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Abstract

software packages.

presence of noise.

Background: DNA copy number aberration (CNA) is very important in the pathogenesis of tumors and other diseases.
For example, CNAs may result in suppression of anti-oncogenes and activation of oncogenes, which would cause
certain types of cancers. High density single nucleotide polymorphism (SNP) array data is widely used for the CNA
detection. However, it is nontrivial to detect the CNA automatically because the signals obtained from high density
SNP arrays often have low signal-to-noise ratio (SNR), which might be caused by whole genome amplification,
mixtures of normal and tumor cells, experimental noise or other technical limitations. With the reduction in SNR, many
false CNA regions are often detected and the true CNA regions are missed. Thus, more sophisticated statistical models
are needed to make the CNAs detection, using the low SNR signals, more robust and reliable.

Results: This paper presents a conditional random pattern (CRP) model for CNA detection where much contextual
cues are explored to suppress the noise and improve CNA detection accuracy. Both simulated and the real data are
used to evaluate the proposed model, and the validation results show that the CRP model is more robust and reliable
in the presence of noise for CNA detection using high density SNP array data, compared to a number of widely used

Conclusions: The proposed conditional random pattern (CRP) model could effectively detect the CNA regions in the

Background

Detection of copy number aberrations (CNA) using sin-
gle nucleotide polymorphism (SNP) array data or Array
comparative genomic hybridization (CGH) data is
becoming important in disease pathogenesis analysis [1-
6]. For example, CNA may result in suppression of anti-
oncogenes and activation of oncogenes, which would
cause certain types of cancers [1,7,8]. Disease related
CNAs not only indicate the molecular-level pathogenesis,
but also can be used as biomarkers for diagnosis. For
example, Myelodysplastic syndromes (MDS) are a group
of clonal hematopoietic disorders, which are considered
as clonal stem cell diseases characterized by peripheral
cytopenias (anemia, neutropenia, and/or thrombocy-
topenia) with normocellular or hypercellular marrow and
bilineage or trilineage dysplasia [9-13]. Early diagnosis

* Correspondence: xzhou@tmhs.org

1 Center for Bioengineering and Informatics, Department of Radiology, The
Methodist Hospital Research Institute, Weill Cornell Medical College, Houston,
TX 77030, USA

Full list of author information is available at the end of the article

with appropriate treatment may lead to improved prog-
nosis, however, there is no accurate diagnosic method at
the early stage of MDSs because the morphological
appearances are highly variable and not specific to the
MDSs [9-13]. Using the high density SNP arrays, the
molecular-level biomarkers of MDSs may be detected,
and are helpful for the MDS early diagnosis and treat-
ment.

To detect the CNA regions using high density SNP
arryas, automated SNP array analysis method is needed.
However, it is nontrivial to detect the CNA automatically
because the signals obtained from high density SNP
arrays often have low SNR values, which may be caused
by whole genome amplification, mixture of normal and
tumor cells, experimental noise and other technical limi-
tations. With the reduction in SNR, many false CNA
regions are often detected and true CNA regions are
missed. Thus, more sophisticated statistical models are
needed urgently to make the CNAs detection robust and
reliable using the signals with low SNR, although a num-
ber of software packages have been developed for the
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SNP array analysis. For Affymetrix SNP array, the widely
used software packages are Genotyping Console [14],
GEMCA [15], CNAG [16,17] and dChip [18,19] and Bird-
suite [20,21]. For Illumina SNP array, PennCNV [22,23],
QuantiSNP [24,25], GenoCN [26,27], SOMATICs [28,29]
and OverUnder [30,31] have been developed. For array-
CGH data, aCGH (Microarray-based comparative
genomic hybridization) [32], CLAC (Clust Along Chro-
mosomes) [33], CBS (Circular binary segmentation)
[34,35] and GLAD (Gain and loss analysis of DNA) [36],
and many other CNA detection algorithms have been
developed [37]. Usually there are two types of copy num-
ber analysis: one is the CNA, the other is copy number
variation (CNV) analysis. The CNVs naturally happens in
normal tissue and are inheritable, while the CNA are
acquired somatic alterations and often observed in dis-
ease tissues, which also tend to be longer and more
densely occur in the genome [23,27]. Most of the above-
mentioned software packages could detect both CNVs
and CNAs, whereas some of them may incorporate more
information to improve their performance specifically for
CNV or CNA detection. For example, the SOMATICs
and GenoCNA incorporate the normal tissue contamina-
tion information for better CNAs detection.

