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Abstract
Background: Large genomes contain families of highly similar genes that cannot be individually identified by 
microarray probes. This limitation is due to thermodynamic restrictions and cannot be resolved by any computational 
method. Since gene annotations are updated more frequently than microarrays, another common issue facing 
microarray users is that existing microarrays must be routinely reanalyzed to determine probes that are still useful with 
respect to the updated annotations.

Results: PICKY 2.0 can design shared probes for sets of genes that cannot be individually identified using unique 
probes. PICKY 2.0 uses novel algorithms to track sharable regions among genes and to strictly distinguish them from 
other highly similar but nontarget regions during thermodynamic comparisons. Therefore, PICKY does not sacrifice the 
quality of shared probes when choosing them. The latest PICKY 2.1 includes the new capability to reanalyze existing 
microarray probes against updated gene sets to determine probes that are still valid to use. In addition, more precise 
nonlinear salt effect estimates and other improvements are added, making PICKY 2.1 more versatile to microarray users.

Conclusions: Shared probes allow expressed gene family members to be detected; this capability is generally more 
desirable than not knowing anything about these genes. Shared probes also enable the design of cross-genome 
microarrays, which facilitate multiple species identification in environmental samples. The new nonlinear salt effect 
calculation significantly increases the precision of probes at a lower buffer salt concentration, and the probe reanalysis 
function improves existing microarray result interpretations.

Background
PICKY 1.0 [1] introduced several novel approaches to oligo
microarray design for large and complex genomes. It
went beyond sequence comparison and utilized efficient
thermodynamic calculations in a whole genome scale to
determine the quality of all probe candidates. It also
employed a global optimization strategy to ensure the
entire microarray, not just individual probes, are opti-
mized for best sensitivity, specificity and uniformity.
Since PICKY can run on all major computing platforms
and is computationally efficient, it has been used by sev-
eral research groups to design their oligo microarrays [2-
10]. In particular, the rice microarray project sponsored
by National Science Foundation selected PICKY to design
its whole genome rice microarrays and the Xanthomonas

oryzae dual rice pathogen microarray [10-12]. Indepen-
dent evaluations of microarray design software indicated
that PICKY generates quality probes [13,14]. The results
from a recent quantitative evaluation showed that PICKY-
designed microarray probes are robust and consistent
throughout a wide range of temperature and sample con-
centration [15]. In this article we describe some new fea-
tures added to PICKY since version 1.0 release and their
algorithmic details; these new features make the latest
PICKY 2.1 more versatile to microarray users.

A primary difficulty of microarray design for large
genomes, like those of rice or maize, is their large gene
families. Each gene family contains many highly similar
genes that are thermodynamically indistinguishable to
microarray probes. For example, the largest transposon
gene family in rice contains over 9399 sequences that are
more than 90% similar to each other over 90% of their
entire length [16]. Probes designed to detect genes in this
family likely will bind to multiple targets -- the keys are
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how to rationally determine the intended targets and to
also avoid all unintended targets. A subset of genes that
share common sequence regions may be rolled into a
group to share a common probe; these common regions,
however, are often highly similar to regions contained in
the other genes. The conflicting needs are to target some
common regions for shared probe design and to also
avoid the other common regions to prevent cross-hybrid-
izations. Therefore, it is more difficult than single-target
probe design to choose a probe that can be shared but
does not cross-hybridize with the other nontarget genes
existing in the same gene family. The "shared probe"
design feature has been added to PICKY; it allows genes in
a group to be studied as a whole if not individually. This
new feature differs from previous methods to discover
"non-unique probes" [17,18]: the shared probes are not
ranked by sequence level comparisons (e.g., their longest
common substring with nontargets) but by their thermo-
dynamic comparisons with targets and nontargets, any
number of genes can share the same probe, and a gene
can share different probes with different sets of genes.
Generally, an algorithmic method to design probes
shared by a few genes is more desirable than the absence
of any probe to detect any of the genes. Note that some
genes sharing a probe may also acquire their own unique
probes with different target regions; thus, the identify of
genes detected by a shared probe is often resolvable when
considering multiple probes. The division of gene fami-
lies into groups by PICKY is entirely computational and
may not necessarily reflect their evolutionary distances.

A recently published biochemistry study demonstrated
that the salt effect on DNA annealing stability is generally
nonlinear, in contrast to the linear salt effect correction
commonly used in melting temperature estimation equa-
tions [19]. Nonlinear salt effect suggests that the optimal
microarray probes at different hybridization salt concen-
trations may not be the same. A more precise nonlinear
salt effect calculation is added to PICKY to enhance the
precision of the designed probes under a specific
microarray protocol with a known salt concentration.
Unlike the linear salt effect calculation which depends
only on salt concentration, the nonlinear salt effect calcu-
lation also depends on DNA context. Therefore, new
code is added to the PICKY design algorithm to keep track
of the DNA binding context for each probe candidate.

