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Abstract

Background: Alternative splicing is an important mechanism that increases protein diversity and functionality in
higher eukaryotes. Affymetrix exon arrays are a commercialized platform used to detect alternative splicing on a
genome-wide scale. Two probe summarization algorithms, PLIER (Probe Logarithmic Intensity Error) and RMA (Robust
Multichip Average), are commonly used to compute gene-level and exon-level expression values. However, a
systematic comparison of these two algorithms on their effects on high-level analysis of the arrays has not yet been
reported.

Results: In this study, we showed that PLIER summarization led to over-estimation of gene-level expression changes,

relative to exon-level expression changes, in two-group comparisons. Consequently, it led to detection of substantially
more skipped exons on up-regulated genes, as well as substantially more included (i.e., non-skipped) exons on down-
regulated genes. In contrast, this bias was not observed for RMA-summarized data. By using a published human tissue

expressed sequence data.

performance.

dataset, we compared the tissue-specific expression and splicing detected by Affymetrix exon arrays with those
detected based on expressed sequence databases. We found the tendency of PLIER was not supported by the

Conclusion: We showed that the tendency of PLIER in detection of alternative splicing is likely caused by a technical
bias in the approach, rather than a biological bias. Moreover, we observed abnormal summarization results when using
the PLIER algorithm, indicating that mathematical problems, such as numerical instability, may affect PLIER

Background

Alternative splicing (AS) contributes greatly to protein
diversity throughout the evolution of complex organisms.
According to Johnson et al. [1], about 70% of human
multi-exon genes are predicted to have more than one
isoform. Changes in the relative expression levels of the
various isoforms may have significant biological implica-
tions (for example [2]). Genome-wide surveys of AS
events have only become practical in recent years, largely
due to the development of microarray technology. The
Affymetrix exon array is one of the microarray platforms
available for this purpose. It has been applied in a number
of research areas [3-5], especially in cancer studies [6-8].
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While traditional gene expression arrays target each tran-
script near the 3' end, Affymetrix Exon arrays target indi-
vidual exons in the gene, thus enabling both gene-level
expression analysis and detection of AS.

The Affymetrix GeneChip Human Exon 1.0 ST array
has an extremely high probe density. The platform con-
tains over 1.4 million probesets, each of which contains
four perfect match (PM) probes that cover over 1 million
exons. While this design has added new capacity to the
microarray platform, it also poses new challenges in data
analysis. First of all, gene-level and exon-level expression
values need to be estimated using probe signals. This pro-
cess is called summarization and several algorithms have
been proposed for this purpose (for example [9]). The
most commonly used summarization algorithms are
RMA and PLIER, both of which are implemented in the
Expression Console software provided by Affymetrix.
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Both of the two algorithms implement a multiplicative
error model. While RMA assumes that the error is pro-
portional to the normalized and background-adjusted
probe intensity, PLIER assumes that the error is propor-
tional to the PM intensity without background correc-
tion. Define ¢ as a target response which represents the
abundance of the target mRNA, and fa feature response
which represents the affinity of the probe. The model of
RMA (on log scale) is specified as

log(PM;) = log(t;) + log(f;) + log(e;;) (1)

where i = 1,... I represents different arrays and j = 1,..., J
represents different probes. ¢ is an error term which fol-
lows the log-normal distribution. The model of PLIER is

PM;; [ e — BKGy =1; X f; (2)

where BKG;;is the background value specific for array
and probe ;.

Different approaches are taken to fit the models. RMA
log-transforms the PM intensities, and uses median pol-
ish to obtain the robust estimates of log(#,) and log(f). In
contrast, PLIER algorithm works on the PM intensities
directly without log-transformation. It defines r; =
log(e;). In order to down-weigh outliner probes with

large absolute values of 7;

i the loss function is specified as

2
L= Zhij = z rli”z , where z is a tuning constant for
ZETEW.

robustness. Newton's method is applied to find the values
of fand ¢ that minimize the loss function. The IterPLIER
method, which is an extension of PLIER algorithm, gen-
erates gene-level signals based on consecutive exons
[10,11]. A systematic comparison of PLIER and RMA
summarization has not been reported. In this study, by
using two public datasets, we found that IterPLIER and
RMA derived different gene-level estimates from the
same probe signals. Highly expressed probesets made
more contribution to the gene-level signal in IterPLIER,
compare to RMA.