GEMCA is a good software package for copy number
variants detection in HapMap data, which can combine
both Nsp and Sty arrays to detect small copy number
variant regions. It is stated in the website of this software
that it is not suitable for cancer analysis that has much
larger copy number changes, and the new software pro-
grams are being developed for cancer copy number anal-
ysis [3,38,39]. For Genotyping Console, CNAG [17] and
dChip [19,40], although different pre-processing tech-
niques (e.g. normalization, scaling and feature extraction)
are used, they all use HMM framework [41] in the second
tier to infer the copy number. However, the major limita-
tion of the HMM framework lies in the simple assump-
tion that the current state is only determined by the
immediate previous state and the current observation
[41]. Due to this assumption, the noisy SNP array data
often results in inaccurate copy number inference. In
Birdsuite software package, the Birdseye method, which
is a HMM, is implemented to find CNV regions [20,21].
The QuantiSNP, PennCNYV and GenoCN all make use of
the HMMs on the two dimensional data: Log R Ratio
(LRR) and B allele frequency (BAF) [23,24]. Compared to
QuantiSNP, PennCNV improved the transition probabili-
ties in HMM, BAF distribution, accuracy of likelihood of
copy number genotype modelling, and added the family-
based analysis [23]. In the GenoCN software, the CNV
and CNA detections are processed by two different mod-
ules: GenoCNV and GenoCNA [27]. The GenoCNA
incorporates the normal tissue contamination and geno-
type data from normal tissue to improve the CNA detec-
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tion accuracy [27]. SOMATICs uses the two-band
pattern of BAF to detect the CNAs of samples that mix
the normal and tumor cells [28]. OverUnder detects the
CNA by dividing the 2D square of the B allele frequency
(BAF) and the Log R Ratio (LRR) into different regions
that correspond to the loss, gain, amplification [31].
aCGH uses the unsupervised HMM. CBS (circular binary
segmentation) makes use of the maximum of a likelihood
ratio statistic recursively to separate SNP sequence into
small segments. In GLAD method, an adaptive weights
smoothing procedure is used to estimate the means of
sequence segments. In CLAC the hierarchical clustering
method is used to detect the CNA regions. CBS, GLAD
and CLAC only estimate the means of sequence seg-
ments, rather than give the exact copy number of each
segment.

In this study, we present a novel conditional random
pattern (CRP) model for CNA detection, in which more
contextual information of neighboring SNP loci is consid-
ered, compared to HMM, to suppress the noise and
improve the accuracy of CNA detection. Specifically, in
the CRP model, the copy number of a SNP locus is not
only determined by the copy numbers of its two immedi-
ate neighboring SNP loci, but also by a continuous seg-
ment of observations (log2-ratio features), thus allows us
to employ more contextual cues. The rest of this paper is
organized as follows. The details of the CRP model are
described in Section 2. Section 3 provides the experimen-
tal validations, and the discussion and conclusions are
presented in Section 4.

Results

To validate the proposed CRP model, we compared the
proposed CRP model with dChip, CNAG and PennCNV-
Afty, and four widely used copy number inference soft-
ware packages: aCGH, CBS, CLAC, and GLAD, using
both simulated data and real data.

Validation data

To validate the proposed CRP model, three real data sets
were employed. The first one is from the MDSs samples
in our laboratory. 12 cryopreserved bone marrow sam-
ples from MDS patients were analyzed. Please see the
detailed samples' information in the additional file 1. The
second one is the array-CGH data used in Lai's 2005
paper [37]. We also downloaded the HapMap samples'
500 K SNP array data from the Affymetrix website http://
www.affymetrix.com/support/technical/sample data/
500k _hapmap_genotype_data.affx. Two HapMap sam-
ples, NA10851 (as reference sample) and NA18515 (as
test sample) were used to test the CRP model, in which
some CNA regions were validated by quantitative PCR in
[3,4].
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Since there is no ground truth of the CNA regions in
these data, it is difficult to quantitatively measure the per-
formance of different software packages. Therefore, two
more simulated data sets were created. We simulated
Affymetrix GeneChip Human Mapping 500 K Array data
in the Affymetrix's CEL file format, which is based on the
real 500 K SNP arrays of HapMap samples from the
Affymetrix website, therefore both dChip and CNAG
(and other software packages) can process them. The
simulation process of these data is as follows. First, we
randomly selected three arrays as the normal reference

