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Abstract
Background: Empirical scoring functions have proven useful in protein structure modeling. Most such scoring 
functions depend on protein side chain conformations. However, backbone-only scoring functions do not require 
computationally intensive structure optimization and so are well suited to protein design, which requires fast score 
evaluation. Furthermore, scoring functions that account for the distinctive relative position and orientation preferences 
of residue pairs are expected to be more accurate than those that depend only on the separation distance.

Results: Residue pair scoring functions for fixed backbone protein design were derived using only backbone 
geometry. Unlike previous studies that used spherical harmonics to fit 2D angular distributions, Gaussian Mixture 
Models were used to fit the full 3D (position only) and 6D (position and orientation) distributions of residue pairs. The 
performance of the 1D (residue separation only), 3D, and 6D scoring functions were compared by their ability to 
identify correct threading solutions for a non-redundant benchmark set of protein backbone structures. The threading 
accuracy was found to steadily increase with increasing dimension, with the 6D scoring function achieving the highest 
accuracy. Furthermore, the 3D and 6D scoring functions were shown to outperform side chain-dependent empirical 
potentials from three other studies. Next, two computational methods that take advantage of the speed and pairwise 
form of these new backbone-only scoring functions were investigated. The first is a procedure that exploits available 
sequence data by averaging scores over threading solutions for homologs. This was evaluated by applying it to the 
challenging problem of identifying interacting transmembrane alpha-helices and found to further improve prediction 
accuracy. The second is a protein design method for determining the optimal sequence for a backbone structure by 
applying Belief Propagation optimization using the 6D scoring functions. The sensitivity of this method to backbone 
structure perturbations was compared with that of fixed-backbone all-atom modeling by determining the similarities 
between optimal sequences for two different backbone structures within the same protein family. The results showed 
that the design method using 6D scoring functions was more robust to small variations in backbone structure than the 
all-atom design method.

Conclusions: Backbone-only residue pair scoring functions that account for all six relative degrees of freedom are the 
most accurate and including the scores of homologs further improves the accuracy in threading applications. The 6D 
scoring function outperformed several side chain-dependent potentials while avoiding time-consuming and error 
prone side chain structure prediction. These scoring functions are particularly useful as an initial filter in protein design 
problems before applying all-atom modeling.

Background
Empirical scoring functions, or knowledge-based poten-
tials, have been successfully applied to a wide variety of
problems in biomolecular modeling. These scoring func-

tions are derived from the statistics of residue or atomic
interactions as observed in experimental protein struc-
tures. Most such scoring functions depend on amino acid
side chain conformations, either through the definition of
residue contacts [1-3] or through the dependence of the
potentials on the distances between side chain atoms or
residue centroids [4-6].
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Another class of scoring functions, which includes the
ones considered in this study, depend only on the protein
backbone conformation. These scoring functions have
two significant advantages: (1) they can be directly
applied to proteins structures with unknown or uncertain
side chain conformations and (2) they can be rapidly cal-
culated. Because they are independent of the side chain
conformations, these scoring functions can be applied to
proteins for which the correct side chain conformations
are not available from experimental structures. In such
cases, computationally expensive and potentially inaccu-
rate side chain optimization would be necessary in order
to evaluate a side chain-dependent scoring function for
the protein structure. Comparative modeling results have
shown that although successful methods usually agree on
the core backbone structure, they have considerably more
difficulty in predicting correct side chain conformations
[7]. Also, because backbone-only scoring functions do
not require side chain optimization they can also be used
to evaluate protein structures more quickly. Protein
design applications require such a fast but approximate
evaluation of protein stability for a large number of
sequences. Because of the high-dimensional search space
for side chain geometry optimization, empirical scoring
functions that depend only on backbone geometry offer a
computationally efficient solution to these tasks. Finally,
even modeling problems in which a complete atomic
structure of a protein is required can be efficiently
accomplished using a multi-scale approach in which
potential structures are first filtered using the fast back-
bone-only scoring function and the remaining structures
then subjected to more time-consuming all-atom refine-
ment and rescoring.

The non-uniform angular distributions of side chains
about residues of different types observed in protein
structures [8] suggests that residue pair scores that
depend on the relative position and orientation of the res-
idues will discriminate native from non-native protein
structures better than scores that depend only on the res-
idue separation distance. Some previously developed
scoring functions incorporate this orientation depen-
dence through the orientation of residue side chains [9-
11]. The scoring functions derived in this study also
incorporate orientation dependence but, unlike those
scoring functions, they depend only on the protein back-
bone conformation. Two previous studies have examined
orientation-dependent empirical potentials for backbone
structures. The study of Onizuka et al. [12] defined local
coordinate systems centered on Cα atoms and fit residue
pair potentials that were either functions of their relative
position (3D) or their relative position and orientation
(6D). Potentials were fit to data for different sequence

separations using a truncated expansion in terms of
spherical harmonics. The low-order terms included in
the expansion yield a smoothed potential function that
presumably eliminates sampling noise. A comparison
between 1D (separation distance dependent), 3D, and 6D
potentials with different expansion cutoffs showed that
the 3D potential performed the best in ranking the native
structure from among decoys. A later study by Miyazawa
and Jernigan [13] also used similar spherical harmonic
expansions in order to derive orientation-dependent
potentials that were a function of backbone coordinates.
Unlike Onizuka et al., these were residue contact poten-
tials and so did not have any explicit dependence on the
separation distance. More importantly, the residue con-
tact potentials in Miyazawa and Jernigan are not strictly
backbone-only potentials since they implicitly depend on
side chain conformations via a smooth contact cutoff that
is a function of the distances between the geometrical
centers of the two residue side chains. Also, unlike Oni-
zuka et al., Miyazawa and Jernigan concluded that
accounting for the relative orientation of residue pairs
through Euler angles using a 5D residue contact potential
improved fold recognition performance over a 2D poten-
tial that accounts only for the relative positions of the
contacting residue pairs. Whereas the scoring functions
in those studies were tested using folding decoys, the
scoring functions considered here are designed and
tested for the different modeling problem of fixed back-
bone protein design. The appropriate decoy structures in
this case are incorrect fixed backbone threading solutions
with the correct backbone structure but incorrect amino
acid sequences. The scoring functions described here are
optimized to detect the correct (native) sequence from
among many incorrect (decoy) sequences for a common
backbone structure.

