
RESEARCH ARTICLE Open Access

Fast multi-core based multimodal registration of
2D cross-sections and 3D datasets
Michael Scharfe1,3, Rainer Pielot2, Falk Schreiber1,3*

Abstract

Background: Solving bioinformatics tasks often requires extensive computational power. Recent trends in
processor architecture combine multiple cores into a single chip to improve overall performance. The Cell
Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-
performance computing. One application area is image analysis and visualisation, in particular registration of 2D
cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial
correspondence, for example, 2D images of histological cuts into morphological 3D frameworks.

Results: We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by
adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are
based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit
multiplies and limited local storage on the computing units. We show how a typical image analysis and
visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-
core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and
compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-
gatersleben.de.

Conclusions: The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational
intensive multimodal registration, which is of great importance in biological/medical image processing. The
PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve
computational problems in image processing and bioinformatics.

Background
Comprehensive understanding of biological structures
requires sophisticated techniques in many areas such as
the combination of 2D and 3D images or models of bio-
logical objects. Examples are the integration of histologi-
cal cross-sections providing structural information and
development-specific distribution patterns of mRNA,
metabolite concentrations or enzyme activities into a 3D
morphological framework [1], the combination of 2D
computer tomography (CT) slices with a 3D atlas [2], or
the integration of 2D positron emission tomography
(PET) slices, providing information about metabolic
activity, into a 3D NMR dataset, see Figure 1. For recon-
struction and 3D visualisation these 2D cross-sections
have to be registered at correct spatial positions in a 3D

morphological framework. Manual registration of cross-
sections is tedious, subjective and very time-consuming.
The accurate registration of images, obtained by diverse
imaging techniques, requires automatic multimodal
alignment techniques, which is an important research
field in biological and medical image processing [3-5].
Such approaches determine the optimal spatial position
on the base of suitable similarity functions, such as
cross correlation [6] or mutual information [3,7,8].
Registration by automatic procedures still requires
extensive computational resources, so that fast algo-
rithms and the implementation on parallel hardware
would greatly enhance the feasibility of these investiga-
tions. The multi-core Cell Broadband Engine (CBE)
allows fast parallel computation on eight cores per chip,
presenting potential as a target for implementation of
image registration algorithms [9,10]. In this paper we
implemented and evaluated a multimodal alignment

* Correspondence: schreibe@ipk-gatersleben.de
1Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr.
3, D-06466 Gatersleben, Germany

Scharfe et al. BMC Bioinformatics 2010, 11:20
http://www.biomedcentral.com/1471-2105/11/20

© 2010 Scharfe et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://cbe.ipk-gatersleben.de
http://cbe.ipk-gatersleben.de
mailto:schreibe@ipk-gatersleben.de
http://creativecommons.org/licenses/by/2.0

approach based on mutual information on the CBE. The
availability of the inexpensive CBE-driven PlayStation 3
provides the opportunity to simultaneously align a high
number of image stacks on a low-cost platform and
therefore improves the automatic analysis and visualisa-
tion of biological information obtained through diverse
imaging methods. We discuss several CBE-based optimi-
sation methods and compare our results to standard
solutions.
Cell Broadband Engine
The Cell Broadband Engine is a microprocessor archi-
tecture developed by Sony Computer Entertainment,
Toshiba and IBM to provide power-efficient and cost-
effiective high-performance processing for a wide range
of applications. The first-generation Cell processor com-
bines a Power Processor Element (PPE) with eight
Synergistic Processor Elements (SPEs) [11]. The PPE
contains a 64-bit PowerPC Architecture core (PPU) and
can run 32- and 64-bit operating systems and applica-
tions. Each SPE contains a RISC core (SPU) which is
optimised for computational intensive Single-Instruc-
tion-Multiple-Data (SIMD) applications. A single SPE
can perform up to eight single precision (SP) operations
per cycle so that all SPEs provide a theoretical peak per-
formance of about 210 GFLOPS. All nine computational
units communicate with each other, the main memory
and I/O devices through the Element Interconnect Bus

(EIB), which provides a bandwidth of 25.6 GByte to
each component and a total bandwidth of 204.8 GByte/
sec [12]. Figure 2 shows an overview of the initial imple-
mentation of Cell Broadband Engine.
There are various types of Cell-based systems avail-

able, for example, IBM offers blades with two Cell pro-
cessors and several GByte of RAM, appropriate for high
performance cluster computing. Sony released the
PlayStation 3 game console, equipped with a low cost
version of the Cell processor. This version contains
seven operating SPEs (only six of them are available for
applications) and only 256 MB RAM [13]. However its
price (about 300 Euro) makes it attractive as an alterna-
tive high performance platform.