samples:  "NA10851_FinNsp_vR1_579813_A1_1_SC2",
"NA12812_FinNsp_vR1_579813_B2_1_SC6" and
"NA18605_FinNsp_vR1_579548_D5_1_SC3". Secondly,

we randomly set one CNA region in each chromosome,
and a total of 22 CNA regions were obtained (Chromo-
some X was not set). The length of these CNA regions
varies from 4 to 100 SNPs uniformly. Thirdly, for each
reference sample and certain noise level, two simulated
arrays are generated, one for copy number deletion (one
copy), and the other for copy amplification (three copies).
The mismatch probes are used as the background to esti-
mate the simulated intensities of the corresponding per-
fect match probes in these CNA regions. The intensity of
probes outside the CNA regions remains unchanged.
Then the Gaussian noises are generated and added to all
probes, which follow a Gaussian distribution, N(0, o),
where the standard deviation of noise ¢ is proportional to
the probe intensity y. The signal to noise ratio (SNR) SNR
= y/o varied from 5, 2 to 1.25, to simulate different noise
levels. A total of 18 samples were simulated based on the
three selected HapMap samples (2 simulations per SNR
level per sample * 3 SNR levels * 3 HapMap samples).

We also simulated log2-ratio sequences. For each noise
level, we simulated 100 log2-ratio sequences, and each
sequence contains 300 log2-ratio data points. Four CNA
regions with 5, 10, 20 and 40 length were created. In the
CNA regions, the mean was set as 0.4, and outside the
CNA regions the mean was zero. Then the Gaussian
noise N(0, o) was added. Three noise levels were consid-
ered, and the SNR (0.4/0) varied from 2, 1.3 to 1.

Validation metrics
To measure the performance of copy number inference
software packages, seven metrics were used: snp-preci-
sion (sp), snp-recall (sr), region-precision (rp), region-
recall (rr), hybrid-precision (hp), hybrid-recall (hr), and f-
score (f). Given a contingency Table, as seen in Table 1,
the seven metrics are defined as follows.
L VRN W 1 __m
1+,
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The snp-precision and snp-recall measure the accuracy
in the single SNP level, which indicate how many SNPs in
all the CNA regions are detected or missed. The CNA
region based metrics indicate how many single CNA
regions are detected (at least one SNP in the CNA region
is detected) or missed (all the SNPs in the CNA region are
missed) without considering the length of the CNA
regions. The hybrid metrics combine the single SNP and
CNA region based metrics together to generate the f-
score to examine the overall performance of a software
package.

Comparison with dChip, CNAG and PennCNV-Affy

To evaluate the performance of the CRP model, we com-
pared it with a number of widely used software packages:
dChip, CNAG and PennCNV-Affy. In August 2009,
PennCNYV provided the PennCNV-Affy protocol to cal-
culate the LRR and BAF signals from Affymetrix SNP
arrays, and then make the CNA detection.

Results on simulated 500 K SNP array data set

The proper comparisons between different algorithms
are not trivial because of different possible parameter set-
tings in each algorithm. In CNAG, users can manually set
the means of the HMM for each copy number status. To
make the comparison fair, we tried to find the best per-
formance of the CNAG by testing a few different parame-
ter settings. Then we compared the CRP model with the
best performance of CNAG. Since we simulated the
three-copy amplifications and one-copy deletions in the
simulated 500 K SNP array data, we only need to set the
means of three-copy, M3 = 0.38, and one-copy, M\
(the mean of two-copy is set as zero) in CNAG. We tested
following five different parameter settings of HMM in
CNAG: 1) 'Automatic’ - the parameters are set by the
CNAG automatically. 2) Ideal' - (Mcys = 0.38, My = -
0.45). We estimated the means in the 'Ideal’ by calculating
the means of the three-copy amplifications and one-copy
deletions in the simulated data respectively. 3)
Random_1"- (M¢y3 = 0.38, My = -0.42). 4) Random_2'
- Mcnz = 0.4, My = -0.5). 5) Random_3' - (M3 = 0.45,
Mcn; = -0.55). Figure 1 shows the performances of
CNAG on the simulated 500 K SNP arrays with the five
different parameter settings. As we can see, the CNAG
generated 'best’ results in the 'Random_2' settings. Then
we compared the CRP performance with the 'best’ results
of the CNAG. The detailed CNA detection results of the
CRP model and that of the CNAG, with the Random_2'
parameter setting, are provided in Table 2 and Table 3
respectively. Figure 2 provides the performance compari-
son between the CRP model and CNAG with optimal
parameter setting. Obviously, the CRP model outper-
forms the CNAG in all three SNR levels and all 18 simu-
lated 500 K SNP samples significantly.
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Table 1: The Contingency Table
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Since the parameters of HMM in dChip are determined
automatically and are not user accessible [19,42], we eval-
uated the dChip using its default parameter setting. For
PennCNYV, we followed the user guide to evaluate its per-
formance [22,23]. The comparison results with dChip
and PennCNV-Affy are provided in Figures 3 and 4
respectively. From the high 'recall' and low 'precision’
rates of dChip results, we concluded that dChip detected
many false CNAs, as seen in Figure 3. The PennCNV-
Affy works well on samples with high SNR value, while its
accuracy decreases dramatically with the reduction in
SNR, as seen in Figure 4. The low recall' and the high
'precision’ rates indicate that the PennCNV-Affy is not
sensitive to small CNAs. Through the comparisons, we
conclude that the CRP model is more robust to noise and
improves the accuracy of CNA detection significantly
compared with the HMMs implemented in CNAG,
dChip and PennCNV-Affy.