We have developed position and orientation-depen-
dent residue pair scoring functions that depend only on
the protein backbone structure, i.e. are completely inde-
pendent of side chain conformations. As discussed above,
these scoring functions are expected to be useful for pro-
tein design as well as fold recognition. 6D scoring func-
tions that depend on both the relative position and
orientation of the residue pairs were compared with 3D
scoring functions, which depend only on the relative
position, and with 1D scoring functions, which depend
only on the separation distance. Also, the challenging task
of estimating the high-dimensional residue pair distribu-
tions was solved using a different method, Gaussian Mix-
ture Models (GMMs), than the spherical harmonic
expansions employed in the two previous studies. One
advantage of GMMs is that they are able to directly esti-
mate the 3D and 6D residue pair distributions, including
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off-diagonal contributions from multiple orientational
variables. Another advantage of the GMM formulation
used in this study is that the optimal model complexity, or
number of parameters, is estimated from the data using
the Bayes Information Criterion (BIC) statistic [14].

The relative effectiveness of the 1D, 3D, and 6D scoring
functions was evaluated by their ability to identify the
correct threading solution from among a set of decoy
threading solutions generated either by shuffling the
native sequences or by cross-threading for a large non-
redundant set of proteins. The new scoring functions
were also compared with side chain-dependent empirical
potentials from other studies using the same decoy set.
Also, in order to illustrate the utility of the new back-
bone-only scoring functions two computational methods
that exploit their advantages over traditional side chain-
dependent potentials were studied. The first method
involves averaging the residue pair scores over threading
solutions for homologs. Because homologous proteins
with significant sequence similarity usually adopt the
same backbone structure such a procedure is expected to
improve accuracy by combining scores for these distinct
but structurally similar proteins. This method was
applied to the difficult problem of predicting interactions
between alpha helices in membrane proteins using fixed
backbone threading and found to further improve accu-
racy. The second application of the new scoring functions
involves using a fast approximate optimization method,
called Belief Propagation, to estimate the optimal
sequence for a given protein backbone structure. This
design method was compared with one using all-atom
modeling on a fixed protein backbone structure and
found to be more robust to inevitable small backbone
variations between the template and native protein struc-
tures.

Results and Discussion
Overview of the backbone-only residue pair scoring 
functions
The new backbone-only log-odds residue pair scoring
functions were derived as the logarithm of the ratio
between the backbone orientational distribution of resi-
due pairs in correct native structures and the correspond-
ing distribution for incorrect decoy structures, which
corresponds to randomly shuffled amino acid sequences
for the same native backbone structures. The latter back-
ground distribution is the same as the distribution of all
residue pairs in protein structures, regardless of their
type. Such a background decoy distribution is appropri-
ate for the desired modeling application of fixed back-
bone protein design and threading but is non-optimal for
other applications, such as ab initio protein folding. Also
only residue pairs that are at least 6 residues apart in the
protein sequence and with Cβ separations ≤ 10 Å were

included in the scores. This eliminated residue pairs that
were too close in the linear sequence so that their relative
position and orientation are largely determined by the
local secondary structure as well as residue pairs that
were too far apart and so have little orientational prefer-
ence because they only interact weakly. The 1D, 3D, and
6D scoring functions were derived based on the distribu-
tions of separation distances, relative positions, and both
relative positions and orientations of particular residue
type pairs, respectively. While the 1D scoring functions
were fit using kernel density estimation (KDE), the diffi-
cult high-dimensional density estimation for the 3D and
6D scoring functions could not be accomplished by KDE
so that another technique, Gaussian Mixture Models
(GMMs), was employed.

Prediction accuracy for individual residue type pairs
The performance of the scoring function was first evalu-
ated for each of the 210 residue type pairs individually in
order to find out which individual residue pairs make the
largest contributions to the overall protein threading
accuracy. The performance of each residue type score
was assessed by the area under the Receiver Operating
Characteristic (ROC) curve (AUC) for 10-fold cross-vali-
dation results. The ROC curve displays the tradeoff
between sensitivity and specificity as the score cutoff is
varied. Higher AUC values, near 1.0, indicate better pre-
diction performance.

The cross-validation sets were created by randomly
dividing the residue pair data for the non-redundant set
of proteins into 10 approximately equal-sized sets such
that all data for a particular protein is contained within
only a single set. The predictions were then made on each
set using log-odds scoring functions fit to data in the
other 9 sets. This procedure then gives an estimate of the
performance on novel data since the predictions are
made for residue pair data from proteins unrelated to
those used to fit the scoring functions.

The residue pairs whose 6D scores have the highest
accuracy are Cys-Cys and all paired combinations of Iso,
Leu, and Val. The high accuracy of the Cys-Cys score is
due to the fact that a large percentage of such pairs (44%)
form conformationally constraining disulfide bonds thus
making their distinctive relative orientation easier to pre-
dict. Iso, Leu, and Val are some of the most commonly
occurring residues, particularly in the protein core where
they can form more contacts than residues on the surface.
In fact, there is a significant correlation (Spearman's rank
correlation coefficient ρ = 0.60, significance < 2.2 × 10-16)
between the prediction accuracy, as measured by the
AUC, and the number of training examples for each resi-
due type pair. This means that generally the accuracy is
better for common residue pairs than for rare ones, pre-
sumably because a large quantity of independent training
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examples are necessary in order to fit the high-dimen-
sional probability densities. The median AUC over all 210
residue pairs was 0.60.

For comparison, the same analysis was also performed
for the distance-dependent 1D scores. The results
showed that some of the same residue pairs had the high-
est accuracy as for the 6D score, namely Cys-Cys as well
as all combinations of Iso, Leu, and Val. However, in addi-
tion the same-charge residue pairs Glu-Glu and Asp-Glu
were among the most accurately predicted residue pairs.
This is likely due to the unfavorable electrostatic energy
for close separations, which is reflected in negative scores
at close separations for these residue pairs. Figure 1
shows a plot of the 1D residue pair scores for Cys-Cys and
Glu-Glu and illustrates these trends as a function of inter-
residue separation. The median AUC for the 1D scores
was 0.53, which is lower than that for the 6D scores. As
will be seen in the next section, the higher accuracy of the
individual 6D residue scores translates into higher accu-
racy for total protein threading scores.