Methods
This section is organised as follows: first we describe the
pre-processing of typical 2D and 3D image datasets and
then we give a brief description of the automatic multi-
modal alignment procedure. The last subsection
describes the implementation and optimisation of the
algorithms to the CBE in detail.
Image Processing
The task of multimodal alignment is to register 2D
images into a 3D image dataset. The 2D dataset is given
as (xi

D2 , y j
D2) with 0 ≤ i < dimx

D2 and 0 ≤ j < dimy
D2

and the 3D dataset is given as as (xi
D3 , y j

D3 , zk
D3) with

Figure 1 A volume rendering of the 3D NMR dataset of a brain (see Figure 9) together with a registered 2D PET scan (see Figure 10)
after the multimodal alignment procedure.

Scharfe et al. BMC Bioinformatics 2010, 11:20
http://www.biomedcentral.com/1471-2105/11/20

Page 2 of 11

0 ≤ i < dimx
D3 , 0 ≤ j < dimy

D3 and 0 ≤ k < dimz
D3 with

the same resolution as the 2D dataset. If necessary, the
images have to be adjusted to the same resolution by a
pre-processing step. The 2D dataset could be, for exam-
ple, a cross-section cut, a 2D CT or a 2D PET slice; the
3D dataset could be, for example, a NMR dataset, a CT
dataset or a 3D atlas.
Multimodal alignment is a typical image analysis pro-

blem. For the 2D/3D alignment presented here we
assume that the direction at which the 2D image should
be aligned is given, for example, by the experimental
procedure. Without loss of generality, this direction is
the z-direction of the 3D dataset. However, if the direc-
tion is not given the algorithm could be easily extended
to also find the correct direction, resulting in a heavily
increased computing time.
The 2D/3D alignment procedure is divided into suc-

cessive 2D/2D alignments. A similarity function (e. g.
cross correlation [6] or mutual information [3,7,8])
determines for each slice k of the 3D dataset in z direc-
tion the optimal translation parameters in x and y direc-
tion and the optimal rotation-angle in the xy-plane of

the image (x2D, y2D). To determine the best parameters,
all possible combinations of parameters within the
search space were used for the calculation. The highest
similarity value depicts the optimal registration. To
reduce the effort, often the search space is restricted by
prior knowledge. In this study, we used a similarity
function based on normalised mutual information,
which is very suitable for registration of multimodal
registration [3,4]. Given two probability distributions pT
(t), pF (f) and the joint probability pTF (t, f) of target
image T and floating image F, the normalised mutual
information NMI(T, F) is defined by means of the Kull-
back-Leibler measure [14]:

NMI T F p t f
pTF t f

pT t pF fTF

ft

(,) (,) log
(,)

() ()
  (1)

Multimodal alignment procedure
The sequential alignments of the 2D slices require a
high amount of computing time, because each align-
ment is independent from another and each parameter

Figure 2 Architecture of the Cell Broadband Engine. Eight Synergistic Processing Elements (SPEs) perform up to 210 GFLOPs. One 64-bit
Power Processing Element (PPE) manages the task scheduling. LS denotes the local storage of one SPE.

Scharfe et al. BMC Bioinformatics 2010, 11:20
http://www.biomedcentral.com/1471-2105/11/20

Page 3 of 11

combination has to be calculated. Program listing 1 (Fig-
ure 3) shows the main routine of a sequential multimo-
dal alignment implementation. The execution time of
each subroutine scales well with the size of the dataset
so that the majority of the runtime is spent on the inner
loop, respectively on the translate- and mutual-informa-
tion procedures. Optimisations on both these code sec-
tions promise the best computation time speedups.
Implementation on the Cell Broadband Engine
To exploit the considerable performance of the CBE,
architecture-specific properties have to be considered.
Well-known sequential programs have to be re-designed
and parallel concepts and new architecture-specific
restrictions have to be taken into account. Using these
features it is possible to obtain optimisation results close
to the peak performance of the processor [15,16]. In the
case of our implementation we achieved significant
improvements by following these rules:

1. Schedule the tasks onto all cores (partitioning)
2. Avoid scalars and use vectors instead
(vectorisation)
3. Eliminate and reduce branches on the SPE-code
(branch reduction)
4. Avoid 32-bit Integer multiplies on the SPEs
(avoiding Int32 multiplications)
5. Manually unroll loops on the SPE-code (unrolling)
6. Pay attention to the limited local storage of the
SPE (limited local storage)

Our algorithm consists of a multi-threaded alignment
procedure with one thread for each available SPE for
the computing work and one manager thread on the
PPE managing data-transfers, task-scheduling and I/O
operations. The application source code was implemen-
ted in C with SIMD extensions and SPE intrinsics pro-
vided by IBM’s Software Development Kit (SDK) for
multi-core Acceleration [17-19].

1) Partitioning
The design of a parallel algorithm often requires an effi-
cient partitioning of the computations between the
available processing units. In the case of the CBE it is
recommended that the SPEs performs all heavy compu-
tational tasks and the PPE acts as a control unit to orga-
nise the task flow, I/O and data transfer operations [20].
The first step in optimising the sequential multimodal
alignment program was to break the tasks into discrete
portions of work that can be distributed to all available
SPEs. Due to the iterative structure of the algorithm, the
3D dataset can be easily decomposed such that each
parallel task works on a portion (slice) of the data.
The PPE organises a job queue to process a fixed

amount of independent jobs and sends each SPE one
slice of the 3D dataset while there is still a slice left to
align. Program listing 2 (Figure 4) shows a code frag-
ment of the program running on the PPE which man-
ages the task scheduling onto the SPEs. In order to fully
exploit the available power of the Cell processor, the
PPE should also be involved in the calculations. This
requires additional programming effort because the
SPEs are much faster in processing than the PPE and
they should be supplied immediately with new tasks to
reduce unnecessary idling. Due to the excellent predict-
able performance of the SPEs (on branchless code) it is
possible to stop the PPE calculations at a certain time
and manage the job queue without major delays.
2) Vectorisation
The main part of the Cell Processors performance lies in
its SPEs, which are SIMD vector processors. They
achieve high performance by using large register files
(128 × 128 bit) and significant speedup can be achieved
using SIMDisation (vectorisation). For any given algo-
rithm, vectorisation can usually be applied in different
ways. Sometimes it is simple and intuitive to aggregate a
set of variables into a vector and perform one operation
on it instead of successive operations on each variable.

Figure 3 Listing 1: The sequential multimodal alignment procedure.

Scharfe et al. BMC Bioinformatics 2010, 11:20
http://www.biomedcentral.com/1471-2105/11/20

Page 4 of 11

Scalars, which are not appropriate for vectorisation,
should be converted to quad-word vectors to avoid
wasted instructions for loading and storing them [15].
Some compilers do auto-vectorisation, but their capabil-
ities remain limited, so it is recommended to do this
task manually. IBMs Cell SDK provides several useful
C/C++ language extensions, mainly vector data types
and operations on these data types [18]. We applied
manual vectorisation to all time critical functions to
achieve a higher overall performance on the Cell SPEs.
Program listing 3 (Figure 5) illustrates such a code mod-
ification using IBMs SDK C language extensions [18].
3) Branch reduction
The SPEs do not provide dynamical branch prediction
and a mis-predicted branch leads up to 19 wait cycles
[16]. To avoid this, static hint branch instructions can
be used to indicate the fetch direction or the source
code can be made branchless by computing all possible
results and selecting the correct one [15]. Program list-
ing 4 (Figure 6) shows an example of how to eliminate
an expensive if-else condition. This optimisation
resulted in more code lines and more single calculations,
but requires much less computation time on a SPE.
Therefore, variable execution times due to mis-predicted
branches were eliminated, leading to very predictable
SPE calculation times.
4) Avoidance of int32 multiplications
Because the current SPE contains only a 16 × 16 bit
multiplier, 32-bit integer multiplies requires four extra
instructions [16]. Therefore unsigned shorts should be
used if possible and arrays should have power-of-two
size to avoid multiplication when indexing.
5) Unrolling
The technique of loop unrolling provides significant per-
formance improvements, as compilers can automatically