Identification of differential splicing is also a challenge
in microarray analysis. Changes in exon-level expression
can be caused by two factors: differential splicing and dif-
ferential gene expression. To detect differential splicing,
the effect of differential gene expression must be
removed. A commonly used strategy to achieve this is to
calculate a NI (normalized index) for each exon, which is
denoted as the ratio of the exon-level signal to the gene-
level signal [12]. NI represents the exon inclusion rate
and can be used in statistical testing to detect differential
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splicing between sample groups. This strategy eliminates
gene-level expression in a simple manner. However, one
possible disadvantage of this method is that it relies heav-
ily on correct estimation of gene-level expression. When
comparing PLIER and RMA, we discovered that the two
methods behaved differently in detection of alternatively
spliced exons and we found that a major cause for this
phenomenon was the difference in estimation of gene
expression between the two methods.

To assess the ability of PLIER and RMA to detect AS, a
relatively large number of validated AS events are
required. RT-PCR is often performed to verify microar-
ray results, but large-scale validation of exon array results
with RT-PCR can be very laborious and impractical. In
this study, we proposed a different strategy. A large
amount of data on expressed sequences have been col-
lected for various human tissues and are available in pub-
lic sequence databases (Refseq, dbEST, etc.). Noh et al.
[13] previously used these data to identify tissue-specific
expression and splicing. Their results are summarized in
the TISA database. Since human tissues are expected to
have good homogeneity, we compared a published
human tissue panel dataset of Affymetrix exon arrays
with these sequence analysis results. We measured the
level of consistency between the two platforms and tested
whether the tendency of PLIER or RMA to detect AS was
supported by the sequence data.

Methods

Colon cancer dataset

The colon cancer dataset is available from the Affymetrix
website [6]. Briefly, 10 matched pairs of human colon pri-
mary tumor and adjacent normal tissues were assayed on
Affymetrix Human Exon 1.0 ST arrays. Only genes and
exons with core annotation were considered in this study
(the terms "exon" and "probeset” and the terms "gene" and
"transcript” are used interchangeably hereafter). Patient 3
was removed since he was identified as an outlier by PCA
analysis [6].

Human tissue dataset

The human tissue panel dataset is also available from the
Affymetrix website [14]. This dataset contains 11 tissues:
breast, cerebellum, heart, kidney, liver, muscle, spleen,
pancreas, prostate, testis and thyroid. Each tissue was
assayed on Affymetrix Human Exon 1.0 ST arrays in
three biological replicates. Only genes and exons with
core annotation were used in this study.

Data acquisition

Gene-level and exon-level signals were generated from
CEL files with Expression Console v1.1 using the PLIER
and RMA algorithms. In this paper, "PLIER summariza-
tion" refers to gene-level and exon-level signals derived
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with the iterPLIER and PLIER algorithms, respectively;
while "RMA summarization" refers to both gene-level
and exon-level signals derived with the RMA algorithm.
RMA-generated signals were reported on a log, scale,
while PLIER-generated signals were reported on a linear
scale. As recommended in [10], a value of 16 was added
to the gene- and exon-level PLIER signals prior to log
transformation. Unless otherwise specified, gene- and
exon- level signals mentioned hereafter are assumed to be
presented on a log, scale.

Data filtering

To reduce the false positive rate when comparing cancer
vs. normal samples in the colon cancer dataset and when
identifying tissue specificity in the human tissue dataset,
we filtered probesets according to the suggestions in [6]
and [12]. For the colon cancer dataset, we defined a
probeset as present in a group if its DABG (detection
above background) p-value < 0.05 in at least 50% of the
samples in the group. We defined a transcript as present
in a group if at least 50% of the core probesets of the tran-
script were present in the group. We retained probesets
present in either of the two groups and transcripts pres-
ent in both groups. Probesets with cross-hybridization
type other than 1 (i.e., not all probes uniquely match the
targeted exon) were also removed. Moreover, we kept
only the genes with IterPLIER signal > 70 in order to
increase the true positive rate (according to [6]).

For the human tissue dataset, similar filtering steps
were performed. First, we defined a probeset as present in
a tissue if its DABG p < 0.05 in at least 2 samples (out of
3) of that tissue. Since there are a total of 11 tissues in the
dataset, we filtered for: (1) probesets present in either the
test tissue or five of the other tissues; (2) genes present
both in the test tissue and in five of the other tissues; (3)
probesets with type 1 cross-hybridization. In addition, we
retained only genes for which the mean expression
ranked in the top 50% for both IterPLIER and RMA, since
genes with low expression levels may associate with
higher false positive rates in the detection of AS [12].

Data analysis

As mentioned before, NI was calculated for each exon
and used in statistical tests. For exon i in gene j, NI is
denoted as (on log scale)

NI, ; =E; - G; (3)

where E;and G; are the expression values of exon i and
gene j, respectively.