It is somewhat surprising that the accuracy of the indi-
vidual residue pair scores was significantly correlated
with the amount of training data even for the 1D scores (ρ
= 0.49, significance = 5 × 10-14). This implies that there is
still room for improvement in both the 1D and 6D scores
and that their accuracy will likely increase as new experi-
mental structures of proteins become available and pro-
vide additional independent training data.

Threading prediction accuracy on a benchmark set
The accuracies of the residue pair scores were assessed in
two ways: (1) by their ability to identify the native
sequence of a protein from among a set of 5000 distinct
decoy sequences and (2) cross-threading of all sequences
in the benchmark set against a subset of the structures. In
order to reliably estimate the prediction accuracy for
novel data and to account for potential overfitting, 10-
fold cross-validation was used for both test methods, thus
insuring that the scoring functions were fit to a different
set of protein structures than the set of proteins used to
assess their accuracy. In the first test method, 4999 decoy
sequences were generated for each protein in the bench-
mark set by shuffling the native sequence. Cross-valida-
tion predictions were then made for all 5000 sequences
(native + decoy) and the rank of the native sequence
determined. The results for this test are shown in Table 1.
In the second test method, all-against-all gapless cross-
threading was performed for the 333 structures in the
first cross validation set using residue pair scoring func-
tions fit to the remaining 2995 structures in the bench-
mark set. Only sequences with at least as many residues
as the template structure were threaded and all possible
gapless alignments were considered. This resulted in a
total of over 52 million threading solutions for all protein
structures. The number of possible threading solutions
varied dramatically between structures and ranged from
43, for the largest template structure, to 1472929 for the

Figure 1 1D log-odds scores as a function of Cβ separation for Ala-
Ala, Cys-Cys, and Glu-Glu residue pairs. The Cys-Cys function has a 
peak near the typical Cβ separation for disulfide bonds, in the range of 
3.5-4.0 Å and is negative for large separations. On the contrary, the 
score for the same-charge Glu-Glu pairs is negative for small separa-
tions and positive for large separations, reflecting the electrostatic en-
ergy penalty for close proximity. Both the Cys-Cys and Glu-Glu scores 
are among the most accurate because of these physical constraints on 
their separations. The Ala-Ala score, shown for comparison, manifests 
an oscillatory behavior with a peak near that of the Cys-Cys score.

Table 1: A comparison of the accuracy of the new scoring 
functions with other residue pair scoring functions from 
the literature in detecting correct threading solutions

Residue pair 
scoring function

Rank 1
(0.02%)

Rank ≤ 50
(1%)

Rank ≤ 100
(5%)

1D 2357 (70.8%) 2945 (88.5%) 3030 (91.0%)

3D 2774 (83.4%) 3128 (94.0%) 3183 (95.6%)

6D 2911 (87.5%) 3200 (96.2%) 3231 (97.1%)

MJ1999 2714 (81.6%) 3033 (91.1%) 3068 (92.2%)

TE2000 2054 (61.7%) 2737 (82.2%) 2847 (85.5%)

RMF2006 623 (18.7%) 1632 (49.0%) 1906 (57.3%)

RMF2008/6-bin 1386 (41.6%) 2378 (71.5%) 2559 (76.9%)

RMF2008/7-bin 1396 (41.9%) 2391 (71.8%) 2548 (76.6%)

The 5000 threading solutions for each of the 3328 template 
structures were ranked using either the 1D, 3D, or 6D residue pair 
scores or five different empirical potentials with available published 
parameters. The empirical potentials evaluated were from Miyazawa 
and Jernigan 1999 [16] (MJ1999), Tobi and Elber 2000 (TE2000), 
Rajgaria, McAllister, and Floudas 2006 [15] (RMF2006), and Rajgaria, 
McAllister, and Floudas 2008 [17] (RMF2008). The values indicate the 
number of protein structures for which the rank of the native 
sequence was within the indicated percentile. The corresponding 
percentage of the total structures is given in parentheses.
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smallest template structure. Because of this large varia-
tion, the fractional rank of the native sequence, or ratio of
the rank of the native sequence to the number of thread-
ing solutions for the particular template structure, was
reported, rather than the absolute rank of the correct
(native) sequence. These results are shown in Table 2.

Score accuracy improves with increasing dimension
Both the results for shuffled sequences, in Table 1, and
the results for cross-threading, in Table 2, show that the
prediction accuracy steadily improves as the dimension
of the scoring function increases from 1D to 3D to 6D.
Although the largest incremental improvement occurred
in going from 1D to 3D potentials, the highest dimen-
sional 6D potentials still had significantly higher accuracy
than the 3D potentials in both tests. This conclusion con-
trasts with that of Onizuka et al. [12], who found that
their 3D potentials achieved higher accuracy than their
6D potentials. However, this result agrees with the gen-
eral conclusion of Miyazawa and Jernigan [13], although
as mentioned above, the contact potentials in that study
differ from the backbone-only scoring functions consid-
ered here.

Comparison with other empirical potentials
The accuracy of the backbone-only scoring functions was
also compared with that of one other backbone-only
potential, that of Rajgaria, McAllister, and Floudas 2006
[15] (RMF2006), as well as with several conventional side
chain-dependent empirical potentials. This was accom-
plished by calculating the total energies for the same
threading benchmark set used to evaluate the backbone-
only scoring functions. The results, as evaluated by the
ranks of the native sequences, are given in Table 1. Side
chain-dependent empirical potentials from the following
studies were evaluated: Miyazawa and Jernigan 1999 [16]
(MJ1999), Tobi and Elber 2000 (TE2000), and Rajgaria,
McAllister, and Floudas 2008 [17] (RMF2008). These par-
ticular potentials were chosen because they all have avail-
able published parameters. The MJ1999 potential was the

only residue contact potential while the other side chain-
dependent potentials were a function of the side chain
centroid separation distances. Side chain conformations
were generated for the template backbone structures
using the ROSETTA 3 program [18].