schedule operations and optimise computations, if the
algorithm consist of many independent operations
[15,21]. In particular nested loops have been unrolled
manually to gain a considerably better performance. It
seems to be useful to try several levels of unrolling in
order to find an optimal usage of the SPE’s large register
file. An example of a fourfold unrolled nested loop is
shown in program listing 5 (Figure 7).
6) Limited local storage of the SPE
Each Synergistic Processor Element (SPE) has its own
256 KByte RAM for instructions and data which is
called local storage (LS) [11]. The SPEs can only execute
code in the LS and only operate on data residing in this
storage. Instead of direct main memory access, the SPE
has a programmable DMA controller which performs
transfers between main memory and LS [12].
Our goal for the high-performance implementation of

multimodal alignment was to keep all memory require-
ments of a SPE thread in the LS. The size of our SPE
program is 58 KByte. In our application examples (see
Results section) each 2D-image and each 3D-slice is a
256 × 175 8-bit gray-value pixel image, thus we need
about 90 KByte for storing the data. The approximately
108 KByte left on the LS are sufficient to store inter-
mediate results and temporary variables. The advantage
of this approach is that no additional data transfer is
necessary.

Results
Evaluation Platforms
The algorithms were implemented in C with special
extensions for vector and SIMD purposes provided in
IBMs CBE SDK 3.0 [17-19]. For performance tests we
used a first-generation stand-alone PS3 as an inexpen-
sive Cell BE platform [22]. Yellow Dog Linux 6.1 with

Figure 4 Listing 2: The program running on the PPE manages the task scheduling (NUM_SPES denotes the number of available SPEs
on the Cell Processor) procedure.

Scharfe et al. BMC Bioinformatics 2010, 11:20
http://www.biomedcentral.com/1471-2105/11/20

Page 5 of 11

kernel 2.6.23-9 was installed on the console and the
source-code was compiled with the GNU c compiler
(gcc) version 4.1.1. The programs can be found as Sup-
plementary Material Additional file 1.
We compared the performance of our CBE-optimised

alignment program to a Message Passing Interface (MPI)
parallelised version on a common quad-core Opteron
system [23]. Similar to the described partitioning opti-
misation for the CBE, the task was divided amongst all
processor cores. Not surprisingly the performance scaled
well with the number of used cores. Program listing 6
(Figure 8) shows the main routine of the MPI-

parallelised multimodal alignment procedure. We tested
this implementation on a workstation equipped with
two AMD Opteron 2356 (2.3 GHz), 16 GByte RAM and
an Open Suse Linux 11.0 with kernel 2.6.25.11. On this
platform we compiled the source-code with gcc 4.3.1
(optimisation level 5) and tested it with OpenMPI 1.2.5
and different amounts of parallel used cores.
Evaluation Example
In this study, we used two 3D NMR datasets of the male
and female brain, freely available from the Open Access
Series of Imaging Studies (OASIS) project [24]. The
dimensions of the 3D images were 256 × 175 × 176

Figure 5 Listing 3: This code fragment of the image rotate function shows some elementary changes from standard to vectorised
instructions.

Figure 6 Listing 4: Example of how to eliminate branches with IBM SDK instructions.

Scharfe et al. BMC Bioinformatics 2010, 11:20
http://www.biomedcentral.com/1471-2105/11/20

Page 6 of 11

voxel, an example of the data is shown in Figure 9.
Three modified slices of each NMR datasets and three
different 2D PET scans (see Figure 10 for an example),
published by the National Institute of Aging [25], were
used for registrations on the brain data. The 2D images
were converted into gray-values and down-scaled to the
respective resolution of the 3D dataset. Because of a
given rough pre-alignment the search space could be
constrained for the translation from -30 to +30 pixel
and for the rotation-angle from -20° to +20°. Figure 1
shows an example of the multimodal registration of a
3D dataset (brain) and an associated 2D image (PET).
The results of the analysis are detailed below and shown
in Figures 11, 12 and 13.
Optimisation Results on the PS3
To realise the optimisation steps described above and
access the high performance features of the CBE proces-
sor, we used a set of arithmetic, compare, logical scalar
and mask intrinsics [18,20]. A timer measured the per-
iod of the time-critical calculations in the alignment
procedure. The differences between the results for each
optimisation-step (see section Methods) was an indica-
tor for its effectiveness. We repeated each benchmark-
test several times with different combinations of the 3D
and 2D images and compared the means of their com-
putation time with each other.
1) Partitioning
As a first step we distributed the calculations on all
available processor cores (decomposition). At the begin-
ning of the calculations, the PPE loaded the 3D volume