Another frequently occurring issue is that microarrays
can seldom keep up with the rapid progress of sequence
annotation updates. For example, the NSF 45K rice
microarray was designed using gene models from version
3 of the Rice Genome Annotation [16]. This microarray is
still being used by many users, but three newer rice anno-
tations have been released [20]; the latest version 6 anno-
tation has much improved gene models [21]. It is
impractical to keep making new microarrays each time

the sequence annotation gets updated. Although most
probes on the existing rice microarrays should continue
to work, some of the probes may no longer function as
expected due to conflicts with the newer gene models. It
is possible to add new probes to an oligo microarray for
newly discovered gene sequences, but it incurs extra cost
that should be minimized. A new feature is added to
PICKY to reanalyze existing probes against new sequence
information to determine probes that are still valid.
Invalid probes can be ignored during subsequent data
analysis although they cannot be removed from printed
microarrays. Only genes, new or old, that no longer have
valid probes to detect them will need new probes to be
added during the next microarray print. Therefore, the
reanalysis feature reduces the cost of microarray update
and maintains microarray quality. This feature may also
be used to examine vendor supplied microarrays against
users' gene sets to include only valid probes for data anal-
ysis, even if different gene sets have been used to design
the microarrays.

Implementation
Shared probe design
To design shared probes, there are three requirements: 1)
to be able to efficiently determine common regions
among input sequences that are long enough to be tar-
geted by probes; 2) to be able to efficiently distinguish
these common regions from other highly similar regions
during probe design so they would not be considered as
nontargets and prevent probe targeting; and 3) to be able
to thoroughly examine the thermodynamic characteris-
tics of probe candidates targeting these common regions
to prevent them from cross-hybridizing with nontargets
in the whole genome. Although it is relatively easy to
achieve the first requirement, it is harder to achieve the
second and third requirements because common regions
among gene family members often vary in their similarity
levels -- a slight difference in their mutual similarity can
mean either good targets for shared probes or very detri-
mental nontargets for shared probes.

Although it is straightforward to detect common
regions between any two sequences, from the perspective
of probe design these common regions often randomly
overlap, making it difficult to target a probe. An example
helps illustrate the complexity. In Figure 1, five sequences
A-E are shown to share six common regions. Region 1 is
shared by A and B, region 2 is shared by B and C, region 3
is shared by C and D, region 4 is shared by A-C, region 5
is shared by A-D, and region 6 is shared by all sequences.
The common regions overlap each other, e.g., region 4
overlaps regions 1 and 2, and region 6 overlaps all other
regions. Therefore, a common region may be implicitly
divided into more regions, and probes targeting the
region should not cross any of its dividing boundaries set
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by the other regions. For example, probes designed to tar-
get the early part of region 1 are shared only by sequences
A and B, but probes designed to target region 5, which
overlaps region 1, are shared by sequences A-D. A probe
that targets the boundary area between regions 1 and 5
does not make a good probe for either region. This exam-
ple demonstrates that simply finding a long common
region is not sufficient to design good shared probes.

Many indexing data structures can be used to effi-
ciently discover all common regions among input
sequences [22]. Since suffix array is the chosen data
structure in PICKY, we focus on some of its well-known
properties. One property is that suffixes sharing the lon-
gest common prefixes must be collated into the same
group on the suffix array. In addition, different such
groups must be separated by groups of shorter common
prefixes that may contain as few as just one suffix. Since
the longest common prefix (LCP) array has already been
constructed as part of PICKY computation [23], the fol-
lowing algorithm suffices to achieve the first require-
ment, to find all common regions long enough to
accommodate probes:

(1) Scan the LCP array, and locate groups of suffixes
whose LCP values are greater than the minimum
probe size.
(2) For each of the groups found, check if any of the
following conditions is true:

1. Suffix(es) from a nontarget input sequence or
the reverse complement of any input sequence is
in the group.

2. Either one of the LCP values bordering the
group is greater than the maximum allowable
length of exact nontarget match.

(3) If either condition above is true, this group is
invalid and is skipped. Otherwise, record it in a
lookup table indexed by the left-most sequence in the
group.

Step 1 discovers all regions that may accommodate
probes. PICKY allows users to provide a list of nontarget
sequences to be avoided during the microarray design;
these can be any transcripts that might be encountered by
the microarray (e.g., mitochondrial RNA). PICKY also con-
siders the reverse-complements of all input sequences to
be nontargets; this prevents secondary structure forma-
tions on the probes or on their targets. The details of
these are described in the PICKY 1.0 paper [1]. If suffixes
from nontarget sequences or the reverse-complements of
any sequences are in a group, the group cannot be used to
design probes. If a group is bound on either side by over-
laps longer than the maximum allowable length of exact
nontarget match, then suffixes in the group are overlap-
ping too much with nontarget sequences, thus the group
cannot be used either. The probe size and the maximum
length of nontarget match are user specified parameters.
In the algorithm, steps 1 and 2 can be combined in imple-
mentation and run in linear time. Step 3 can run in either
constant time or logarithmic time depending on whether
a hash table or a balanced binary tree is used for the
lookup table. The worst-case complexity of this algorithm
is thus O(n log n), where n is the number of suffixes from
all input sequences (i.e., the total bases). Figure 2 presents
an example implementation of this algorithm in C++.