The results in Table 1 show that the MJ1999 contact
potential was the most accurate among the five other
empirical potentials. They also indicate that this potential
achieves better performance than our 1D scoring func-
tion but worse performance than our 3D and 6D scoring
functions. The other four empirical potentials all had
lower accuracy on the benchmark set than even the 1D
scoring function. This may be due to the fact that these
four potentials were originally designed for different pro-
tein modeling tasks than fixed backbone design. The
TE2000 potential was optimized to discriminate correct
structures from decoys generated from a combination of
gapless threading and all-atom structure prediction while
the other three potentials (RMF2006, RMF2008/6-bin,
and RMF2008/7-bin) were optimized to discriminate cor-
rect structures from among decoys generated from all-
atom structure prediction. The background distribution
for decoys generated by all-atom structure prediction is
expected to be different from that for decoys generated
by fixed-backbone threading, which is most relevant for
this test. However, these results demonstrate that the 3D
and 6D backbone-only scoring functions achieve accu-
racy that is competitive with side chain-dependent
empirical potentials without requiring time-consuming
prediction of side chain conformations prior to score
evaluation.

Examination of the difficult threading cases
The protein structures for which the most sensitive scor-
ing function still gave poor threading results were exam-
ined in detail in order to determine common factors that
may contribute to the difficulty of recognizing the correct
solutions using the 6D score. For this purpose, all struc-
tures for which the 6D score assigned the native structure
a rank greater than 1000 (20% percentile rank) were

Table 2: Prediction results for all-against-all gapless cross-threading of 333 proteins

Residue pair scoring 
function

Percentile rank of native sequence Median percentile rank

0.001% 0.01% 0.1%

1D 118 (35.4%) 209 (62.8%) 261 (78.4%) 2.47 × 10-3

3D 121 (36.3%) 240 (72.1%) 286 (85.9%) 1.98 × 10-3

6D 125 (37.5%) 247 (74.2%) 293 (88.0%) 1.66 × 10-3

The number of structures for which the percentile rank of the native sequence was less than or equal to the indicated cutoffs are given in columns 
2-4 and the median percentile rank is given in the last column. The corresponding percentage of the total structures is given in parentheses. The 
threading solutions were ranked using the indicated residue pair scoring function.
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examined. A total of 22 structures satisfied this criterion.
Five properties were overrepresented in these structures
as compared with the other structures in the benchmark
set. These distinctive characteristics of the structures
were (1) solved by experimental methods other than X-
ray diffraction (mostly solution NMR), (2) small protein
domains, (3) large disordered regions, (4) subunit in a
complex, and (5) few residue-residue contacts. These
properties are not independent since NMR can only be
used to solve relatively small proteins and also can be
used to obtain structures of proteins with disordered
regions, which by definition have few residue-residue
contacts. A total of 18 of the structures were solved by
NMR and one was a structure fit to electron microscopy
data. This proportion of non-X-ray structures was signifi-
cantly higher (p = 5.3 × 10-8, Fisher exact test) than in the
set of other benchmark set structures, which included
973/3306 non-X-ray structures. A total of 15 protein
structures contained significant disordered regions,
which also had multiple conformations in the NMR
structure ensembles. In addition, five of the proteins were
subunits in a structure of a protein complex and so may
be unstable as monomers. Finally, because many struc-
tures had little regular secondary structure (α-helix or β-
strand), they also had relatively few residue-residue con-
tacts compared to more structured, compact proteins.
These properties are interdependent so that it is unclear
whether the poor threading performance is because
NMR structures may contain significant errors [19], or
because they have few non-local residue-residue contacts
that contribute to the total score, or because the disor-
dered regions cannot be reliably recognized by the score.

Combining the residue-pair scores of homologs improves 
threading accuracy
Proteins with significant sequence similarity usually have
similar backbone structures [20-23]. This suggests an
approach to improving threading accuracy by combining

a potential threading solution with the corresponding
solutions for homologous proteins. This can be accom-
plished by calculating the average over the score for the
original threading solution and the scores for the
homolog threading solutions, each obtained by replacing
the native sequence segment with the aligned segment of
a homolog sequence. This method is well suited to the
backbone-only scoring functions because the scores can
be quickly evaluated for the multiple homolog threading
solutions. It should be noted that this procedure is appli-
cable only to protein threading applications and not to
protein design because it requires protein sequences that
are evolutionarily related to the query sequence.

This procedure was tested using all-against-all cross-
threading of a non-redundant set of contacting pairs of
transmembrane α-helices in membrane proteins. This is a
particularly challenging task for threading because of the
limited number of inter-helical residue contacts, com-
pared with the number of residue contacts in a typical
complete protein structure. Cross-threading was per-
formed for a non-redundant set of 78 contacting TM
helices, which significantly differ both in sequence and
structure. The effects of three different factors on the
threading accuracy were investigated by calculating the
percentile rank of the correct solution among all cross-
threading solutions for each TM helix pair. First, the
scores calculated by averaging the threading scores over
homologs were compared with the usual scores calcu-
lated for just the native sequences. Second, the scores
were calculated both with and without a membrane
depth-dependent scoring function that reflects the pro-
pensity of each residue type to occur at a particular depth
in the membrane. Third, the effect of the size of the TM
helix pair interface was studied by calculating prediction
statistics for only the 27 TM helix pairs that have at least
15 inter-helix residue contacts (defined by atomic separa-
tion < 4 Å). The results for all 78 TM helix pairs are

Table 3: Comparison of cross-threading results for 78 contacting transmembrane helix pairs using the 6D potential and 
optionally including homolog sequences or a membrane depth-dependent residue potential

Include homolog 
sequences?

Include depth-
dependent score

Percentile rank of native sequence Median Percentile 
Rank

1% 5% 10%

No No 15 (19%) 29 (37%) 41 (53%) 8.4%

No Yes 16 (21%) 31 (40%) 43 (55%) 8.0%

Yes No 22 (28%) 38 (49%) 49 (63%) 6.0%

Yes Yes 22 (28%) 39 (50%) 56 (72%) 5.1%

The backbone structure of each helix pair was used as a template and the amino acid sequences of all helix pairs were threaded into the structure 
in both possible helix correspondences, (AT A', BT B') and (AT B', BT A'), and in all possible ungapped alignments. The threading solutions for 
each template structure were ranked using the appropriate score and the percentile rank of the correct native sequence calculated. These results 
show that both including the homolog sequences and including the depth-dependent score improve the threading accuracy.
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shown in Table 3 and the results for the large interface
helix pairs are in Table 4.