NI represents the inclusion rate of an exon in a sample,
while the splicing index, SI, measures the difference in NI
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between two samples. For exon i in gene j, when compar-
ing samples A and B, Sl is denoted as (on log scale)

SIl,] :NIL]:A_NIL]:B (4)

For the colon cancer dataset, paired t-tests on gene-
level signals were used to detect differential expression
between normal and cancer samples. Paired t-tests on NI
were used to detect differential splicing between the two
groups. For the human tissue dataset, two sample t-tests
were used on gene-level signals to detect tissue-specific
expression (one tissue vs. all the others). Two sample t-
tests were used on NI to detect tissue-specific splicing
(one tissue vs. all the others).

Comparison of the human tissue dataset with the Tissue-
Specific Alternative splicing (TISA) database

TISA data was obtained from the website http://
tisa.kribb.re.kr/AGC. Genes and exons in the database
were mapped to transcripts and probesets on the exon
array based on physical position. For each tissue in the
TISA database, we counted the number of exons located
on tissue-specific genes and with reported tissue-specific
splicing. Then we conducted the chi-square test to deter-
mine whether the ratio of relatively skipped exons to rela-
tively included exons was different from 1:1 to see if there
is an enrichment of skipped exons on the tissue-specific
genes. Tissue-specific expression and splicing events
detected using the human tissue dataset were compared
to the TISA database (see Additional file 1 for details).

Results and discussion

Comparison of gene-level estimation using PLIER and RMA
Gene-level correction is essential for detection of AS
using NI-based methods. To compare PLIER and RMA,
we first compared the gene-level estimations derived by
the two methods. We defined a quantity, named PS, as
was the proportion of probesets whose signals were
smaller than the corresponding gene-level signal in a spe-
cific sample. PS was calculated for all the core transcripts
in all samples. As illustrated in Figure 1, the distribution
of PS for RMA-summarized data is roughly symmetrical
and centered at 0.5. In contrast, the distribution of PS for
PLIER-summarized data is right-skewed. Although the
PLIER and RMA algorithms did not explicitly assign
weights to probesets in gene-level estimation, this result
shows that PLIER tends to "weigh" probesets with higher
expression values more heavily than RMA.

In microarray analysis, usually the fold change of gene
expression between arrays, rather than the gene expres-
sion value itself, is of interest. In perfect case where the
expression levels of exons change exactly proportionally
across arrays, the "weighing scheme" may not affect the
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Figure 1 Histogram of PS. (A) Colon cancer dataset, PLIER summarization (mean = 0.725, std = 0.22) (B) Colon cancer dataset, RMA summarization
(mean = 0.465, std = 0.148) (C) Human tissue dataset, PLIER summarization (mean = 0.702, std = 0.244) (D) Human tissue dataset, RMA summarization
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estimation of gene-level expression changes, however, as
we will shown in the next section, in real situation, the
two methods did result in different estimation of the fold
change of gene expression, which lead to detection of dif-
ferent AS events with NI-based methods.

Comparison of AS detection using PLIER and RMA

The two datasets were used to compare exons identified
as alternatively spliced with either PLIER or RMA. For
the colon cancer dataset, we compared cancer vs. normal
samples and for the human tissue dataset, we compared

cerebellum vs. non-cerebellum tissues, due to the high
number of reported tissue specific splicing events in the
brain.

After filtering, a total of 54,908 core probesets located
in 3,552 core transcripts were retained in the colon can-
cer dataset. In the human tissue dataset, for the compari-
son of cerebellum vs. non-cerebellum tissues, 111,703
core probesets located in 7,686 core transcripts were kept
for further analysis.

Paired t-tests and Welch tests were applied on NI to
identify alternatively spliced exons in the colon cancer
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dataset and in the human tissue dataset, respectively. We
observed different tendencies in detection of AS between
PLIER and RMA. As mentioned before, SI represents the
difference in NI for a given exon between two samples.
Because of the different experimental designs of the two
datasets (paired and unpaired), we defined SI for the two
datasets separately. For the colon cancer dataset, we
define

— NI

i,j,k _normal

SI; ;x = NI, (3a)

,j.k _ cancer

AG;, =G; -G (4a)

j,k _ cancer j.k _normal

where SI represents the difference in NI for exon i in
gene j in the k,;, sample pair, and AG represents the differ-

ence in expression levels of gene j for the k, sample pair.
For the human tissue dataset, we define

i,j,cerebellum — NIi,j,non—cerebellum (5)

AG; =G

j j,cerebellum

- Gj,non—cerebellum (6)

where SI; and AG; represent the mean difference in
inclusion rates of exon i and in expression levels of gene j
between the cerebellum vs. non-cerebellum tissues,
respectively.