The left-most sequence that is used to record a group is
called the host sequence. The span of a group is defined to
be its number of members, and the length of a group is
the shortest overlap (i.e., the smallest LCP value) among
all its members. In Figure 1, the common regions are rep-
resented by the groups hosted on sequences B, C and D as
indicated by their thick underlines. In particular,
sequence D hosts three different groups representing
regions 3, 5 and 6 with span value 2, 4 and 5, respectively.
It is necessary to track the stacking of these groups so
probes can be shared by the correct member of sequences
and no probe may cross different groups. In Figure 1,
probes targeting the first part of region 3 can only be
shared by sequences C and D, but probes targeting region
5 or 6 can be shared by more sequences. No probe, how-
ever, should target any of the stacking group boundaries.
The following algorithm efficiently traverses all host
sequences and tracks their stacking groups:

(1) Iterate through all host sequences on the lookup
table.

Figure 1 An example of overlapping gene family sequences. Five 
sequences A--E can overlap each other in six regions as indicated by 
the gray colors; darker grays indicate more sequences that overlap. 
These common regions are represented by suffix groups, which are 
found on the suffix array and hosted by sequences with the black un-
derlines (i.e., sequences B, C and D). The underlines also indicate the 
stacking of the suffix groups when a host sequence is being processed.
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(2) Sort groups on a host sequence based on their
start position, and then push the very first group onto
a stack.
(3) While the stack is not empty, do one of the follow-
ing:

1. If there are no remaining groups for the host
sequence, pop the group on top of the stack, pro-
cess it and add its probe candidates to its probe
priority queue.
2. If the start position of the next group overlaps
the right end of the group currently on top of the
stack with at least maximum nontarget match
length, process the region of the stack-top group
up to the beginning of the next group, add its
probe candidates to its probe priority queue, and
then push the next group onto the stack.
3. If neither of the above is true, pop the group on
top of the stack, process it, and add its probe can-
didates to its probe priority queue. If the stack is
now empty, push the next group onto the stack.

To "process" a group region, we meant that the corre-
sponding region of the group on the host sequence is
used to identify probe candidates; this will be discussed
shortly. The time to sort groups in step 2 is negligible,
because only distinct groups long enough to accommo-
date probes are recorded and few are expected per each
host sequence. The three choices in step 3 always advance
some distance on a host sequence or reduce the stack
size. Therefore, without counting the time to process a

group region, this tracking algorithm takes linear time to
run in practice.

In step 3.2, if the next group overlaps at least maximum
nontarget match length with the group currently on top
of the stack, then the right end of the next group cannot
extend beyond the right end of the stack-top group. In
this case we say that the next group covers the stack-top
group. To prove this is always true, assume the opposite
that a next group goes beyond the right end of the stack-
top group but overlaps it with maximum nontarget match
length. Suffixes of the stack-top group cannot all be also
members of the next group because that would extend
the stack-top group to the right end of the next group and
contradict our assumption. Therefore, suffixes of the
stack-top group that are not members of the next group
must have overlapped at least the maximum nontarget
match length with suffixes of the next group, which pre-
vents the next group from even being added to the lookup
table based on step 2.2 of the first algorithm. Therefore, a
group that covers another group must be entirely within
the region of the covered group and must have more
members (i.e., a larger span value) than the covered
group. A priority queue and stack combination can be
used to keep track of the various groups on a host
sequence: a priority queue is associated with each group
and is used to store and prioritize its best probe candi-
dates, while a stack is used to keep track of all stacking
groups. For example, host sequence D in Figure 1 con-
tains three stacking groups. When the group representing

Figure 2 Example implementation to discover all common region groups that can accommodate probes. suffix_array and 
common_array are always the same size; i and j are the left and right boundaries of an identified common region group; k saves its left overlap 
length with nontargets; m saves its right overlap length with nontargets; and n holds the shortest common region within the group.

for (i=m=0; i<suffix_array.size(); i=j) {
  bool good_region = true;
  // find a group on the common_array
  for (j=i+1, k=m, n=Max_Sequence_Length;
       j<suffix_array.size() && (m=common_array[j])>=minimum_probe_size; 
       ++j) {
    n = std::min(n, m);  // track the shortest overlap length in a group
    const PosTag t(suffix_array[j]);  // identify suffix characteristics
    good_region &= t.Pos()>=0;    // is this suffix from forward strand?
    good_region &= t.Set()<sets.Targets();   // is this suffix a target?
  }
  // does the group have more than one member?
  if (j-i>1) {
    const PosTag t(suffix_array[i]);  // identify suffix characteristics
    good_region &= t.Pos()>=0;    // is this suffix from forward strand?
    good_region &= t.Set()<sets.Targets();   // is this suffix a target?
    good_region &= k<maximum_match_length; // left nontarget acceptable?
    good_region &= j>=suffix_array.size() || m<maximum_match_length;
    if (good_region)                        // are everything satisfied?
      shared_regions->Add(suffix_array[i], j-i, n);  // register a group
  }
}
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region 6 is being processed, the groups for regions 3 and 5
are pushed down the stack as indicated by the underlines.
Processing on the host sequence never backtracks; thus,
after group 6 has been processed, only the remaining
region of group 5 will be processed. Group 3 will later be
skipped because the remaining region of group 3
becomes zero after group 5 has also been processed. Fig-
ure 3 presents an example implementation of this algo-
rithm in C++.