The results in Tables 3 and 4 show that each of the
three factors have clear effects on the threading accuracy.
Most importantly, combining threading scores for
homologs significantly improves the threading accuracy,
as can be seen by the lower median percentile rank of the
correct solution when homologs are included. As
expected, including the depth-dependent scoring func-
tion also improves the accuracy because it provides infor-
mation on the suitability of the threading solution that is
independent of the residue pair score. Finally, the accu-
racy is considerably higher for the subset of helix pairs
with more residue contacts. This can be explained by the
fact that additional residue contacts provide more con-
straints on potential threading solutions and thus lead to
better discrimination of correct solutions. A more
extreme example of this trend can be seen by comparing
the cross-threading results for the TM helix pairs with
those for complete proteins shown in Table 2. The much
lower percentile rank of the correct threading solutions,
indicating higher accuracy, for complete proteins is likely
due in large part to the much greater number of residue
contacts in the larger complete proteins.

Calculating the optimal sequence using Belief Propagation
Next, we demonstrate how the new backbone scoring
functions can be applied to solving problems in protein
design without computationally costly conformational
sampling. One question that arises in the context of pro-
tein design and the study of protein folding is what amino
acid sequences yield the most stable proteins with a given
backbone structure. Based on the Boltzmann hypothesis
of empirical threading potentials, which implies that the
most commonly observed interactions in protein struc-
tures also have the lowest energy, this problem can be
translated into finding amino acid sequences that maxi-
mize the total score for the backbone structure of inter-
est. In this study we consider the contributions of single
residues and residue pair interactions but not any higher

order (≥ 3) residue interactions. The total score, Stotal, is
then

in which Ti is the type of residue i, Pi are its properties
(here the solvent accessibility and secondary structure
type), and Ωij are the relative position and orientation
between residues i and j. The same amino acid sequence
that maximizes Stotal for a fixed backbone also maximizes
its exponential

Because the objective function, ,

is to be optimized with respect to the amino acid sequence

 for a fixed backbone, its implicit depen-

dence on the backbone geometry, through the Pi and Ωij

parameters, is not shown.
The function in Eq. (2) has the same functional form as

a pairwise Markov Random Field (MRF) model, up to a
multiplicative constant 1/Z, where Z is the partition func-
tion. The partition function is independent of the amino
acid sequence. Since only the sequence that maximizes
Eq. (2) is of interest, and not its maximum value, this con-
stant may be ignored.

The main advantage of interpreting the objective func-
tion in Eq. (2) as a MRF is that an efficient method, called
Belief Propagation (BP) [24,25], can be used to solve it.
There are two formulations of BP, the standard algorithm
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Table 4: Results for the same quantities shown in Table 3, except only for the 27 transmembrane helix pair structures that 
have at least 15 inter-helix residue contacts

Include homolog 
sequences?

Include depth-
dependent score

Percentile rank of native sequence Median Percentile 
Rank

1% 5% 10%

No No 9 (33%) 13 (48%) 20 (74%) 6.7%

No Yes 9 (33%) 15 (56%) 20 (74%) 3.6%

Yes No 10 (37%) 13 (48%) 20 (74%) 5.3%

Yes Yes 11 (41%) 16 (59%) 22 (81%) 2.3%

Comparison with the results in Table 3 show that the threading accuracy is higher for this subset of helix pairs with large interfaces, because of 
the stronger signal resulting from more inter-helix residue contacts.
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to calculate marginal distributions for a MRF and the
max-product algorithm to calculate the maximum a pos-
teriori (MAP) solution. Because we would like to find the
sequence that maximizes Eq. (2), the latter max-product
algorithm will be used. Eq. (2) can also be solved as an
Integer Linear Programming problem [26], however BP
offers a simple and fast alternative that generally yields
accurate approximate solutions [27]. The MAP problem
was solved by first converting the pairwise MRF corre-
sponding to Eq. (2) into an equivalent factor graph and
then using the max-product algorithm implemented in
the libDAI C++ library [28] to solve it.

Comparison of optimal amino acid sequences with native 
sequences
Most protein design methods, including the one
described here, assume a fixed backbone structure
because accounting for backbone flexibility would dra-
matically increase the number of degrees of freedom to
be sampled. However, X-ray crystallographic studies have
shown that proteins accommodate mutations in core res-
idues by adjustments in the backbone structure [29]. This
raises the question of how much bias the fixed backbone
approximation introduces into protein design methods
and whether this bias can be partially corrected by the
backbone flexibility implicit in the smooth 6D residue
pair scoring functions introduced here. This was studied
by comparing the sequence identity between optimal
sequences for backbone structures from two homologous
proteins within the same family. A test set of protein
structure pairs was compiled for this purpose by ran-
domly selecting pairs of protein structures from the same
HOMSTRAD [30] family. Each pair was selected from a
different family and the final set contained a total of 407
protein pairs. HOMSTRAD families contain proteins
with significant sequence or structure similarity so that
each pair of proteins are presumably homologous.

We also studied the related question of how similar the
optimal sequence is to the native sequence and how this
similarity is affected by the protein design method. A pre-
vious study by Kuhlman and Baker [31] investigated this
question using a fixed backbone design protocol that
involved Monte Carlo sampling of both side chain con-
formations and residue types using all-atom energy based
scoring with ROSETTA. The conclusion was that the
sequence similarity between the optimal and native
sequences is high, with identical residues for 51% of the
buried core residues and 27% of all residues in the set of
108 backbone structures considered. However, the fixed
backbone structure may lead to higher apparent sequence
similarity because it is unable to accommodate as many
mutations, primarily because of steric clashes in the pro-
tein core. In addition, many proteins share significant
structure similarity without having any recognizable

sequence similarity [32,33]. In these cases, the similarity
between the optimal and native sequences must be low.