In both datasets, we found that SI was strongly nega-
tively correlated with AG for PLIER-summarized data,
while SI and AG were correlated to a much lesser extent
(though the correlation was also significant, p < 0.01) for
RMA-summarized data. Person and Spearmen correla-
tions between SI; ; and AG; ;in the colon cancer dataset
were as large as -0.492 and -0.456, respectively, for the
PLIER-summarized data. In contrast, the correlations
were 0.048 and 0.045 for the RMA-summarized data.
Similarly, in the human tissue dataset, the Person and
Spearmen correlations between SI; ;and AG; were -0.58
and -0.60 when using PLIER, and -0.021 and 0.055 when
using RMA, respectively.

The negative correlations indicate that PLIER summa-
rization leads to detection of more included exons on
down-regulated genes, as well as more skipped exons on
up-regulated genes. This is illustrated in Figure 2 and in
Table 1. Figure 2 shows a plot of the density of SI in three
cases: (1) AG>1,(2)-1<AG <1, (3) AG < -1. For PLIER
in both datasets when AG > 1, SI is relatively negatively
distributed; when -1 < AG < 1, the distribution of SI cen-
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ters at zero; and when AG < -1, SI is relatively positively
distributed. However, the distributions of SI in the three
cases for RMA are all centered around zero.

Table 1 shows the number of probesets that were iden-
tified as having significant AS and were located on up- or
down-regulated genes. Two significance levels of AS were
considered, p < 0.001 and p < 0.05. For PLIER-summa-
rized data, at least 89.5% of the significant probesets
detected on up-regulated genes were relatively skipped
(with SI < 0) and at least 94.6% of the significant probe-
sets detected on down-regulated genes were relatively
included (with SI > 0). In contrast, for RMA summarized
data, substantially more balanced numbers of skipped
and included probesets were detected on both up- and
down-regulated genes (the ratio of numbers of these two
kinds of probesets ranged between 3:7 and 7:3 in all but
one case, where the total number of probesets under con-
sideration was only 2). (Table 1)

Another point that can be inferred from the negative
correlation between SI and AG is that PLIER leads to
over-estimation of gene-level expression changes
between the sample groups, relative to the exon-level
expression changes. Since by definition,

SIi,j = NIi,j,A _Nli,j,B = (Ei,A - Ei,B) - (Gj,A - Gj,B)f

so SI actually compares the magnitude of exon-level
expression changes with the corresponding gene-level
expression change between samples. Over-estimation of
gene-level expression change, (i.e, |G; 4- G; 5| > |E; 4- E;
5| for most of the exons in gene j), leads to the negative
correlation between SI and AG. Figure 3 shows the distri-
bution of a quantity, PD, which is the proportion of
probesets whose absolute mean expression difference is
smaller than the corresponding absolute mean gene
expression difference between the sample groups under
consideration (for about 95% of all the exons, the exon-
level expression change and corresponding gene expres-
sion change were either of the same sign or close to zero).
This figure clearly shows the tendency of PLIER to over-
estimate gene-level expression differences, relative to
exon-level expression differences.

We demonstrated that PLIER tended to "weigh" highly
expressed probesets more heavily and over-estimate gene
expression differences. These two observations can be
linked together if probesets with higher expression are
likely to be associated with larger exon-level expression
differences. As shown in Figure 4, we found that mean
exon expression actually was moderately positively corre-
lated with the magnitude of exon expression difference
between groups for PLIER-summarized data. The distri-
bution of Pearson correlation coefficients between mean
exon expression and the absolute value of exon expres-
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sion difference was right-skewed with mean = 0.246 and
std = 0.462 for the human tissue dataset and mean = 0.13
and std = 0.431 for the colon cancer dataset (t-test for p =
0 p < 105 in both datasets). This observation helps to
explain what we have observed for PLIER gene-level esti-
mation.

