear regression to the case of several
response variables. It is applicable to paired data sets,
consisting of two sets of variables measured on the same
samples and represented by two matrices X  �n × N and Y

 �m × N, where each column in X and Y corresponds to
one of the N samples, and each row represents one vari-
able. We let X denote the copy number data matrix and Y
the gene expression data matrix, and assume that each
variable is centered to have zero mean across the samples.
Furthermore, we let Cxx = XXT and Cyy = YYT denote the
(scaled) sample covariance matrices for the two variable
sets, and Cxy = XYT the (similarly scaled) sample cross-
covariance matrix.

The objective of CCA is to extract, from the two vari-
able sets, latent features which are most highly correlated.
The latent features returned by CCA are linear combina-
tions of the measured variables. More formally, we are
searching for weight vectors wx  �n and wy  �m such
that the empirical correlation between the respective pro-
jections onto these weight vectors, i.e. between XT wx and
YT wy, is maximized. Hence, we are seeking to maximize

Figure 10 Analysis of the variable sets separately using PCA. Representation of the samples from the validation set by the projection onto the 
first two principal components from the copy number data (left panel) and gene expression data (right panel), extracted from the tuning set. Samples 
with different leukemia subtypes are shown with different colors. The E2A/PBX1 subgroup, well separated from the rest using the correlation-maxi-
mizing methods (Figure 5), is not emerging as a deviating group when the data sets are analyzed individually with PCA. The T-ALL subgroup (light 
green) has a specific gene expression pattern, and is deviating from the rest using PCA on only the gene expression data (right panel). However, since 
these subjects do not have a specific copy number pattern, they are less discernible using CCA.
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Subsequent features can be extracted by maximizing
the correlation for projections onto weight vectors uncor-
related to those extracted previously. This formulation of
CCA also shows that it is completely symmetric in the
two variable sets. If Cxx and Cyy are invertible, the weight
vectors maximizing (1) can be found by solving the eigen-
value problems

Application of CCA to high-dimensional data sets
Since the classical formulation of CCA requires that the
sample covariance matrices Cxx and Cyy are invertible, it is
not uniquely solvable when the number of variables
exceeds the number of samples, and it can be severely
confounded by collinearities among the variables. Both of
these characteristics are common in microarray data sets.
In these cases we need to reduce the flexibility of the
CCA, thereby increasing the robustness of the feature
extraction. We address this issue in two different ways,
first by regularizing the CCA explicitly and second by
reducing the dimensionality of the data using PCA before
applying classical CCA.
Regularized dual CCA
We regularize the classical CCA by adding a ridge penalty
to the covariance matrices. This is a commonly used reg-
ularization method (applied with various choices of regu-
larization degrees e.g. in [19-22,30]) that was introduced
in the CCA framework by Vinod [7]. Hence, we are seek-
ing wx and wy to maximize the penalized correlation

where N is the number of samples in the data set. We
introduce the N into the expression to render the two
terms in each parentheses in the denominator of approxi-
mately equal magnitude, at least in the case where the
variables within each set are uncorrelated and of unit
variance (in which case both Cxx and Cyy are approxi-
mately N I). The regularization parameters τx and τy
parametrize a whole family of methods, ranging from

classical CCA (τx = τy = 0) which extracts maximally cor-
related features, to PLS (τx = τy = 1) where the extracted
features are those showing maximal covariance. The
higher value of τx and τy that are used, the more focus is
put on the variance of the extracted features. Therefore,
using regularized CCA implies a trade-off between
explaining the variable sets individually and explaining
their correlation structure. Introducing the regularization
makes it possible to solve the optimization problem even
when the number of variables exceeds the number of
samples. Maximal regularization, on the other hand, is
not necessarily desirable since in this case relevant fea-
tures with high correlation between the variable sets may
be drowned by features with high variance and only mod-
erate correlation.