and the 2D-image, created one thread for each SPE and
transferred via DMA the 2D-image and disjunct NMR-
slices to the SPEs. After receiving them, the SPEs com-
puted their local alignment and returned the alignment-
parameters to the PPE which stored the best of these
alignments. This was repeated with the next layers of
the volume until all slices had been processed. Not sur-
prisingly, the execution time of the whole alignment
scales well with the number of used SPEs (see Figure
13). Because the sum of all transfer times took only a
small fraction of the overall execution time, overlapped
techniques such as double buffering were not
implemented.
Partitioned alignment, without further optimisations,

required an average computation time of 67 seconds per
NMR slice. This is an average speedup of 1.49 compared
to a single-core Opteron solution, but it does not
exhaust the whole potential of the CBE processor.
2) Vectorisation
The SPEs vector architecture requires vectorised source-
code to achieve high performance [15,16]. SPEs then
have the ability to compute similar operations on several
variables in each cycle. We extensively transformed sin-
gle variable operations to vector variable operations.
Because of the recurring dataflow in the main computa-
tional routines (see Methods/Multimodal alignment pro-
cedure) this was applicable in a straightforward manner.
The speedup of 1.43 gained from this optimisation was
surprisingly not an outstanding result but may relate to
the powerful auto-vectorisation support of the Gnu C

Figure 7 Listing 5: This code fragment illustrates a fourfold unrolling of a typical nested loop.

Scharfe et al. BMC Bioinformatics 2010, 11:20
http://www.biomedcentral.com/1471-2105/11/20

Page 7 of 11

Figure 8 Listing 6: The MPI parallelised multimodal alignment procedure.

Figure 9 A volume rendering of a NMR dataset of a brain.

Scharfe et al. BMC Bioinformatics 2010, 11:20
http://www.biomedcentral.com/1471-2105/11/20

Page 8 of 11

compiler [26]. However, manually implemented vectori-
sation provided a significant speed enhancement
whereby the PlayStation 3 achieved an acceptable per-
formance in comparison with modern standard proces-
sors. In the case of our implementation, partitioning
and vectorisation provides a speedup of 2.12 compared
to a single-core Opteron, thus reaching the speed of a
dual-core Opteron version parallelised with MPI.
3) Reduce branches and avoid Int32 multiplications
As described in the Method section, we implemented
branchless code and reduced 32-bit Integer multiplies as
far as possible. Because the multimodal alignment func-
tions contain many conditions (branches), this technique
raised the performance significantly. Branchless code

with less Int32 multiplications resulted in a speedup of
3.65 compared to a single-core Opteron solution.
4) Explicit unroll
As a last optimisation step, we explicitly unrolled loops
to benefit from the large register (128 × 128 bit) on
each SPE. The used GNU C compiler offers automatic
loop unrolling mainly on simple loops (not nested and
without dependencies), so in many cases a manual
unrolling can result in considerable performance
improvements. In our evaluation example, two- and
four-times unrolling led to only minor speedups. A pos-
sible explanation besides existing compiler optimisations
is that in most cases the SPEs registers were nearly

Figure 10 A 2D PET image of a brain.

Figure 11 Mean computation time of one single alignment
(including standard deviation) and speedup (sp) after each
optimising step: (1) partitioning, (2) vectorisation, (3) reduce
branches, (4) avoid Int32 multiplies, (5) explicit unroll. Speedup
(sp) compares the optimised solution to a simple partitioning (1) on
the CBE and shows the effect of each optimisation step.

Figure 12 Comparison between the mean computation times
of one single alignment on the PS3 Cell Processor and a MPI-
parallelised solution on an Opteron performed on the example
datasets. Speedup (sp) compares each platform solution to the
single-core solution on the Opteron. The average speedup of the
PS3 Cell is 3.98 compared to the single-core Opteron, 1.99
compared to dual-core Opteron and 0.99 to quad-core Opteron
solution.