One possible reason for the observed difference
between PLIER and RMA summarization is that, the
multiplicative error model may not be completely hold
for probes with low intensities. As it is generally thought
that low intensity features are likely to be associated with

larger coefficients of variation, lowly expressed probesets
are typically filtered out in microarray analysis. So to
Tl]

2 ’
Tl]

PLIER probably

minimize the loss function 2

"o
down-weighs features with low intensities. The iterPLIER
algorithm may further strengthen the tendency of "select-
ing against" low intensity features, since it first computes
the gene-level expression using all the probes with PLIER,
and then iteratively selects a subset of probes whose sig-
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Table 1: Detection of alternatively spliced exons on differentially expressed genes: (A) Human tissue dataset, (B) Colon cancer dataset

Method Significance level of AS  # of significant probesets # of significant probesets located on # of probesets in (1) and with mean # of probesets in (2) and with
gene expression difference (2) mean NI difference
differentially expressed genesa(1)

PLIER 0.001 13555 10737 >06513 >0 559 (8.6%)
<0 5954 (91.4%)
<04224 >0 4086 (96.7%)

<0138 (3.3%)
0.05 37746 26652 >0 16456 >0 1736 (10.5%)
<0 14729 (89.5%)
<010187 >0 9641 (94.6%)

<0573 (5.4%)
RMA 0.001 9433 6033 >04381 >0 2485 (56.7%)
<0 1896 (43.3%)
<01652 >0 1067 (64.6%)

<0585 (35.4%)
0.05 31238 18628 >012318 >0 7295 (59.2%)
<05023 (40.8%)
<06310 >0 3575 (56.7%)

(

<0 2735 (43.3%)

PLIER 0.001 330 220 >0200 >0 3 (1.5%)

<0197 (98.5%)

<020 >0 20 (100%)
<00 (0%)
0.05 8359 3283 >02830 >0 134 (4.7%)

<0 2696 (95.3%)

<0453 >0 436 (96.2%)

<017 (3.8%)
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Table 1: Detection of alternatively spliced exons on differentially expressed genes: (A) Human tissue dataset, (B) Colon cancer dataset (Continued)

Method Significance level of AS  # of significant probesets # of significant probesets located on # of probesets in (1) and with mean # of probesets in (2) and with
gene expression difference (2) mean NI difference
differentially expressed genesa(1)
RMA 0.001 230 107 >0105 >035(33.3%)
<070 (66.7%)
<02 >0 0(0%)

<02 (100%)

0.05 7233 2602 >0 2482 >0 1372 (55.3%)

<0 1110 (44.7%)

<0120 >0 60 (50%)

<060 (50%)

a: significance level for differential gene expression was p < 0.001
b: Due to the relatively small number of differentially expressed genes, the significance level for differential gene expression here was set to p < 0.01
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nal varies in a similar pattern as the predicted gene-level
expression to redo the calculation. Another point to be
considered is that, as suggested by the moderately posi-
tive correlation between the average exon-level expres-
sion and expression difference between sample groups,
the assumption that f;is independent of signal intensity is
probably not completely hold either, which may also have
an influence on gene-level estimation.

Assessment of the enrichment level of relatively skipped
exons on up-regulated genes using the TISA database

Noh et al. used mRNA and EST sequences from public
databases to identify tissue-specific gene expression and
splicing in humans and mice. The work flow of their
study was thoroughly described in [13] and their results
were summarized in the TISA database. Briefly, the
expressed sequences were retrieved from GenBank and
dbEST, classified based on tissue origin and mapped to
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Figure 4 Distribution of Pearson correlation coefficients. The Pearson correlation coefficient between the mean exon expression level and the
absolute difference in exon expression (between the two sample groups under consideration) was computed using PLIER-summarized data for each
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Table 2: Enrichment of skipped exons on tissue-specific genes in the human tissue dataset

tissue Pearson correlation between Sland AG  Spearman correlation between Sl and AG enrichment of skipped probesets (p enrichment of skipped probesets (p
< 0.001) on tissue-specific genes < 0.05) on tissue-specific genes

breast -0.47 -0.45 95.8%(1321/1379) 92.7%(4065/4385)

cerebellu -0.58 -0.60 91.4%(5954/6513) 89.4%(14729/16465)

m

heart -0.47 -0.46 90.8%(1437/1582) 87.4%(3898/4458)
kidney -0.47 -0.43 92.4%(1004/1086) 91.4% (3035/3322)
liver -0.52 -0.52 91.9% (2574/2802) 85.3% (6595/7734)
muscle -0.49 -0.49 90.5% (1975/2183) 86.2%(5430/6296)
pancreas -0.43 -0.39 93.6%(508/543) 89.3% (1576/1764)
prostate -0.44 -0.40 93.8%(609/649) 92.1% (1721/1868)
spleen -0.49 -0.47 94.7% (2680/2830) 90.2% (6941/7692)