In cases where the number of variables is very large, it
can be a computational advantage to solve the regularized
CCA problem in its dual formulation [39]. The dual for-
mulation of CCA can also be used to generalize the
method to find nonlinear relationships, by the kernel
trick [40-42]. Working in the dual formulation, instead of
performing calculations involving the sample covariance
matrices Cxx = XXT and Cyy = YYT we work with the
matrices XT X and YT Y which are of dimension N × N
and hence much smaller. By expressing the weight vectors
wx and wy in terms of the sample matrices as wx = Xαx and
wy = Yαy, substituting into (3) and noting that the result-
ing expression is invariant to scaling of αx and αy, we
obtain the dual formulation of regularized CCA as the
optimization problem

Using the notation KX = XTX and KY = YTY, this can be
restated as the generalized eigenvalue problem

which is solved to return αx and αy. The regularized
CCA features are then calculated as wx = Xαx, wy = Yαy. In
general, as discussed e.g. in [25], unregularized dual CCA
(τx = τy = 0) is likely to overfit the data when the number
of variables is very large, and should therefore be inter-
preted with great caution.
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In order for the extracted features to be of practical use,
they should encode characteristics which are in some
sense general to the population to which the considered
data set belongs. To achieve this goal we determine the
optimal regularization parameters by cross-validation.
First, the data set is divided into a tuning set, consisting of
two thirds of the samples, and a validation set, consisting
of the remaining one third of the samples. The tuning set
is used to determine regularization parameters and
extract features, and the validation set is used only for
visualization and assessment of the generalization ability
of the extracted features. To choose the optimal regular-
ization parameters τx and τy based on the tuning set, we
employ a 3-fold cross-validation technique, with the aim
of finding the pair of regularization parameters giving the
highest generalization ability of the first extracted pair of
features to unseen data. Leave-one-out cross-validation
to find the optimal regularization parameter in CCA was
proposed by Leurgans et al. [30], and thereafter applied
by González et al. [24]. More recently, González et al. [19]
applied 5-fold cross-validation for the same purpose. The
3-fold split of the data is chosen to avoid overestimating
the generalization ability of the extracted features, which
could be the case if the leave-one-out procedure is
employed. Moreover, a small fold is chosen to reduce the
computational time needed for the parameter selection,
and to provide a large enough basis for estimating the
canonical correlations in the test sets. Hence, we divide
the samples of the tuning set into three groups, with
approximately the same distribution of patients from the
different subtypes. Two of the groups (the training set)
are then used to extract a pair of latent features with the
highest value of the penalized correlation (3). The third
group of samples (the test set) is then projected onto this
pair of features and the empirical correlation for the pro-
jected test samples is calculated. This is repeated three
times, until all samples have been used once as a test sam-
ple, and thereafter we average the three empirical correla-

tions. Letting  and  denote the maximizers of (3)
when group i is removed from the training set and with
Xi and Yi denoting the parts of X and Y corresponding to

group i, we let (Xi)T  and (Yi)T  be the projection
of the test set (group i) onto the extracted features. The
estimated test set canonical correlation is then defined as

The same objective function was used by Parkhomenko
et al. [22] to estimate sparsity parameters. The average is
taken over the absolute value of the correlations, since

there is no canonical way of choosing the sign of the
extracted CCA features.

This analysis is performed for values of τx and τy on a
grid (following e.g. [43]), and the optimal values are con-
sidered to be those maximizing the estimated test set cor-

relation . This correlation can be seen as an estimate
of the generalization ability of the first extracted canoni-
cal feature pair to unseen data. A high value, meaning
that the features with the highest penalized correlation in
the training set also have a high correlation in the test set,
indicates that the features contain in some sense "true"
biological information. The possibility of choosing differ-
ent regularization parameters for the two variable sets
allows us to account for the different properties of the
two types of data. Because copy number alterations in
cancer often affect large genomic regions, many copy
number variables will be highly correlated. We anticipate
that, due to this high collinearity among the copy number
variables, the copy number data will need more regular-
ization than the gene expression data.

Since the determination of the regularization parame-
ters is based only on the optimization of the largest test
set canonical correlation, we also estimate the generaliza-
tion ability of the second pair of extracted features, to
determine if this can be expected to represent a true lin-
ear relationship between the two variable sets. Further-
more, to determine whether the estimated test set
canonical correlation is larger than what could be
expected by chance only we permute the samples in the
gene expression variable set and thereby obtain a paired
data set without any true correlations. We then estimate
the largest test set canonical correlation for the features
extracted from the permuted data using the optimal reg-
ularization parameters determined for the original data.
To find regularization parameters which are in some
sense optimal to all extracted feature pairs, it is possible
to change the objective function to include not only the
largest test set canonical correlations, but also the subse-
quent ones. For the data set used in this study, reformu-
lating the objective function to the mean of the first and
second test set canonical correlation only has a marginal
effect and does not change the interpretations.
PCA+CCA
Another way to overcome the problem with high data
dimensionality is to reduce the dimensionality before
applying CCA. We use PCA [6] to reduce the dimension-
ality of each set of variables independently. The extracted
principal components are then used as variables in the
CCA. This approach is discussed e.g. by Muller [29]. The
weights from the PCA and CCA are combined to yield a
total weight for each measured variable in each of the
extracted CCA features in the following way. Let x  �n ×
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s and y  �m × s, with s << N, denote the matrices of prin-
cipal components resulting from applying PCA to each
data set separately. Projecting X and Y onto the principal
components yields s-dimensional representations such
that as much as possible of the variance from each vari-
able set is retained. Furthermore, if X and Y are mean-
centered, the same will be true for the projections