The final requirement is to process each group region,
identify all shared probe candidates and examine their
thermodynamic characteristics, to make sure that only
probes with the least possibility to cross-hybridize with
nontargets will be chosen. Most of this requirement has
been solved in PICKY 1.0 for unique probe design [1].
PICKY 1.0, however, considers all common regions detri-
mental. Longer ones, as those encountered during shared
probe design, will immediately rule out probe candidates
targeting those regions. The PICKY algorithm has been

Figure 3 Example implementation to traverse all host sequences, track their stacking groups and process the groups for shared probe de-
sign. r points to each overlap group on a host sequence, which contains four data fields used in this algorithm: Pos, the start of the group on the 
host sequence, End, the end of the group on the host sequence, Span, the span value of the group, and Next, pointer to the next group; host is 
the host sequence currently being scanned; pqc counts the total number of distinctive groups on a host sequence; pqs is a collection of priority 
queues for each associated group; start and end indicated the range of the current group being processed; span records its span value; and 
next_s is the start position of the next group. Each stack entry in st contains a pair of values: the first is the r pointer to a region as described 
above, and the second is the pqi index into pqs for storing shared probes designed for a group.

while ((r=shared_regions->ScanNextHostSequence(host))) { // get a host
  int pqc=0, pqi;
  int start=r->Pos(), end, next_s;
  st.push(stack_entry_pair(r, pqc++));  // push first group onto stack
  pqs[pqc-1].Reset();                  // clean out its priority queue
  for (r=r->Next(); !st.empty(); start=next_s) {    // scan all groups
    if (r==0) {                 // there are three possible conditions 
      next_s=end=st.top().first->End();
      span=st.top().first->Span();
      pqi=st.top().second;
      st.pop();
    } else if (r->Pos()<=st.top().first->End()-maximum_match_length) {
      next_s=end=r->Pos();
      span=st.top().first->Span();
      pqi=st.top().second;
      st.push(stack_entry_pair(r, pqc++));
      pqs[pqc-1].Reset();
      r=r->Next();
    } else {
      end=st.top().first->End();
      span=st.top().first->Span();
      pqi=st.top().second;
      st.pop();
      if (st.empty()) {
        next_s=r->Pos();
        st.push(stack_entry_pair(r, pqc++));
        pqs[pqc-1].Reset();
        r=r->Next();
      } else
        next_s=end;
    }
    if (end-start>=minimum_oligo_size)       // long enough for probe?
      // find probes for this group and add them to its priority queue
      pqs[pqi]->Add(process_group(host, start, end, span));
  }
  // add shared probes discovered by a host sequence to the global set
  probe_set->Add(pqs, pqc);
}
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modified to accommodate the shared probe design fea-
ture. Now, when processing each group region, the same
algorithm for unique probe design is used but the known
span value of each group prevents group members from
being identified as nontargets. Therefore, only true non-
targets will be screened during the shared probe design
process. This modification finally achieves basic require-
ment 3.

Although a large gene family is expected to contain
many common regions and produce many shared probe
candidates, most of the candidates are not useful because
they often imperfectly match some highly similar nontar-
gets in the same gene family. For example, among the
61420 gene models used to design the NSF 45K rice
microarray [12], 54761 common regions were identified,
which produced 26519 distinct shared probe candidates.
After thermodynamic screening, however, only 3214
shared probes can be chosen. This example reveals the
importance of thermodynamic screening especially for
shared probe design -- a sequence comparison method
can identify the 26519 probe candidates but does know
many of them may cross-hybridize with nontargets.

As seen in Figure 1, a common region may be repre-
sented by several disjoint groups and stacking groups
(e.g., region 2). Groups that stack on each other may not
necessarily be recorded by the same host sequence and
may not all be visited during the processing of any partic-
ular host sequence (e.g., groups for regions 1, 4 and 5
stack but are on three different host sequences). Never-
theless, due to the insufficient span value of a covered
group, the covered region of the group always triggers a
maximum nontarget match length violation and is effi-
ciently skipped during probe design. The covering groups
with higher span values will then cover (or may have
already covered) the skipped region when their host
sequences are being processed. In Figure 1, when host
sequence B is being processed, the group 1 region cov-
ered by groups 5, 6 and 4 is skipped because the span
value of group 1 is 2 and it cannot prevent extra members
in the other groups from being identified as nontargets.
Thus, only in the early part of group 1, which is not cov-
ered by any other groups, can shared probes be designed
only for sequences A and B using this host sequence.