Results on the real MDS data sets

We applied the dChip, CNAG, PennCNV-Affy and CRP
model to the MDSs Affymetrix 500 k SNP arrays. For
both dChip and PennCNYV, the default settings were used.
For CNAG, we tested a few different parameter settings,
and the one with best performance on the pre-known
monosomy and trisomy regions is selected. Twenty SNP
arrays of normal tissue DNA samples from the buccal and
lymphoid tissues of ten MDS patients were used as the
reference set. Figures 5 provide the CNA detection
results of these four software packages on two MDS sam-
ples. The top, second, third and last lanes in Figure 5
present the results of dChip, CNAG, PennCNV and CRP
model respectively. In sample 1, the Chromosome-7 has
only single copy, and in sample 2, the Chromosome-8 has
three copies as determined by conventional cytogenetic
study. Obviously, dChip detects many false positive

CNAs in both samples, and infers most of SNPs wrongly
as four copies. Both dChip and PennCNV-Affy miss
many deletion regions in Chromosome 7 of sample 1, and
PennCNV-Affy works well on the Chromosome-8 of
sample 2, however, it looks not sensitive to the small
CNA regions (only few deletions are detected). After
parameter adjusting manually, CNAG works well on the
monosomy and trisomy Chromosomes. However, CNAG
detects very few copy number deletions and some CNA
regions with only one SNP. Low SNR of log2-ratio signals
is one reason of these errors. Compared with dChip,
CNAG and PennCNV-Affy, CRP model makes use of
more contextual cues, and generates more accurate
results. We identified some MDSs related regions, 7q34
(deletion) and 7pl14.2 (gain), which were missed by
dChip, CNAG, PennCNV-Affy. Additionally, a copy
number deletion region carrying FOXP2 gene located at
7q31.1 was detected using CRP model in another case,
while it was also missed by dChip, CNAG and PennCNV-
Affy. This region was confirmed by quantitative PCR, as
seen in the additional file 1[43].

Comparison with aCGH, CBS, Clac and Glad

A number of CNA detection algorithms have been devel-
oped for array CGH data [37]. To further evaluate the
performance of the CRP model, we compared the CRP
model with four widely used CNA detection methods:
aCGH [32], CLAC [33], CBS [34,35] and GLAD [36].
Results on simulated log2-ratio sequences