testes -0.53 -0.55 96.3% (3659/3801) 94.4% (10059/10645)
thyroid -0.45 -0.41 92.7%(939/1013) 88.2% (2574/2919)
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genomic sequences to establish gene units and recon-
struct transcripts. Statistical tests were used to identify
tissue-specific gene expression and splicing. For humans,
26,143 genes were reconstructed, of which 13,015 were
determined to have more than one isoform and were
located on autosomes. These 13,015 genes were used in
this study. A total of 200,619 exons were listed for these
genes, 63.8% of which were mapped to core probesets on
the exon array. Since human tissue data are expected to
have good homogeneity, we compared the human tissue
dataset of exon arrays with the TISA database in detec-
tion of tissue-specific expression and splicing. For detec-
tion of tissue specific splicing using PLIER-summarized
exon array data, we found that, besides the cerebellum, all
other tissues showed remarkable enrichment (range from
85% to 96%, see Table 2) of relatively skipped exons on
tissue-specific genes (i.e., genes that were significantly
up-regulated in the tissue). If this observation reflects the
true situation, then the same tendency should be
observed in the TISA database. (Table 2)

The TISA database contains 46 tissues. A total of 4,527
exons were found to be involved in the 3,695 tissue-spe-
cific splicing events (with p < 0.05), while 1,753 of these
exons were located on genes that were specifically
expressed in the same tissue (an exon may be counted
multiple times if it is involved in more than one tissue-
specific splicing event). Nine exons with inconsistent tis-
sue specificity (i.e., presents in both isoform A, which was
reported to be more enriched in a given tissue, and iso-
form B, which was reported to be less enriched in the
same tissue) were removed, and the remaining 1,744
exons were kept for further analysis.

Several factors may affect the comparability of the
human tissue dataset and the TISA database: (1) splicing
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forms. The TISA database contains 8 splicing forms, of
which 3 splicing forms, 'cassette exon’, 'multiple cassette
exon' and 'mutual exclusive exon' are most readily detect-
able by the exon array, while splicing forms such as
'intron retention' may not be detectable; (2) tissue con-
tent. The TISA database contains 46 tissues, while the
human tissue dataset contains only 11 tissues. If only
exactly matched tissue names are considered, 10 tissues
(all tissues from the array dataset excluding breast) are
present in both cases; (3) mapping between the two plat-
forms. Only core probesets on the exon array were con-
sidered in this study. This may result in a bias in the
mapping, since tissue-specific exons in the TISA database
may be present in smaller number of mRNAs and thus
may be less likely to be mapped to core probesets. By con-
sidering combinations of the 3 factors, we listed a total of
8 cases in Table 3. Significant enrichment of skipped
exons on genes with tissue-specific expression was not
observed in any of these cases, indicating that the ten-
dency of PLIER to detect substantially more skipped
exons in these genes was not supported by the TISA data.
To date, there is no clear evidence or established theory
supporting strong negative correlation between SI and
AG. So we believe the tendency of PLIER to predict these
events is due to technical bias, as opposed to a biological
bias. (Table 3)

Comparison of tissue-specific gene expression and splicing
events detected using the human tissue dataset with those
reported in the TISA database

This study compared gene- and exon-level tissue specific-
ity identified using the exon arrays with the TISA data-
base to assess reliability of the exon array platform and
the performance of PLIER and RMA. The mapping

Table 3: Numbers of exons located on tissue-specific genes and with tissue-specific splicing, according to TISA database

# exons with tissue-
specific splicing and

# exons in (1) and were
relatively included in

# exons in (1) and were
relatively skipped in that

Chi-square p-value

located on genes with that tissue tissue
tissue-specific
expression (1)
all 1744 877 867 0.865
3 splicing forms only 647 326 321 0.912
10 tissues only 706 383 323 0.11
3 splicing forms+10 tissues only 246 133 113 0.367
all exons mapped to core 1061 518 543 0.572
probesets
3 splicing forms+ mapped to core 323 158 165 0.813
probesets only
10 tissues +mapped to core 413 214 199 0.626
probesets only
3 splicing forms+10 tissues+ 128 71 57 0.381

mapped to core probesets only
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Figure 5 The expression values of two genes calculated using the iterPLIER algorithm with different background-correction options. The
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between the two platforms showed reasonable agreement
in gene- and exon-sequence clustering. At the gene level,
we observed significant consistency between the two
platforms in detection of tissue-specific expression for
both PLIER- and RMA-summarized data. RMA perform-
ing slightly better than PLIER in distinguishing "true pos-
itives" from "true negatives", where the tissue-specific
expression reported in TISA were assumed to be true
events. However, at the exon-level, the consistency
between the two platforms was not significant, regardless
of the summarization method. In addition, the difference
between the two methods was not significant. Due to the
lack of significant agreement between the TISA database
and the tissue dataset, we did not reach a conclusion as to
which method was better (see Additional file 1 for
details).