Scharfe et al. BMC Bioinformatics 2010, 11:20
http://www.biomedcentral.com/1471-2105/11/20

Page 9 of 11

completely filled by the assigned data in one single loop
cycle; therefore no further significant speedup could be
achieved by additional unrolling.
The tests using all optimisation steps show an average

speedup of 3.97 compared to a single-core Opteron for
the registration of a 2D PET scan. Figure 11 shows the
benchmark results after each optimisation step with cor-
responding speedups.
It should be mentioned that the PPE also calculated

alignments on some slices. However, this reduced the
overall execution only slightly. We also investigated the
performance of the PPE in comparison to one SPE. Our
tests show a speed advantage by a factor of four of the
optimised SPE source-code compared to a vectorised
PPE version. A performance comparison of the opti-
mised CBE alignment program to the MPI-parallelised
version is shown in Figure 12. The CBE program is
nearly (99%) as fast as the MPI-parallelised program
computed on four Opteron cores. Due to the strict data
parallelism of our task a single core Opteron reached
only about a quarter and a dual core about a half of this
performance. This corresponds to an average speedup of
3.97 of the optimised CBE alignment compared to the
single-core Opteron and of 1.98 to the dual-core
Opteron, respectively. Ohara et al. [9] reported a similar
approach, where they implemented a mutual informa-
tion based linear registration of monomodal 3D MRI
images. The speedup factors in their study are lower
(5.8 on 16 SPEs compared to a 3,0 GHz Woodcrest
Intel Xeon (one core)), but a direct comparison with
our results (3.97 on 6 SPEs compared to a 2,3 GHz
Opteron 2356 (one core)) is difficult. In addition, their

registration algorithm is based on Matte’s mutual infor-
mation approach as implemented in Insight Imaging
Toolkit (ITK) [27] library. However, this fast multi-reso-
lution algorithm does not work well with specific NMR
data such as NMR data of barley seeds which we are
currently investigating.

Discussion and Conclusion
In this paper, we have presented a set of optimisation
steps to accelerate the computation of a multimodal
alignment, a typical image analysis problem, on the Cell
Broadband Engine in a PlayStation 3. This platform
seems to be an attractive solution for high performance
computing due its considerable high peak performance
and its low cost (about 300 Euro). An optimised CBE
application is very predictable in its execution time and
with the knowledge of architecture-specific properties it
is possible to reach nearly the peak performance of this
processor. The bottleneck in this algorithm is the compu-
tation of the NMI function, which requires most of the
computing time. There is only low communication as for
typical image sizes (as in our examples) the program and
data fit into the local storage area of the SPEs. Potential
further developments would be the investigation of DMA
transfer effects for images of bigger size and comparison
with other platforms such as graphics processing units.
Developing efficient code for the CBE requires several

optimisation techniques. Furthermore, the optimised
source-code is not easily portable to other architectures.
Nevertheless, the comparison with the average execution
times on an Opteron system shows that in case of our
application the CBE processor in the PlayStation 3 (with

Figure 13 Computational time of a typical multimodal alignment task depending on the number of CBE components used. Speedup
(sp) compares each solution to the single SPE solution. The runtime scales well with the number of utilised SPEs. The additional usage of the
PPE resulted in only minor speedups.

Scharfe et al. BMC Bioinformatics 2010, 11:20
http://www.biomedcentral.com/1471-2105/11/20

Page 10 of 11

only six SPEs) achieves an average speedup of 3.97 com-
pared to a single-core Opteron. It requires at least four
physical Opteron cores to reach the speed of the con-
sole. Considering the price of the quad-core AMD pro-
cessor (about 600 Euro) included in a basic workstation
(about 1000 Euro), the PS3 will meet their reputation as
a low-cost high-performance computing platform.
Therefore the applicability of the Cell Broadband Engine
for common problems in bioinformatics is of current
interest and several approaches have been presented
[28-30]. We believe that this platform is an interesting
alternative for fast multimodal alignments of 2D and 3D
datasets and is able to speedup other tasks in image
processing.