Nonlinear salt effect calculation
PICKY uses the nearest neighbor (N-N) parameters deter-
mined by biochemists in standard buffers to estimate the
melting temperature between two DNA molecules [24-
27]. Standard buffers have a salt [Na+] concentration of 1
M. Most microarray hybridization buffers, however, con-
tain less salt. To accommodate the difference, a salt effect
correction is added to the equation that calculates the
melting temperature. At the time of PICKY 1.0 publication,

the prevailing appearance of the correction took a linear
form in the middle of the following equation:

After PICKY 1.0 publication, a comprehensive study
demonstrates that the salt effect on DNA melting tem-
perature is generally nonlinear; thus, the commonly used
linear salt effect correction predicts melting temperatures
that can significantly deviate from the measured values
[19]. A higher melting temperature prediction error can
throw off microarray design precision and reduce the
quality of microarray data. This new study suggested that
salt effect should be described using a nonlinear equa-
tion:

This new equation uses two terms to correct for salt
effects: a linear term which depends on both salt concen-
tration and sequence binding context, and a quadratic
term which depends only on salt concentration. The gc in
the linear term is the GC content of two binding DNA
molecules, and it makes the salt effect calculation con-
text-sensitive. All other terms in the two equations above
are explained in the cited literature. PICKY 2.1 incorpo-
rates this new equation and offers both equations for
microarray design. If the nonlinear equation is chosen,
PICKY has to dynamically maintain the GC content in its
innermost loop of calculation, thus it runs about 1/3
slower than the time it takes when the linear equation is
chosen.

Using the linear equation, PICKY always produces the
same set of probes at different salt concentrations,
because the difference between the linearly predicted tar-
get and nontarget melting temperatures is the same even
though their values are changing with salt concentra-
tions. PICKY optimizes its design by selecting probes that
can achieve the highest melting temperature differences.
Because the salt effect term in the linear equation
depends only on salt concentration, it is canceled out
when two melting temperatures predicted at the same
salt concentration are compared. For example, when
PICKY is used to design probes for a set of 3460 maize
sequences, the same set of 3352 probes is generated at
different salt concentrations. It is shown under the "Lin-
ear Probes" column in Table 1. This independence on salt
concentration can also be seen in Figure 4a, where the
melting temperature differences between targets and
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nontargets of 50-mer probe candidates targeting different
locations on a sequence are calculated using the linear
equation: the temperature differences change with target
locations, but not with salt concentrations.

The nonlinear salt effect equation induces the depen-
dence of PICKY probe design on salt concentration. As
seen in Figure 4b, the melting temperature differences
predicted by this equation for the same 50-mer probe
candidates now depend not just on target locations but
also on salt concentrations. As a result, the probe sets
selected by PICKY at different salt concentrations vary
greatly; they are summarized under the "Nonlinear
Probes" column in Table 1. At each salt concentration, the
"Same Probes" and "Overlap Probes" columns in Table 1
compare the probe sets obtained using the linear and
nonlinear equations; they show the number of probes
between the two sets that are the same or overlap some-
what. About a quarter probes are still different between
the two probe sets even at the salt concentration of 950
mM which is very close to 1 M. It can be seen in Table 1
that the average and medium predicted target melting
temperatures of the two probe sets differ within just
1~2°C throughout the salt concentration range, but
probes in the two sets only converge at the 1 M standard
buffer salt concentration. This is because the nonlinear
salt effect equation locally influences individual probe
selections under different salt concentrations, although it

predicts roughly the same melting temperature average as
the linear equation predicts.

Reanalysis of existing probes
PICKY 2.1 incorporates another new feature to map exist-
ing probes against any gene sets and evaluate their ther-
modynamic properties. There are many applications of
this new feature, e.g., to evaluate third party microarray
design quality, to characterize existing microarrays
against newly annotated gene sets, and to determine PCR
primer specificity. To efficiently map probes, PICKY com-
putes a prefix index table during the construction of the
suffix and LCP arrays of the input sequences. This table
divides the suffix array into smaller regions that can be
independently searched using a binary search algorithm
on suffix array [22]. PICKY tries to first locate a suffix that
contains a query probe as a prefix, and then expands from
the match site to discover all such suffixes. As stated ear-
lier in explaining the shared probe design algorithm, all
suffixes sharing the same probe prefix must be collated
into the same group on the suffix array, so the expansion
is local and efficient. The complexity of the probe map-
ping algorithm is expected to be O(m+log n/4x), where m
is the probe length, n is the total sequence bases, and x is
the index prefix length.

Several different outcomes may result for a probe being
mapped: it may not be found to target anything in the
input sequences; it may be found to target only the user

Table 1: Comparison of design results using the linear and nonlinear salt effect equations at different salt concentrations.