The average performances of the CRP model, aCGH,
CBS, CLAC and GLAD software packages are provided
in Figure 6. In terms of single-, region- and hybrid-preci-
sion, CRP, CBS and CLAC have similar performance, in
which fewer false CNA regions were wrongly detected.
However, they missed some small CNA regions, as seen
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Table 2: CNA detection results of CRP model on the simulated SNP arrays
SNR Samples sr sp rr rp hr hp f
5.00 NA10851 0.986 0.972 0.955 1.000 0.928 0.986 0.956
0.983 0.969 0.955 1.000 0.925 0.983 0.953
NA12812 0.987 0.961 0.909 1.000 0.874 0.987 0.927
0.984 0.962 0.909 1.000 0.875 0.984 0.926
NA18605 0.987 0.961 0.909 1.000 0.874 0.987 0.927
0.982 0.959 0.955 1.000 0.915 0.982 0.947
2.00 NA10851 0.945 0.964 0.955 0913 0.920 0.863 0.890
0.925 0.944 0.909 0.833 0.858 0.771 0.812
NA12812 0.971 0.919 0.909 0.952 0.835 0.925 0.878
0.975 0.919 0.909 1.000 0.835 0.975 0.900
NA18605 0.909 0.969 0.909 0.800 0.881 0.727 0.797
0.919 0.942 0.909 0.840 0.857 0.772 0.812
1.25 NA10851 0.801 0914 0.864 0.583 0.790 0.467 0.587
0.771 0.858 0.864 0.639 0.741 0.493 0.592
NA12812 0.814 0.808 0.773 0.633 0.625 0.516 0.565
0.731 0.775 0.864 0.579 0.670 0.423 0.519
NA18605 0.854 0.912 0.818 0.704 0.746 0.601 0.666
0.717 0.644 0.591 0.517 0.380 0.371 0.376

Key: Seven metrics were used: snp-recall (sr), snp-precision (sp), region-recall (rr), region-precision (rp), hybrid-recall (hr), hybrid-precision (hp)

and f-score (f).

by the recall-metric results in Figure 6. The results of
aCGH were not good. aCGH software package used the
unsupervised HMM, in which all the parameters of the
HMM will be estimated based on the observation data
[32]. However, the parameter estimation method is sensi-
tive to noise, and then often causes inaccurate CNA
detection results. In terms of single-, region- and hybrid-
recall, CRP model generates better results than the other
software packages, which means more CNA regions were
missed by the other software packages, especially the

small CNA regions. In all the SNR levels, CRP model out-
performs the others in term of f-score (overall perfor-
mance). When the SNR level decreased (noise level
increased), the overall performance (f-score) of the other
software packages decreased more rapidly than CRP,
which indicates the CRP model is more robust to noise.
Results on Lai's data

The Array-CGH data of chromosome 13 in a Glioblas-
toma Multiforme sample (GBM31) used in Lai's bioinfor-
matics paper (Lai, et al., 2005) were also tested. Figure 7
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Table 3: CNA detection results of HMM (in CNAG) on simulated SNP arrays
SNR Samples sr sp rr rp hr hp f
5.00 NA10851 0.9718 0.9857 0.9091 0.7143 0.8834 0.7041 0.7836
0.98 0.9709 0.9545 0.7241 0.9355 0.703 0.8028
NA12812 0.9376 0.9803 0.8182 0.6923 0.7672 0.6787 0.7202
0.9659 0.967 0.9091 0.7143 0.8781 0.6907 0.7732
NA18605 0.9459 0.9841 0.8636 0.7143 0.8169 0.7029 0.7556
0.98 0.9731 0.9545 0.7241 0.9355 0.7047 0.8038
2.00 NA10851 0.8918 0.9768 0.7727 0.68 0.6891 0.6642 0.6764
0.92 0.9583 0.7727 0.68 0.7109 0.6517 0.68
NA12812 0.7765 0.9836 0.6364 0.6364 0.4941 0.6259 0.5523
0.9435 0.9686 0.9091 0.7143 0.8578 0.6919 0.7659
NA18605 0.8235 0.979 0.6818 0.6667 0.5615 0.6527 0.6037
0.9071 0.9674 0.7727 0.68 0.7009 0.6578 0.6787
1.25 NA10851 0.5247 0.8352 0.3636 0.4444 0.1908 0.3712 0.252
0.9129 0.8509 0.7727 0.6538 0.7055 0.5563 0.6221
NA12812 0.6165 0.9758 0.5455 0.6 0.3363 0.5855 0.4272
0.8518 0.836 0.7273 0.64 0.6195 0.5351 0.5742
NA18605 0.7718 0.9061 0.6364 0.6087 0.4911 0.5515 0.5196
0.8235 0.8516 0.7273 0.6667 0.5989 0.5677 0.5829

Key: Seven metrics were used: snp-recall (sr), snp-precision (sp), region-recall (rr), region-precision (rp), hybrid-recall (hr), hybrid-precision (hp)

and f-score (f).