Additional file 1: Yellow Dog Linux 6.1 with kernel 2.6.23-9 was
installed on the console and the source-code was compiled with
the GNU c compiler (gcc) version 4.1.1.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2105-11-
20-S1.zip]

Acknowledgements
We would like to thank Hendrik Rohn for help producing Figure 1, 9 and 10
with the 3D extension of the Vanted software [31]. This study was partly
supported by grants BMBF 0315044A and DFG WE 1608/2-1/550780.

Author details
1Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr.
3, D-06466 Gatersleben, Germany. 2Leibniz-Institute for Neurobiology (IfN),
Brenneckestr. 6, D-39118 Magdeburg, Germany. 3Institute of Computer
Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1,
D-06120 Halle, Germany.

Authors’ contributions
RP and FS designed the study, MS implemented the method, MS, RP and FS
analysed the results and wrote the paper, all authors read and approved the
final manuscript.

Received: 17 May 2009
Accepted: 11 January 2010 Published: 11 January 2010

References
1. Gubatz S, Dercksen V, Brüß C, Weschke W, Wobus U: Analysis of barley

(Hordeum vulgare) grain development using three-dimensional digital
models. Plant Journal 2007, 52:779-790.

2. Maintz J, Viergever M: A Survey of Medical Image Registration. Medical
Image Analysis 1998, 2:1-36.

3. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P: Multimodality
image registration by maximization of mutual information. IEEE
Transactions on Medical Imaging 1997, 16(2):187-198.

4. Thevenanz P, Unser M: Optimization of mutual information for
multiresolution image registration. IEEE Transactions on Image Processing
2000, 9(12):2083-2099.

5. Pennec X, Roche A, Cathier P, Ayache N: Non-rigid MR/US registration for
tracking brain deformations. Multi-Sensor Image Fusion and its Application
CRC Press 2005, 107-143.

6. Elsen van den P, Pol E, Sumanaweera T, Hemler P, Napel S, Adler J: Grey
value correlation techniques used for automatic matching of CT and MR
brain and spine images. Visualization in Biomedical Computing, Proc. SPIE
1994, 2359:227-237.

7. Viola P, Wells W III: Alignment by maximization of mutual information.
International Journal of Computer Vision 1997, 24(2):137-154.

8. Pluim J, Maintz J, Viergever M: Mutual information based registration of
medical images: a survey. IEEE Transactions on Medical Imaging 2003,
22:986-1004.

9. Ohara M, Yeo H, Savino F, Iyengar G, Gong L, Inoue H, Komatsu H,
Sheinin V, Daijavad S, Erickson B: Accelerating mutual-information-based
linear registration on the Cell Broadband Engine Processor. IEEE
International Conference on Multimedia 2007, 272-275.

10. Cooper J, Ebadollahi S, Eide E: A thin-client interface to a high
performance multi-modal image analytics system. Proc. 42nd Hawaii
International Conference on System Science 2009, 1-8.

11. Chen T, Raghavan R, Dale J: Cell Broadband Engine Architecture and its
first implementation - a performance view. IBM Journal of Research and
Development 2007, 51(5):559-572.

12. Kahle J, Day M, Hofstee H, Johns C, Maeurer T, Shippy D: Introduction to
the Cell multiprocessor. IBM Journal of Research and Development 2005,
49(4/5):589-604.

13. Buttari A, Dongorra J, Kurzak J: Limitations of the PlayStation 3 for High
Performance Cluster Computing. Tech. Rep. CS-07-594, University of
Tennessee Computer Science 2007.

14. Maes F, Vandermeulen D, Suetens P: Medical image registration using
mutual information. Proc of the IEEE 2003, 12:1699-1721.

15. Brokenshire D: Maximizing the power of the Cell Broadband Engine
processor: 25 tips to optimal application performance. IBM 2006http://
www.ibm.com/developerworks/power/library/pa-celltips1.

16. Bartlett J: Programming high-performance applications on the Cell BE
processor. 2007http://www.ibm.com/developerworks/power/library/pa-
linuxps3-4.