Salt Conc. Linear Probes Nonlinear 
Probes

Same Probes Overlap 
Probes

Average 
Temperature 

Difference

Medium 
Temperature 

Difference 

50 3352 3254 1020 2380 2.70 2.38

100 3352 3281 1301 2501 1.15 0.62

200 3352 3310 1662 2630 1.80 1.37

300 3352 3321 1977 2809 1.80 1.55

400 3352 3326 1734 2307 2.53 1.67

500 3352 3332 2253 2780 1.75 1.35

600 3352 3339 2333 2754 1.62 1.12

700 3352 3340 2409 2698 1.46 0.86

800 3352 3342 2475 2668 1.25 0.58

900 3352 3342 2544 2633 1.01 0.29

950 3352 3344 2565 2617 0.89 0.14

1000 3352 3352 3352 3352 0.00 0.00

Salt concentrations are shown in milliMolar (mM). The "Linear Probes" are the same but the "Nonlinear Probes" vary greatly at each salt 
concentration. Comparing the two probe sets, the "Same Probes" and "Overlap Probes" columns show the number of their probes that are 
the same or overlapping. Although at each salt concentration the "Average" and "Medium" target melting temperatures of the two probe 
sets differ just slightly, the two probes sets do not converge until reaching the 1000 mM standard salt concentration level.
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Figure 4 A comparison of linear and nonlinear salt effects. The target and closest nontarget melting temperature differences of 50-mer probes 
calculated using (a) the linear salt effect equation and (b) the nonlinear salt effect equation are expressed as a function of targeting sequence locations 
and salt concentrations. For example, the 50-mer probe targeting location 650-699 under 0 salt concentrations has a calculated melting temperature 
difference of either 25°C or 21°C using the two different equations. The temperature difference exhibits no dependence on salt concentration when 
calculated using the linear salt effect equation but becomes sensitive to salt concentration when calculated using the nonlinear salt effect equation.
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supplied nontarget sequences; or it may be found to tar-
get some sequences but also perfectly match some user
supplied nontarget sequences or the reverse-comple-
ments of any sequences. In all of these cases, the probe is
not considered useful. Once a probe is mapped onto tar-
get sequences and is not found to exactly match nontar-
gets, its thermodynamic characteristics are evaluated by
PICKY. If its target and nontarget melting temperature dif-
ference is less than a minimum value set by the users (e.g.,
15°C), then the probe is not specific but may still be
usable. Finally, a probe may be found to target multiple
sequences, i.e., it can be a shared probe. PICKY will sort
the query probes based on their classifications and pres-
ent them on screen using different color coding to indi-
cate their types. A complication is that some probes may
overlap each other on their target sites so their colors
might be mixed on the screen display; the textual output
generated by PICKY unambiguously describes the type of
each query probe disregard whether it overlaps with the
other probes or not.

Results
The shared probe design requires a new graphical user
interface and output file format to convey the informa-
tion. Figure 5 shows an example of how such information
is displayed by PICKY. The target region of a shared probe
on Gene 685 is being viewed. Three additional Genes
657, 1113 and 2212 are also being targeted by the same
probe. This can be seen from their matching green DNA
characters. Because of dangling end differences [28], their
estimated melting temperatures with the shared probe
may be slightly different (e.g., Gene 2212). All detected
nontargets of the shared probe are also listed after the
four targets and are sorted based on their estimated melt-
ing temperatures with the probe. The closest nontarget
Gene 263 has an estimated melting temperature of 64.9°C
which is significantly lower than the 91°C of the targets.
The PICKY design strategy is to widen the melting temper-
ature differences between targets and nontargets, and
this is also true for shared probes. When users move their
mouse pointer over each of the matching fragments, an
expanded alignment beyond the probe target region is
dynamically produced to show the similarity between the
gene being targeted (i.e., Gene 685) and the other gene
(e.g., Gene 1113) at the matching site. There are several
other views of PICKY computation results that are docu-
mented in the PICKY user guide. The probe reanalysis
results are displayed using the same interface, but if a
mapped probe is not specific, its nontarget list can be
very long and the estimated nontarget melting tempera-
tures can be very high. Although all nontargets are
detected and analyzed, to conserve disk space, the PICKY
output file reports only the closest nontarget of each
probe, i.e., the one with the highest estimated melting

temperature with the probe. Each target sequence shar-
ing the same probe is then listed in the output. The probe
reanalysis output also uses the same file format, but some
queried probes may not be found to target any sequence.

As reported earlier, PICKY has been used by many
research groups to design their microarrays [3-10]. As
part of its quality assurance testing, we have also used it
to design microarrays for 13 model species. Selected
results are compared in Table 2. Similar to many optimi-
zation problems, tradeoffs can be made during microar-
ray design. One tradeoff is between the specificity of the
probes and the number of probes designed. Given differ-
ent design constraints, PICKY can design probe sets that
are significantly different in size. For example, using its
stringent default parameters, PICKY can only find 9134
probes for the 28205 genes in a human gene set; with
somewhat relaxed design parameters, PICKY can then find
25080 probes for almost all genes in the human gene set.
PICKY has more than 15 design parameters, but the ones
that most influence probe specificity are the minimum
melting temperature difference between targets and non-
targets and the maximum allowable exact nontarget
match length. If the minimum temperature difference is
lowered or the maximum nontarget match length is
increased, PICKY is allowed to choose from more probe
candidates that would have been automatically ruled out
by more stringent settings. The detail discussion of PICKY
parameters and how they influence its design output is
beyond the scope of this article and is provided in the
PICKY built-in help system. The gene sets used to design
probes for the 13 model species and the PICKY parameters
used to design each probe set reported in Table 2 can be
found on the PICKY website [29].