Both of these questions were examined by comparing
the results using the protein design method described in
the previous section, involving BP optimization using the
6D residue pair scores, with the results obtained using the
ROSETTA program [18]. The ROSETTA optimal
sequences were obtained using the default fixed back-
bone design algorithm implemented in Rosetta version
3.0. The two questions were investigated by comparing
(1) the similarities between the optimal sequences for
each pair of proteins in the same HOMSTRAD family
(interstructure similarity) and (2) the similarities between
the optimal and native sequences for a given backbone
structure (intrastructure similarity), respectively.
Sequence similarities were calculated both for all residues
and for only core residues, which were defined as in Ref.
[31] as those residues with > 20 Cβ atoms within 10 Å.
Separate sequence similarities were also calculated sepa-
rately for high-resolution (< 2.5 Å) and low-resolution (≥
2.5 Å) protein structures. The results are shown in Table
5. First, both the intrastructure and interstructure simi-
larities were higher for the core residues. This trend
agrees with that observed in Ref. [31] and can be
explained by the fewer allowed residue substitutions in
the protein core due to stricter constraints resulting from
van der Waals, hydrophobic, and to a lesser degree hydro-
gen bonding interactions [34]. Another clear trend that is
apparent from these results is that the intrastructure sim-
ilarity is higher for ROSETTA than the BP method. How-
ever, in contrast, the median interstructure similarity for
BP derived optimal sequences are almost identical to that
obtained by ROSETTA. If these latter results are further
broken down by the resolution of the protein structures
then it is seen that ROSETTA designed sequences have
higher interstructure similarities for low-resolution
structures whereas the BP method has higher interstruc-
ture similarities for high-resolution structures. One inter-
pretation of these results is that the scoring functions
have a smoother dependence on the backbone structure
and thus yield more consistent optimal sequences for the
similar backbones of homologous proteins. This interpre-
tation is also supported by the lower dependence of the
BP method on the resolution for both the intrastructure
and interstructure similarities. Furthermore, the lower
interstructure similarity for the BP method may be partly
due to the fact that a fold is actually more permissive of
different sequences once backbone flexibility is
accounted for, rather than simply the expected lower
accuracy of the residue pair scoring functions compared
with the all-atom modeling of ROSETTA. In conclusion,
even though both design methods rely on a fixed back-
bone approximation, the protein design method using the
residue pair scoring functions yields optimal sequences
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that are more robust to the small variations in backbone
structure that occur within protein families.

Conclusions
The performance of 1D, 3D, and 6D residue pair scoring
functions that depend only on the protein backbone struc-
ture were compared by their ability to identify correct
threading solutions in a large benchmark set of proteins.
The accuracy was found to improve as the dimension
increased, with 6D scoring functions the most accurate.
The orientation-dependent scoring functions were also
found to achieve higher accuracy than several side chain-
dependent empirical potentials on this benchmark set.
This is remarkable since the backbone-only scoring func-
tions do not require prediction of the side chain conforma-
tions, which is computationally demanding, particularly
for many protein design applications. Interestingly, a previ-
ous study [35] also found that a backbone-only statistical
potential outperformed a side chain-dependent potential,
although the potential was derived and evaluated using
decoy sets appropriate for folding rather than for fixed
backbone design. We also found that averaging the thread-
ing scores for the query sequence and aligned segments of
homologous sequences further improved the accuracy for

protein threading applications. Incidentally, because those
results were obtained for membrane proteins, they also
demonstrated that the scoring functions can be success-
fully applied to the TM regions of membrane proteins even
though they were derived from a data set containing pre-
dominantly non-membrane proteins. The applicability of
the scoring functions to both membrane and non-mem-
brane proteins is likely due to the fact that most of the resi-
due pairs involve buried residues, which are not strongly
affected by the distinct physiochemical environments of
these two classes of proteins. However, direct comparison
between the performance of the scoring functions on
membrane and non-membrane proteins is needed to con-
clusively confirm this hypothesis. In addition, comparisons
of predicted optimal amino acid sequences for pairs of
similar backbone structures within the same protein fami-
lies revealed that the 6D scoring functions were more
robust to the small backbone rearrangements observed
between homologous proteins than fixed-backbone all-
atom modeling. Thus the 6D scoring functions should per-
form well in actual protein design applications in which the
backbone structures of the designed and template proteins
are expected to differ slightly.

Table 5: Similarities between the optimal and native sequences (intrastructure) and similarities between the optimal 
sequences for a pair of proteins in the same HOMSTRAD family (interstructure)

All residues Core residues only

All structures RMSD < 2.5 Å RMSD ≥ 2.5 Å All structures RMSD < 2.5 Å RMSD ≥ 2.5 Å

BP median %ID to 13.4% 13.5% 13.2% 17.6% 17.6% 17.8%

native

ROSETTA median 25.9% 26.5% 23.6% 35.6% 36.2% 33.2%

%ID to native

BP median 22.4% 24.0% 17.7% 29.4% 30.8% 25.3%

interstructure %ID

ROSETTA median 22.8% 25.4% 17.2% 29.8% 33.6% 21.4%

interstructure %ID

BP interstructure 183 (45%) 118 (41%) 65 (56%) 182 (45%) 116 (40%) 66 (57%)

%ID > ROSETTA

interstructure %ID

BP interstructure 222 (55%) 171 (59%) 51 (44%) 203 (50%) 161 (55%) 42 (36%)

%ID < ROSETTA

interstructure %ID

BP interstructure 2 (0.49%) 2 (0.70%) 0 (0%) 22 (5.4%) 14 (4.8%) 8 (6.9%)

%ID = ROSETTA

interstructure %ID

The similarities were calculated as percent sequence identity (%ID). The optimal sequences were calculated using the 6D residue pair scoring 
functions with Belief Propagation (BP) and using the ROSETTA program. The last three rows give the number of structure pairs for which the BP 
sequence similarity was less than, greater than, or equal to the similarity calculated using ROSETTA. The calculations were performed for a total 
of 407 structure pairs, each in a different HOMSTRAD protein family.
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Several possible extensions of this work are possible.
First, as expected by the geometrical dependence of their
physical interactions, accounting for the relative position
and orientation of residue side chains should improve the
accuracy of empirical scoring functions that depend on
side chain conformations. Several previous studies have
investigated such scoring functions, but with fewer relative
degrees of freedom [9-11]. The same method used here for
fitting 3D and 6D backbone-only scoring functions with
GMMs could also be applied to such side chain conforma-
tion-dependent scoring functions. One difficulty is decid-
ing the best choice of reference coordinate systems for
larger flexible side chains. Second, the same methodology
described here for deriving scoring functions for protein
threading could be directly applied to derive similar resi-
due pair scoring functions for other modeling tasks, such
as ab initio protein structure prediction or protein-protein
docking, by using the appropriate set of decoy structures.
Finally, as mentioned earlier, the residue pair scoring func-
tions can be employed in a fixed-backbone protein design
procedure to generate initial protein sequences that are
then subjected to all-atom optimization and scoring in
order to select the optimal solutions.