provides the CNA region detection results of CRP model
and the four widely used software packages. We empiri-
cally set the means and standard deviations of CRP as: [-
0.27,0,0.27] and [0.1, 0.1, 0.1]. As can be seen in Figure 7,
all the five methods detected the copy number loss
region, whereas the aCGH method wrongly segmented
the normal region into the loss region. The CLAC
method segmented some loss regions as normal regions.
Both CBS and GLAD segmented the whole region into
two parts, suggesting that these two methods suppressed

noise well and could detect the difference between two
chromosomal regions. However, their strong ability to
suppress the noise also results in the missing of small
CNA regions, as seen in the above results on the simu-
lated data. Additionally, these two software packages only
can give the average values of regions rather than the
exact the copy number. In contrast, the CRP model gen-
erated the exact copy number and detected the major
part of the loss region, although a few small loss regions
were separated into normal regions.
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Figure 3 CNA detection performance of dChip on the simulated
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Figure 5 CNA detection comparison among dChip, CNAG, PennCNV-Affy and CRP model on the real MDSs samples. The black color dots de-
note the log2-ratio values, and the red color lines indicate the inferred copy number.

Discussion and Conclusions

In this study, we proposed a CRP model for CNA detec-
tion, which explores more contextual cues to generate
more accurate results than existing methods. The experi-
mental results using both simulated data and real MDS
SNP array data show that the CRP model is more robust
and reliable compared to a number of widely used CNA
detection methods.

For different studies and different noise levels, different
number of nodes in the CRP model may be required.
More nodes mean more contextual information to be
considered, and can suppress higher noise levels, while it

is prone to missing of small CNA regions. Fewer nodes

will be more sensitive to small CNA regions, and as such
be more sensitive to noise. To make the model adjust-
ment convenient, we implemented the algorithm with the
number of nodes as a user-input parameter. Thus, it
could automatically generate a CRP model with any user-
specified number of nodes. The basic idea of generating
the CRP model is as follows. First, assume that the short-
est CNA region has m SNP markers. Then select m-1
nearby SNP markers respectively from both the left and
right of the current SNP marker. As a result, totally 2m-1
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Figure 6 CNA detection performance comparison among the CRP model, aCGH, CBS, CLAC and GLAD software packages.
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Figure 7 CNA detection results of five different copy number inferring software packages on Chromosome 13 in a Glioblastoma Multi-

(2(m-1)+1) SNP markers are selected. In these 2m-1SNP
markers, there are m possible CNA regions with m con-
secutive SNP markers, i.e. drawing m consecutive SNP
markers out of the total of (2m-1) SNP markers. The rest
may be deduced by analogy. There are m-1 possible CNA
regions with m+1 consecutive SNP markers, and to the
end, there is only one CNA region with 2m-1 SNP mark-
totally

ers. Therefore, there are

142+..+m=1+m=1, m (m+1) possible CNAs patterns
out of these 2m-1 SNP markers. In this study, we assume
that m = 4, then there are 10 possible CNA patterns. In a
word, it is convenient for users to test the CRP model

with different parameters on their own data.

The parameters in the CRP model were estimated
based on some pre-known CNA regions. The users can
adjust these parameters according to their specific SNP
array data. Also the CRP model gives the probability of
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each SNP locus staying in each copy number status. If too
many CNA regions are detected (may be caused by the
bias of the parameters), the users can remove some CNA
regions with low probability. Currently, the Haldane's
map function is employed as the transition potential in
the CRP model. For different diseases and different popu-
lations, some prior information of the copy number
change can be included into the transition potential. For
example, if certain regions of the genome are known to
the recombination hotspots’, then we can set the transi-
tion possibility from one copy number to the other
higher. Therefore, the future extension of CRP model will
consider the SNP-specific copy number aberration rates,
and automatically adjust the structure (number of nodes)
of the CRP model in running the program.

Methods
Log-2-ratio Feature Extraction

Due to the high variability of the mean intensities across
different SNP arrays, normalization is necessary to make
different SNP arrays comparable [19]. In this study, we
employed the normalization method of CNAG [17].
CNAG implemented a normalization method to com-
pensate for the different PCR conditions (length and GC
content) to reduce the WGA-induced noise [17], which
also incorporated the baseline correction procedure by
"setting the chromosome numbers in accordance with the

ploidy information, e. g. the cytogenetics or FISH [17]." In

summary, let 1¥ denote the normalized (with the same
means of all autosomal SNPs) sum intensity of the i-th
SNP locus in the k-th array. Then the log-2-ratio features,
ll-k = logz(I,k /I[‘?:,) , are extracted using the 'best-fit'
model [17], where I f?:, denotes the average of m best-fit
references for the i-th SNP locus; and m is the number of
selected reference samples. We assume that reference
samples mostly have two copies. The reference DNA
samples are collected from the non-tumor derived tissues
of MDS patients. Figure 8 provides the representative
log-2-ratio features of two amplified MDSs DNA samples
(using Affymetrix GeneChip Human Mapping 250 K Nsp
SNP array). In sample 1, Chromosome-7 has only one
copy (monosomy), and Chromosome-8 has three copies