Another tradeoff is between the time PICKY spent on its
computation and the number of probes it designed. This
is illustrated in Figure 6 by using the data from Table 2.
The CPU time and probe number difference between the
two probe sets reported for each species are compared.
For example, the smaller of the E. coli probe sets contains
4651 probes and was computed in 2 × 9 = 18 CPU-min-
utes. Its larger probe set has (4852-4651)/4651 = 4.3%
more probes but takes (4 × 7-18)/28 = 36% more time to
compute; thus, the 4% more probes are expensive because
they require 36% more time to compute. When its design
constraints are relaxed, PICKY has to consider more probe
candidates, which require more thermodynamic compar-
isons and computation time. The two lines in Figure 6
indicate that generally more effort is needed to obtain
new probes, i.e., the percentage time spent (red line) is
often more than the extra probes gained (blue line). Nota-
ble exceptions of this trend are for maize, mouse and
human. For these three species, more probes can be
gained with relatively less computation time increase. It
may be an anomaly with maize because its genome had
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not been fully sequenced at the time of this test, thus its
gene set was limited to expressed sequences. With the
mouse and human gene sets, however, this phenomenon
suggests that they are more complex than the other
genomes because their genes are similar at sequence level
but still thermodynamically distinguishable. For example,
increasing the nontarget match length from 15 to 17 and

reducing the melting temperature difference from 20°C to
10°C doubled the time to evaluate the human gene set but
almost tripled the number of probes that can be found by
PICKY. From an information-theoretical point of view, this
suggests that the mouse and human genomes have a
higher information content -- the subtle differences
among their genes can only be revealed by thorough ther-

Figure 5 An example of sequences sharing the same probe. In this probe target region view on Gene 685, Genes 657, 1113 and 2212 are collected 
at the top and shown to contain the same target region. The shorter DNA fragments below them are detected nontargets to the probe. When a frag-
ment is moused over, PICKY dynamically displays an alignment of the fragment-containing sequence (e.g., Gene 1113 as shown) with the target se-
quence (i.e., Gene 685). The melting temperatures of the probe with all its targets and nontargets are shown in the TEMP column and are used to sort 
the list.
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modynamic comparisons [30]. The complexity and infor-
mation content of a genome is not to be taken as its size,
e.g., the Arabidopsis genome is about the same size as the
C. elegans genome, but requires more time to process.

Discussion
PICKY employs a comprehensive thermodynamics analy-
sis to determine the similarity among gene sequences in
order to design good microarray probes. This analysis
helps PICKY find gene-specific probes [13,14]. In addition,
the equations PICKY uses to determine thermodynamic
characteristics are deterministic. The deterministic
design approach in PICKY means that the commonly used
blocking agents for nonspecific bindings such as human
COT-1 DNA, yeast tRNA or salmon sperm DNA are not
necessary when using PICKY designed microarrays.
Unless their DNA sequences are included in the nontar-

get gene set given to PICKY during a microarray design,
the blocking agents may actually degrade microarray data
quality. Although many existing microarrays are not
designed by PICKY, users can use PICKY to evaluate them
and determine a subset of the probes to trust. In princi-
ple, this even works for microarray experiments that have
already been completed; their results may be improved by
filtering the data through the probe evaluation process
using PICKY.

Although the shared probe design feature is developed
for large genomes as a remedy when unique probes can-
not be found for certain gene families, it is also possible to
combine several gene sets and ask PICKY to design shared
probes among different species. These shared probes can
be used in comparative genomics [10], metagenomics
(i.e., environmental sampling) [31] or pathogen identifi-
cation [32]. With its default settings, PICKY minimizes

Table 2: PICKY execution time and result under two different design constraints.