17. IBM: SIMD Math Library Specification for Cell Broadband Engine
Architecture, . Version 1.1 2007.

18. IBM: C/C++ Language Extensions for Cell Broadband Engine
Architecture, . Version 2.5 2008.

19. IBM: Software Development Kit for Multicore Acceleration . Version 3.0
Programmers Guide 2008.

20. Arevalo A, Matinata R, Pandian M, Peri E, Ruby K, Thomas F, Almond C:
Programming the Cell Broadband Engine Examples and Best Practices IBM,
Redbooks 2007.

21. Eichenberger A, O’Brien J, O’Brien K, Wu P, Chen T, Oden T, Prener D,
Shepherd J, So B, Sura Z, Wang T, Zhang A, Zhao P, Gschwind M,
Archambault R, Gao Y, Koo R: Using advanced compiler technology to
exploit the performance of the Cell Broadband Engine architecture. IBM
Systems Journal 2006, 45:59-84.

22. Bartlett J: An introduction to Linux on the PlayStation 3. 2007http://www.
ibm.com/developerworks/power/library/pa-linuxps3-1.

23. Gropp W, Lusk E, Skjellum A: Using MPI, portable Parallel Programming with
the Message Passing Interface Cambridge, USA: MIT Press, 2 1999.

24. The Open Access Series of Imaging Studies (OASIS). 2009http://www.
oasis-brains.org.

25. The National Institute on Aging. 2009http://www.nia.nih.gov/Alzheimers/
Resources/HighRes.htm.

26. Naishlos D: Autovectorization in GCC. Tech. rep., IBM Research Lab 2004.
27. Insight Segmentation and Registration Toolkit (ITK). 2009http://www.itk.

org/index.htm.
28. Sachdeva V, Kistler M, Speight E, Tzeng T: Exploring the viability of the

Cell Broadband Engine for bioinformatics applications. Parallel Computing
2008, 34(11):616-626.

29. Sarje A, Aluru S: Parallel genomic alignments on the Cell Broadband
Engine. IEEE Transactions on Parallel and Distributed Systems 2009,
20(11):1600-1610.

30. Wirawan A, Schmidt B, Zhang H, Kwoh C: High performance protein
sequence database scanning on the Cell Broadband Engine. Scientic
Programming 2008, 17(1-2):97-111.

31. Junker B, Klukas C, Schreiber F: VANTED: A System for Advanced Data
Analysis and Visualization in the Context of Biological Networks. BMC
Bioinformatics. 2006, 7:109.

doi:10.1186/1471-2105-11-20
Cite this article as: Scharfe et al.: Fast multi-core based multimodal
registration of 2D cross-sections and 3D datasets. BMC Bioinformatics
2010 11:20.

Scharfe et al. BMC Bioinformatics 2010, 11:20
http://www.biomedcentral.com/1471-2105/11/20

Page 11 of 11

http://www.ncbi.nlm.nih.gov/pubmed/17825055?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17825055?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17825055?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10638851?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9101328?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9101328?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18262946?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18262946?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12906253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12906253?dopt=Abstract
http://www.ibm.com/developerworks/power/library/pa-celltips1
http://www.ibm.com/developerworks/power/library/pa-celltips1
http://www.ibm.com/developerworks/power/library/pa-linuxps3-4
http://www.ibm.com/developerworks/power/library/pa-linuxps3-4
http://www.ibm.com/developerworks/power/library/pa-linuxps3-1
http://www.ibm.com/developerworks/power/library/pa-linuxps3-1
http://www.oasis-brains.org
http://www.oasis-brains.org
http://www.nia.nih.gov/Alzheimers/Resources/HighRes.htm
http://www.nia.nih.gov/Alzheimers/Resources/HighRes.htm
http://www.itk.org/index.htm
http://www.itk.org/index.htm

	Abstract
	Background
	Results
	Conclusions

	Background
	Cell Broadband Engine

	Methods
	Image Processing
	Multimodal alignment procedure
	Implementation on the Cell Broadband Engine
	1) Partitioning
	2) Vectorisation
	3) Branch reduction
	4) Avoidance of int32 multiplications
	5) Unrolling
	6) Limited local storage of the SPE

	Results
	Evaluation Platforms
	Evaluation Example
	Optimisation Results on the PS3
	1) Partitioning
	2) Vectorisation
	3) Reduce branches and avoid Int32 multiplications
	4) Explicit unroll

	Discussion and Conclusion
	Acknowledgements
	Author details
	Authors' contributions
	References