Methods
Protein structures for training and evaluation
A set of Protein Data Bank (PDB) protein structures for
which no two proteins share more than 25% sequence
identity was obtained from the PDBSELECT database
[36]. Protein structures with less than 50 residue contacts
(defined below) were observed to be predominantly iso-
lated alpha helices and so were removed from the set
resulting in a total of 3328 structures. These structures of
diverse proteins were then divided into ten approximately
equal size sets for cross-validation.

Residue pair relative position and orientation variables

Local coordinates at each residue are defined by axis unit

vectors, , , and , which are centered at the respec-

tive Cβ atoms, as:

so that the z-axis is along the Cβ-Cα bond. A virtual Cβ

atom was added to all glycine residues by assuming ideal

tetrahedral bond central angles of  about Cα and

a typical Cβ-Cα bond length of 1.53 Å. Six variables, {r, θ,

ϕ, α, β, γ}, completely specify the relative position and

orientation of the two residue backbones. The residue

pair distance, r, is defined by the Cβ separation. The

angles θ and ϕ are the polar angles of the residue #2 Cβ

atom position in the residue #1 coordinate system.

Finally, the relative orientation of the two coordinate sys-

tems fixed at each residue is described by three Euler

angles, α, β, and γ. These Euler angles were calculated

from the rotation matrix M between coordinate system

#1 and coordinate system #2 with elements Mij =

(u2)i·(u1)j, with , as

in which the step function is defined by Θ (×) = 1 for
×>0 and 0 otherwise. Defining the vector connecting the
origin of coordinate system #1 to the origin of coordinate
system #2 as v12 then the remaining variables describing
the relative position of residue #2 with respect to residue
#1 are calculated as

Empirical scoring function as a Naïve Bayes classifier
The goal of the scoring function is to discriminate
between two classes of protein structures: near-native
(correct) structures and non-native (incorrect) struc-
tures. The input data for the query protein structure con-
sists of the set of residue pair types and their relative
orientation, D ? {(Ti, Tj, Ωij), i = 1, ..., Nresidues, j = i + 1, ...,
Nresidues}. The data for each residue pair is (Ti, Tj, Ωij) with
Ti the amino acid type of residue number i and (i, j) are
the residue numbers of neighboring pairs within a fixed
cutoff separation of rmax = 10 Å. The relative position and
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orientation of residue pair (i, j) are specified by either all 6
variables described above or a subset thereof:

Using the Bayes theorem, the identity

expresses the ratio of class posterior probabilities as the
product of the class conditional probabilities of the data
and the ratio of prior class probabilities. According to the
maximum a posteriori (MAP) criterion, the protein
structure is then classified as correct if the posterior ratio
is greater than 1 or as incorrect if it is less than 1.

In a Naïve Bayes classifier, the class conditional proba-
bility of the data is approximated as a product of the
probabilities for individual variables, e.g. the variables are
considered independent, so that

in which Spair (Ti, Tj, Ωij) is defined as the log-odds resi-
due pair score for residues i and j, which have types Ti and
Tj and relative coordinates Ωij. The prior probability ratio
is defined as

Classification by MAP then implies that the structure is
classified as native if Spair >-log(Rprior) and non-native if
Spair <-log(Rprior).

Log-odds scores are often converted into physical
energy values using the Boltzmann distribution [37]. In
spite of problems with their physical interpretation [38],
such energy values may be useful when they are to be
combined with physical energies from, for example,
experimental data or force field calculations. However,
one advantage of retaining log-odds scores is that the
score cutoff has a useful interpretation in terms of Bayes-

ian prior probabilities, as shown above. In any case,
because the Boltzmann factor, exp(-E/kT), is monotonic,
these two interpretations are operationally equivalent in
terms of discriminating correct from incorrect solutions
using a score cutoff.

The remaining task is to estimate the log-odds scores
using training data. Spair (Ti, Tj, Ωij) using training data. It
should be noted that because the volume element
depends on the relative angular coordinates for the 3D
and 6D cases, a Jacobian factor is required. However,
because the conditional probabilities in the numerator
and denominator of Eq. (8) are evaluated at the same rela-
tive coordinates these factors cancel. The above relations
are quite general and the choice of non-native data, and
hence background probability distribution, will depend
on the discrimination task. In this study, we are interested
in identifying native, or stable, protein structures from
among other decoy structures with the same backbone
geometry but different residues. The resulting scores are
then appropriate for both fold prediction by threading
and protein design. The log-odds scores were calculated
by estimating the class conditional probability distribu-
tions, P (Ti, Tj, Ωij| native) and P (Ti, Tj, Ωij| non-native),
using two different density estimation methods applied to
the native and non-native training data, respectively. The
native distribution for a particular residue type pair was
fit using the relative position and orientation of those res-
idue types in native protein structures while the non-
native distribution was fit to the relative position and ori-
entation for all residue pairs in native backbone struc-
tures, regardless of their types. Thus the non-native
distributions are actually independent of residue types
and so equal to a common distribution, or P (Ti, Tj, Ωij|
non-native) = Pnn (Ωij). Kernel Density Estimation was
used to fit the 1D scores and Gaussian Mixture Models
were used to fit the 3D and 6D scores.

Deriving 1D distributions using Kernel Density Estimation
Histograms of the residue pair separation distances have
been commonly used to derive distance-dependent resi-
due pair scores. Kernel Density Estimation (KDE) is a
technique that has the advantages over histograms of
yielding a smooth density estimate as well as a faster
asymptotic rate of convergence of O(n-4/5) as compared
with O(n-2/3) for histograms as the number of data points,
n, is increased [39].

KDE fits the probability density function (pdf) P(r) as a
sum of kernel functions centered about each data point
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In particular, Gaussian functions of uniform band-

width, , were used in this

study in order to estimate the distribution of residue sep-

aration distances. KDE was calculated in R [40] with the

default bandwidth parameter λ calculated by the method

of Ref. [41]. The resulting density was then approximated

using linear interpolation of values calculated on a regu-

lar grid for computational efficiency.