Model species Gene set size More sensitive design More relaxed design

E. coli 5317 genes
4 848 788 bp

2-CPU: 0 h 9 m
4651 probes

4-CPU: 0 h 7 m
4852 probes

Bee 11 324 genes
6 022 273 bp

2-CPU: 0 h 11 m
10 237 probes

4-CPU: 0 h 17 m
10 995 probes

Yeast 6702 genes
9 081 699 bp

2-CPU: 0 h 22 m
5892 probes

2-CPU: 0 h 35 m
6164 probes

P. falciparum 9518 genes
10 749 024 bp

2-CPU: 0 h 4 m
4199 probes

4-CPU: 0 h 55 m
7481 probes

Zebrafish 12 238 genes
23 015 888 bp

4-CPU: 0 h 22 m
9535 probes

2-CPU: 3 h 2 m
10 749 probes

Drosophila 18 962 genes
32 217 720 bp

2-CPU: 1 h 2 m
12 611 probes

4-CPU: 2 h19 m
15 686 probes

Chicken 26 236 genes
32 759 147 bp

4-CPU: 0 h 23 m
15 931 probes

2-CPU: 4 h 21 m
22 509 probes

C. elegans 30 935 genes
34 783 951 bp

2-CPU: 0 h 41 m
16 887 probes

4-CPU: 3 h 37 m
25 602 probes

Arabidopsis 28 952 genes
36 327 482 bp

2-CPU: 1 h 3 m
18 297 probes

2-CPU: 8 h 26 m
26 608 probes

Maize 58 579 genes
39 022 169 bp

2-CPU: 0 h 48 m
21 993 probes

2-CPU: 8 h 9 m
48 620 probes

Mouse 35 284 genes
68 639 601 bp

4-CPU: 0 h 23 m
11 450 probes

4-CPU: 9 h 36 m
28 435 probes

Human 28 205 genes
72 748 721 bp

4-CPU: 0 h 19 m
9134 probes

4-CPU: 8 h 58 m
25 080 probes

Rice 61 251 genes
94 194 626 bp

2-CPU: 10 h 1 m
39 094 probes

4-CPU: 10 h 33 m
43 376 probes

Two probe sets are designed for each of the 13 model species. Under "More sensitive design", fewer probes can be found but they need less 
time to compute. Under "More relaxed design", more probes can be found but they require additional thermodynamic comparisons. These 
probe sets were computed either on a 2-CPU Opteron 2.0 GHz workstation or on a 4-CPU Opteron 2.2 GHz server with slightly higher memory 
overhead; thus, the computation time spent are comparable between the two machines (e.g., 10 minutes on the 2-CPU workstation is roughly 
equal to 5 minutes on the 4-CPU server). The data from this table are also drawn in Figure 6.
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probe sharing by first selecting unique probes, but PICKY
can also be instructed to opt for probes that are shared by
more target genes. The shared probe set from PICKY can
then be minimized to detect several known species [33]
or used in its entirety to detect as yet unknown species
that are phylogenetically related to the species whose
gene sets were used for the design [34]. For either appli-
cation, the basic requirement is that a hybridization
matrix H is given: the Hij entry is 1 if probe j can detect
species i or 0 otherwise. In reality, microarray probes do
not exhibit this binary behavior but vary their detection
signal strength among different but related species. In
this respect, the optimization of the melting temperature
difference between targets and nontargets of all PICKY
designed probes enhances their binary nature in detect-
ing species (i.e., they can detect all target species with
equal certainty but none of the nontargets). A recent
quantitative evaluation of PICKY designed probes con-
firmed this characteristic [15].

Conclusions
Shared probe design is a versatile feature that can
increase detectable genes in large gene families and allow
cross-genome microarrays to be developed. Usually,
some genes sharing a probe also have their own unique
probes; thus, by considering a combination of unique and
shared probes we can still identify genes that lack unique
probes to detect them. The nonlinear salt effect calcula-
tion expands the probe design sensitivity to another
dimension, the salt concentration, and precisely matches
the designed probes to specific microarray protocols and
hybridization conditions. The microarray reanalysis
function provides no-cost improvements to microarray
data quality by utilizing improved genome annotations;
this is not limited to microarrays designed by PICKY. An
interesting future project will be to reanalyze some com-
pleted microarray projects by filtering their existing data
through the PICKY reanalysis function to see if the statisti-
cal quality of the filtered data may be improved or some
alternative conclusions may be drawn from the results.

Figure 6 An information-theoretical comparison of genome complexity. Relative increases of PICKY computation time and additional probes it 
can find for the 13 model species are shown. When its design constraints are relaxed, PICKY has to compare more probe candidates against nontargets 
to decide whether these probe candidates can correctly identify their targets. A genome is considered more complex if the extensive thermodynamic 
comparison identifies more distinguishable gene sequences that can be targeted by microarray probes. For maize, mouse and human, more probes 
can be gained than the extra time spent to calculate them, which suggests that these species may have more complex genomes.
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Availability and requirements
Project name: The PICKY oligo microarray design and
analysis software

Project home page: http://www.complex.iastate.edu
Operating system(s): Windows XP or later, Mac OS X

10.4 or later, and most Linux distributions running on
×86 compatible CPUs.

Programming language: C++
Other requirements: none
License: The PICKY project has never received public

support and thus depends on commercial licensing fees
to sustain its development and maintenance. Free aca-
demic licenses are provided to academic and nonprofit
users after they execute the online license request and
provide proof of their nonprofit status. Commercial users
should contact PICKY http://picky@www.com-
plex.iastate.edu to obtain commercial license informa-
tion.

Any restrictions to use by non-academics: Commer-
cial licenses required.
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