Possible numerical instability problem in PLIER
summarization

The Expression Console software offers two options for
background correction for IterPLIER or PLIER, called
'pm' and 'pm-gcbg’. The 'pm' option uses the signals of
PM probes directly (without background correction) for
calculation of gene-level or exon-level expression, while
the 'pm-gcbg' method corrects the PM signal by subtract-
ing a GC-content specific background signal. Thus, we
expected the gene-level or exon-level signals computed
with the 'pm-gcbg' option to be slightly smaller than
those computed with the 'pm' option. Although this was

true for the vast majority of genes and exons, to our sur-
prise, the expression values computed with the 'pm-gcbg'
option for a small proportion of genes and exons were
much greater than those computed with the 'pm'’ option.
Figure 5 shows two typical genes displaying this behavior
(with the mean expression calculated with 'pm-gcbg' at
least 7 fold greater than the mean expression calculated
with 'pm’), one from the colon cancer dataset, and one
from the human tissue dataset. A similar phenomenon
was also observed for exon-level signals (data not shown).
The expression values shown in the plots are displayed on
a linear scale.

Since the IterPLIER algorithm is based on PLIER, and
PLIER relies on Newton's method to find the best solu-
tion for parameters, the observed phenomena may be due
to numerical instability, which can cause the algorithm to
be trapped in a local maximum, resulting in retrieval of
an abnormal solution for the parameters. By using the
APT software (Affymetrix Power Tools) and choosing
different parameters for controlling the PLIER algorithm,
similar problems can be avoided in some cases, but not in
all (data not shown).

Conclusion

In this study, we found that the two commonly used sum-
marization algorithms, PLIER and RMA, behaved differ-
ently in detection of AS. Due to different gene-level
estimation, PLIER showed a strong tendency to detect
relatively skipped exons on up-regulated genes and rela-
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tively included exons on down-regulated genes, while this
tendency was not observed when using RMA. To deter-
mine whether this tendency of PLIER represents a real
biological situation, we used tissue-specific expression
and splicing events that have been identified with
sequence data and summarized in the TISA database as
references. The TISA data did not show significant
enrichment of skipped exons on genes with tissue-spe-
cific expression, a finding that did not support the ten-
dency of PLIER. So we concluded that the observed
tendency of PLIER is due to technical bias. We also com-
pared the performance of RMA and PLIER in detection
of AS by using tissue-specific splicing events in the TISA
database as true positives. The consistency between the
exon array data and the TISA database was low for both
summarization methods, and the difference between the
two methods was not significant. Given the observed bias
of PLIER, this result may suggest that the efficacy of the
RMA algorithm can be further improved as well. More
sophisticated methods that incorporate sequence infor-
mation or other characteristics of the probes may help to
achieve more accurate estimation of gene- and exon-level
expression [15].

Additional material

Additional file 1 Comparison of the analysis results of the human tis-
sue dataset and the TISA database. Detailed description on how the tis-
sue-specific genes and exons identified with the human tissue dataset
were compared to those reported in TISA database in this study.
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Authors' contributions

The work presented here was carried out in collaboration between all authors.
YC and YQ defined the research theme. YQ, YC and FH designed methods and
experiments, analyzed the data, interpreted the results and wrote the paper. All
authors have contributed to, seen and approved the manuscript.

Acknowledgements
This work was supported by Shanghai Natural Science Foundation
(07ZR14084).

Author Details
National Engineering Center for Biochip at Shanghai, Libing Rd. 151, Shanghai,
201203, China

Received: 14 October 2009 Accepted: 28 April 2010
Published: 28 April 2010

References

1. Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD,
Santos R, Schadt EE, Stoughton R, Shoemaker DD: Genome-wide survey
of human alternative per-mRNA splicing with exon junction
microarrays. Science 2003,302:2141-2144.

2. Panda D, Samuel JC, Massie M, Feinstein SC, Wilson L: Differential
regulation of microtubule dynamics by three- and four-repeat tau:
Implications for the onset of neurodegenerative disease. PNAS 2003,
100:9548-9553.

Page 13 0f 13

3. Huang RS, Duan S, Kistner EO, Zhang W, Bleibel WK, Cox NJ, Dolan ME:
Identification of genetic variants and gene expression relationships
associated with pharmacogenes in humans. Pharmacogenet Genomics
2008, 18:545-549.

4. Cheung HC, Hai T, Zhu W, Baggerly KA, Tsavachidis S, Krahe R, Cote GJ:
Splicing factors PTBP1 and PTBP2 promote proliferation and migration
of glioma cell lines. Brain 2009, 132:2277-2288.