 and . Now CCA is applied to 

and , extracting weight vectors  and  to maxi-

mize the empirical correlation between  and

. Since the "variables" in  and  are now uncor-

related and much fewer than the samples,  and 
can be calculated using (2). Hence, in this stage, each
principal component from the two data sets receives a
weight. The total weights for the original variables are
created as , . This con-

struction implies that two highly correlated variables,
which thus receive similar weights in each of the principal
components, will have similar weights also in the total
weight vectors.

This approach is intuitively appealing in that we first
extract the most variable (and hence, in some sense, most
informative) features from each data set and then search
for the highest correlations between combinations of
these. Hence it prevents the CCA from finding high cor-
relations between features of very low variance, which are
presumably mostly noise. When using PCA+CCA it is
important to be aware that discarding all but the first s
principal components, while being advantageous for
noise reduction, may result in some highly correlated fea-
tures of low variance being thrown away. With regular-
ized CCA there is a possibility, depending on the choice
of regularization parameters, that such features may be
found. The features extracted with PCA+CCA undergo
the same cross-validation as the regularized dual CCA
features to estimate whether the obtained test set canoni-
cal correlations are larger than could be expected by
chance only.

Visualization and interpretation of CCA features and 
sample representations
The weights wx and wy from CCA are sensitive to col-
linearities among variables, and hence not necessarily a
good way of evaluating the individual contribution of
each variable to the CCA features. Instead, the cross-
loadings of the variables can be used to interpret the
extracted features [28]. The cross-loading of the i'th vari-
able from one of the variable sets with the j'th pair of

extracted features is defined as the correlation between
the variable and the j'th extracted feature from the other
variable set. This means that the cross-loadings indicate
the relevance of each variable to each extracted feature
pair. Highly correlated variables obtain similar cross-
loadings, even though their weights in the extracted fea-
tures may be different. The relevances of the copy num-
ber and gene expression variables are visualized by
showing their cross-loadings along the genome, see Fig-
ures 2 and 3. To further visualize the cross-loadings of the
most relevant gene expression probe sets to the extracted
features, as well as the correlation structure between
these, the highest cross-loadings with the first two fea-
tures are shown in the same figure (Figure 4) [19,44].

To visualize the representations of the samples, we use
their coordinates in the first two pairs of extracted fea-
tures and show them in a superimposed way [31]. Using
this approach, each sample is represented by two points
joined by a line segment, in a two-dimensional space.
Each point represents the coordinates of the sample in
the features extracted from one of the two variable sets.
Since we are mainly interested in the correlation struc-
ture, each feature is standardized to unit variance prior to
this visualization. Hence, if the correlation between the
extracted features from the two data sets is close to one,
the two points for each sample will almost coincide. The
representations are shown for the samples in the tuning
set (Additional file 1: Supplementary Figures 1, 2, 3 and 4)
and for the samples in the validation set (Figures 5, 6, 7
and 10).

To obtain an estimate of the fraction of the variance in
the original variable sets which is shared by the extracted
features, we calculate the redundancy coefficients [28,44].
The redundancy coefficient of the two features extracted
from the x variable set with respect to the original y vari-
ables, indicating the fraction of the variance in the origi-
nal y-variables shared by the extracted x-features, is
denoted by Ry|x, with similar interpretations of Rx|y, Rx|x
and Ry|y. Denoting the cross-loading of y-variable i with
the j'th feature from the x variable set by cij for i = 1,..., m
and j = 1, 2, the redundancy coefficient with the two fea-
tures is calculated as

By replacing the cross-loadings of variable i with the
correlations between the variable and the features
extracted from its associated data set, we obtain instead
Ry|y. Rx|y and Rx|x are defined accordingly.
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