(trisomy) in sample 2.
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Copy Number Inference

In the second tier, the statistical model borrows the con-
textual information to suppress the noise. In this section,
we propose a CRP model that extends the use of copy
number dependency.

Graphical Model of CRP

Figure 9 presents the partial graphical structure of the
CRP model. These directly connected hidden states y, ;,
Yp Vi1 and observations x, g, X; 9, X, 1, X X;,1, X400 Xp,5 CON-
stitute a maximum clique [44] at instant £. To infer the
current hidden state, y,, all the vertices in the maximum
clique will be used. In other words, the current hidden
state is not only determined by its immediate previous
and next hidden states, but also several previous and sub-
sequent observations. In the maximum clique, we call the
edges between the hidden states as transition potentials,
and the edges between hidden states and observations as
local evidence. Transition potentials penalize change of
hidden states, while local evidence provides the possibil-
ity of assigning a copy number to current hidden state.
Mathematical Formulation

In CRP model we define the conditional probability,
p(y|%), as following:

MV (y:X)

[Aiding (1)
Z(x)

p(y | x)=

where, y is the inferred copy number sequence; x is the

observed log-2-ratio feature sequence, and Z(x) =

exp(w(y', x)) is a normalization term. The transition
potentials and local evidence, as seen in the edges in Fig-
ure 10, are integrated in y(y, x) as:

w(y, x)=
T K

K
Z ZZJ(TP(YHI YX1, =iy X1g,=j) ¢+

=2 | i=1 j=1
T

K
2 ZfLE(xt—3""' XerXpgrreeor Xpy3s yt) x 1(yt:k)

t=1 k=1

where, 1(, _; is the indicator function, f7p(y;.1, y,) is a
transition potential function, and f; p (%, 3, %9, X, 1, Xp %4, 15
X3 %13 Yy is the local evidence function; T is the num-
ber of SNPs (there are 262264 SNP loci in GeneChip
Human Mapping 250 K Nsp SNP array), and K is the

number of considered copy numbers in the model, for
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Figure 8 Log-2-ratio features of two GWA-amplified MDSs DNA samples.

example if the considered copy number set is 0, 1, 2, 3, 4},

then K = [{0,1, 2, 3, 4}| = 5.

In the CRP model, we employ Haldane's map function . . o .
[19,45], which is used to describe genetic distances and SNP loci. This function is used to take into account of

recombination fractions, as transition potential function,  distances between markers, and indicates that the nearby
which can be written as follows:

where 0 = (1_eXp(_2d)% , and d (unit: 1 Million base-

pairs) is the genome distance between two consecutive

A

_J1-0, Vi = Vi F_ A
fro(Viiy) = 0/(K=1), 7oy #V.: (3) @-E-® ® ()
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Figure 10 Ten possible copy number dependency patterns in
seven continuous SNP loci under the assumption that at least
four continuous SNPs in the CNA regions. The then possible pat-

_ terns are as follows. AV, 3= Y5 = Y1 = Vo Ver1 = Ve = Yeuz @NA Vi # Yy
B Yo=Y = Ye= Yo Ve = Yea Yerr Voo Yoo = Yoz C Y = Y= Yo =
Figure 9 Partial graphical structure of the CRP model, where o de- Ve Ve = Ve Y2 * Y Vo2 * Yy, DYe= Y = Vo2 = Vs Yes = Ve
notes the observations and y denotes hidden copy number YerandYen # VBV i en Yo # V23DV es Vs P e
states. =Y Y=o Y3 % Y2 a0 Yo # Y3 GV =Y Y e =Y o=V Yes e
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Figure 11 Histograms of Log-2-ratio features of Chromosome-7 in MDS sample 1, and that of Chromosome-8 in MDS sample 2.