5. LinL, LiuS, Brockway H, Seok J, Jiang P, Wong WH, Xing Y: Using high-
density exon arrays to profile gene expression in closely related
species. Nucleic Acids Res 2009, 37:¢90.

6. Gardina PJ, Clark TA, Shimada B, Staples MK, Yang Q, Veitch J, Schweitzer A,
Awad T, Sugnet C, Dee S, Davies C, Williams A, Turpaz Y: Alternative
splicing and differential gene expression in colon cancer detected by a
whole genome exon array. BMC Genomics 2006, 7:325.

7. XiL, Feber A, Gupta V, Wu M, Bergemann AD, Landreneau RJ, Litle VR,
Pennathur A, Luketich JD, Godfrey TE: Whole genome exon arrays
identify differential expression of alternatively spliced, cancer-related
genes in lung cancer. Nucleic Acids Res 2008, 36:6535-6547.

8. Thorsen K, Serensen KD, Brems-Eskildsen AS, Modin C, Gaustadnes M,
Hein AM, Kruhaffer M, Laurberg S, Borre M, Wang K, Brunak S, Krainer AR,
Terring N, Dyrskjgt L, Andersen CL, Orntoft TF: Alternative splicing in
colon, bladder, and prostate cancer identified by exon array analysis.
Mol Cell Proteomics 2008, 7:1214-1224.

9. Xing Y, Kapur K, Wong WH: Probe selection and expression index
computation of Affymetrix exon arrays. PLoS One 2006, 1:e88.

10. Affymetrix technical notes: Guide to Probe Logarithmic Intensity Error
(PLIER) Estimation [http://www.affymetrix.com/support/technical
technotes/plier_technote.pdf]

11.  Affymetrix white paper: Gene Signal Estimates from Exon Arrays
[http//www.affymetrix.com/support/technical/whitepapers,
exon_gene_signal_estimate_whitepaper.pdf]

12.  Affymetrix technical notes: Identifying and Validating Alternative
Splicing Events  [http.//www.affymetrix.com/support/technical/
technotes/id_altsplicingevents technote.pdf]

13. Noh SJ, Lee K, Paik H, Hur CG: TISA: Tissue-specific AS in Human and
mouse genes. DNA Res 2006, 13:229-243.

14. Clark TA, Schweitzer AC, Chen TX, Staples MK, Lu G, Wang H, Williams A,
Blume JE: Discovery of tissue-specific exons using comprehensive
human exon microarrays. Genome Biol 2007, 8:R64.

15. Gaidatzis D, Jacobeit K, Oakeley EJ, Stadler MB: Overestimation of
alterative splicing caused by variable probe characteristics in exon
arrays. Nucleic Acids Res 2009, 37:2107.

doi: 10.1186/1471-2105-11-211
Cite this article as: Qu et al,, Different effects of the probe summarization
algorithms PLIER and RMA on high-level analysis of Affymetrix exon arrays
BMC Bioinformatics 2010, 11:211

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( ) BiolVed Central



http://www.biomedcentral.com/content/supplementary/1471-2105-11-211-S1.PDF
http://www.biomedcentral.com/1471-2105/11/211
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14684825
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12886013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18496134
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19506066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19474342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17192196
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18927117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18353764
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17183719
http://www.affymetrix.com/support/technical/technotes/plier_technote.pdf
http://www.affymetrix.com/support/technical/technotes/plier_technote.pdf
http://www.affymetrix.com/support/technical/whitepapers/exon_gene_signal_estimate_whitepaper.pdf
http://www.affymetrix.com/support/technical/whitepapers/exon_gene_signal_estimate_whitepaper.pdf
http://www.affymetrix.com/support/technical/technotes/id_altsplicingevents_technote.pdf
http://www.affymetrix.com/support/technical/technotes/id_altsplicingevents_technote.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17107969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17456239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19528075

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Colon cancer dataset
	Human tissue dataset
	Data acquisition
	Data filtering
	Data analysis
	Comparison of the human tissue dataset with the TIssue-Specific Alternative splicing (TISA) database

	Results and discussion
	Comparison of gene-level estimation using PLIER and RMA
	Comparison of AS detection using PLIER and RMA
	Assessment of the enrichment level of relatively skipped exons on up-regulated genes using the TISA database
	Comparison of tissue-specific gene expression and splicing events detected using the human tissue dataset with those reported in the TISA database
	Possible numerical instability problem in PLIER summarization

	Conclusion
	Additional material
	Abbreviations
	Authors' contributions
	Acknowledgements
	Author Details
	References