Deriving 3D and 6D distributions using Gaussian Mixture 
Models for density estimation
The "curse of dimensionality" [42] makes estimating the
probability densities in the full 3- and 6-dimensional rela-
tive coordinate spaces challenging. Histograms are infea-
sible because the number of bins increases exponentially
with the number of dimensions, assuming equal length in
each bin dimension, and so the quantity of training data is
inadequate for 3- or 6-dimensional fitting. Kernel density
estimation is also challenging for two reasons. First, the
computational resources, both CPU time and memory,
are prohibitive for a straightforward implementation.
Second, the standard methods for estimating the Gauss-
ian kernel bandwidth matrix, which contains D(D + 1)/2
parameters in the general D-dimensional case, are not
feasible in higher dimensions. Instead we have chosen to
use Gaussian mixture models (GMMs) because they can
accurately and efficiently fit the high-dimensional densi-
ties required for the residue pair scores.

A Gaussian mixture model with Ncomp components
estimates the pdf as

in which

is a multidimensional Gaussian function and the mix-

ture proportions satisfy . The model parame-

ters are usually estimated by maximum likelihood using

the Expectation-Maximization (EM) algorithm [43,44].

A general problem with statistical models is choosing
the optimal complexity of the model, i.e. number of
parameters in the model. The accuracy of the model, as
reflected in the GMM log-likelihood, steadily improves as
the number of parameters is increased, even though the
accuracy on novel data, not used for fitting the model, is
optimal at a finite number of parameters. In order to fit
the 3- and 6-dimensional densities, Gaussian kernels with
full-rank covariance matrices Σk were used and the opti-
mal number of components was chosen by minimizing
the Bayes Information Criterion (BIC) [14]

As the number of model parameters is increased, the
first term in the BIC decreases while the second term
increases so that a minimum is achieved at an intermedi-
ate value. The R package MCLUST [45,46] was used to
search for the best GMMs with up to 100 components. In
all except a few cases the optimal number of components
was less than the maximum.

Single residue scoring function
In addition to the pairwise residue scoring function
described above, a single residue scoring function was
included in the BP prediction of an optimal amino acid
sequence (see Eq. (2)). The single residue score depends
on two residue properties, solvent accessibility and sec-
ondary structure, and, like the pairwise case, is a log-odds
score. Each residue was assigned to two solvent accessi-
bility classes, buried or surface, depending on whether its
relative solvent accessible surface area (SASA) is < 0.01 or
≥ 0.01, respectively. The relative SASA was calculated as
ratio of the SASA to the maximum SASA as defined in
[47]. The secondary structure was classified as an α-helix
(H), β-strand (E), or other (C). The score was then calcu-
lated as

in which the solvent accessibility class of residue i is
Acci �{ buried, surface} and the secondary structure of
residue i is SSi �{ H, E, C}. The probabilities P(Acci, SSi |
native) and P(Acci, SSi | non-native) were estimated from
the benchmark set of protein structures with the native
sequences and shuffled sequences, respectively. The sin-
gle residue properties are assumed to be independent of
the pairwise geometrical properties so that, when both
scores are used, the total score is their sum.
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Non-redundant set of contacting transmembrane helix 
structures
A set of high-resolution structures of interacting trans-
membrane (TM) helix pairs were extracted from PDB
membrane protein structures in order to test whether
including homologs improves threading accuracy, as
described in the Results section. TM segment boundaries
were determined by the PDBTM database [48,49]. The
included TM helix pairs were non-redundant both with
respect to their amino acid sequences, by selecting
sequences with < 30% sequence identity, and structure, by
clustering them by structural similarity and choosing a
single representative structure from each cluster. Cluster-
ing was performed by calculating all pairwise similarities
between different helix pairs, as measured by the Cα
RMSDs of their aligned segments, and then clustering
them based on these RMSD values. The aligned segments
were required to be at least 10 residues long and contain
all contacting residues. All possible segments in corre-
sponding helices that satisfied these criteria were super-
imposed using the Kabsch algorithm [50]. Also both
possible correspondences of helices in each helix pair
were tried, i.e. (AT A', BT B') and (AT B', BT A') for helix
pairs (A, B) and (A', B'). Once the similarity matrix was
calculated, the helix pairs were then clustered using the
robust Partioning Around Medoids (PAM) algorithm
[51]. In addition to the cluster assignments, the PAM
algorithm outputs a medoid for each cluster. A medoid is
the member of each cluster that has the minimum aver-
age dissimilarity to all other cluster members. Thus, in a
sense, it can be considered the central object in each clus-
ter. Because of this desirable property, the medoid helix
pairs in each cluster were chosen as the representative
structures that comprised the set. The number of clus-
ters, 78, was chosen so that the maximum RMSD
between a medoid and any other helix pair in the same
cluster was 2.5 Å.

Homologous sequences for TM helices
Aligned sequences of homologs were then collected for
each TM helix in the non-redundant set of 78 helix pairs.
First BLAST [52] was used to search the NCBI nr protein
sequence database using full-length protein sequences
containing the helices (E-value cutoff = 10-2). Highly sim-
ilar sequences were then removed using CD-HIT [53]
with a 90% sequence identity cutoff and the remaining
sequences aligned with MUSCLE [54]. Only gapless seg-
ments aligned to the TM helices were included in the
final set of homologous sequences used for threading.

Membrane depth-dependent scoring function
A previous study [55] derived a log-odds depth-depen-
dent empirical potential for inserting different amino acid
side chains into the membrane. The potential had a good

correlation with experimental transfer free energy values
and was able to reproduce the correct tilt angle of TM α-
helices with respect to the membrane. We derived a simi-
lar log-odds scoring function from the propensities of dif-
ferent residue types in α-helical integral membrane
proteins to occur at different depths in the membrane.
The scoring function was added to the 6D residue pair
scoring function for the prediction of TM α-helix associa-
tions described in the Results section.

First all α-helical TM segments were downloaded from
the PDBTM database and a non-redundant set extracted
using the CD-HIT program [53] with a 30% sequence
identity cutoff. Residue depths were defined by the abso-
lute distance, |z|, from the PDBTM predicted central
membrane plane. The log-odds depth-dependent score
for each amino acid type i, Si(z), was then calculated as

in which P(z|aai) is the pdf of amino acid type i appear-
ing at membrane depth z and P(z) is the pdf of any resi-
due appearing at depth z. Both pdfs are defined to be
symmetric, i.e. P(-z|aai) = P(z|aai) and P(-z) = P(z). Unlike
the previous study, which fit fixed functional forms to
histograms of amino propensities as a function of depth,
KDE was used to fit the pdfs, just as for the 1D (distance-
dependent) residue pair scoring functions.
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