SNPs are more likely to have the same copy number, Jre(X—p/ %40 Xy, X4, Xp4p,Y) = Max
whereas the distant SNPs do not [19]. For different dis- 0 1/4 1 1/4
eases, the prior information of the copy number change H p(x i, lv:) / H p(xiir, [v,) /
can be included into the transition potential. The genome f="3 k=2
distance information can be found at the Affymetrix web- 1471 s 14
site http://www.affymetrix.com/index.affx. I I S [v) ’ I I LS [ve) !
Local Evidence Function L o= [ f5=0
In the CRP model, we use seven continuous (log-2-ratio) 1 1/ > 1
observations to infer copy number of current hidden H p(x 4, ly,) , I I (X, ly,) ,
state, y,, as seen in Figure 9. The reason for considering it >
4 5

seven observations is that only the CNA regions that con- - / 5 1 /6
tinue at least four continuous SNP loci are reliable due to
the high noise level. It is straightforward to extend the I I Pk, 170) ’ I I P, 1ve) ’
CRP model to fewer or more SNP loci. Based on above ks=-1 L ka=-2
assumption, given seven continuous SNP loci, there are "1/6 "1/7
ten possible copy number dependency combinations, as

. . P(xt+k |ve) , p(xt+k | 7e)
seen in Figure 10. Based on the ten possible dependency

. . . . . | fa=—3 | ks=—3
combinations, we define the local evidence function as

follows. (4)


http://www.affymetrix.com/index.affx
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where p(x,.; |,),is the probability of copy number y,
emitting the observation x,,), . The ten terms in the right

of Equation (4) are derived from the above ten combina-
tions. In combination A, for example, the observations,
X,.3) X,.9, X1 and x,, are emitted from the same copy num-
ber status, whereas observations, x,,,, ¥,,, and x,,5, are
generated by another and different copy number status.
Therefore we should use x,,5, %,,5, ¥,,; and x, to estimate
the supporting evidence for y, as p(x, 3, %,9, %,.1, %, | ¥,).
Under the assumption of independence of observations,
0
we deduce that p(x, 5, %, 1, %, [y;) = kH2 p(Xein, 171) -
=
The other terms can be explained similarly. Since these
ten terms in Equation (4) are not in the same scale, we re-
scale them using the indexical transformation. Suppose
the real copy number status of seven continuous SNPs is
the same as the combination A, then the likelihood func-
tions, p(x,3 | ¥ P(%,5 | ), p(%.1 | ¥,) and p(x, | y,), will be
much larger than p(x,, | 7, p(x, | ¥) and plx,5 | ). In
other words, combination A yields higher evidence score
than combinations B, C and D. Combination E, F, G, H, I
and ] consider the case that the CNA regions contain
more SNPs. We reason that the re-scaled term that corre-
sponds to the real underlying copy number status yields
the maximum support evidence (likelihood) value. This is
why we choose the maximum value as the local evidence.

For the conditional probability, p(x.. [7,), we

assume that it follows a Gaussian distribution as:

2

, 1 X—1s
Aot 11 =)= renpy =15 (9
1 o

1

Where y; and o; denote the mean and standard devia-
tion of observed log-2-ratio features emitted by the copy
number i. We choose the Gaussian distribution according
to the investigation of the real data. Figure 11 provides
the representative log-2-ratio histograms of known tri-
somy and monosomy chromosomes of the MDSs data.
The means and standard deviations of these Gaussians
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are estimated using the pre-known CNA regions, e.g. the
monosomy and trisomy regions.
Model inference

Given a log-2-ratio feature sequence X, copy number
sequence can be inferred as [41,46]:

y = argmax, (p(y |x)) (6)

The best copy number sequence, ;7 , can be obtained
using Viterbi algorithm [41,47]. Let §, (y) denote the prob-
ability of the best labeling copy number sequence that
ends at the £-th SNP locus with the label y. By induction,

we have

max {3,(y")exp[ fre(y',7) +

6im(y) = fLE(x[,z,xt,l,xt,xm,tz,y)]},t >0;

1, t=0.

The copy number sequence can be obtained by tracing

back from J;(y) to §,(y). The normalized probability of

the best labeling p()Af | x) is given by max, d,(y)/Z(x). We
implemented the CRP model using Matlab 7.0 based on
the conditional random field toolbox, CRFall, written by

Kevin Murphy, which can be found at: http://
www.cs.ubc.ca/~murphyk/Software/CRF/crf.html. The

CRP model has the same asymptotic computational com-

plexity as HMM.

Additional material

Additional file 1 Description of materials, genotyping method and
quantitative PCR validation.
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