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Abstract
Background: Subtle alternative splicing events involving tandem splice sites separated by a short (2-12 nucleotides) 
distance are frequent and evolutionarily widespread in eukaryotes, and a major contributor to the complexity of 
transcriptomes and proteomes. However, these events have been either omitted altogether in databases on alternative 
splicing, or only the cases of experimentally confirmed alternative splicing have been reported. Thus, a database which 
covers all confirmed cases of subtle alternative splicing as well as the numerous putative tandem splice sites (which 
might be confirmed once more transcript data becomes available), and allows to search for tandem splice sites with 
specific features and download the results, is a valuable resource for targeted experimental studies and large-scale 
bioinformatics analyses of tandem splice sites. Towards this goal we recently set up TassDB (Tandem Splice Site 
DataBase, version 1), which stores data about alternative splicing events at tandem splice sites separated by 3 nt in 
eight species.

Description: We have substantially revised and extended TassDB. The currently available version 2 contains extensive 
information about tandem splice sites separated by 2-12 nt for the human and mouse transcriptomes including data 
on the conservation of the tandem motifs in five vertebrates. TassDB2 offers a user-friendly interface to search for 
specific genes or for genes containing tandem splice sites with specific features as well as the possibility to download 
result datasets. For example, users can search for cases of alternative splicing where the proportion of EST/mRNA 
evidence supporting the minor isoform exceeds a specific threshold, or where the difference in splice site scores is 
specified by the user. The predicted impact of each event on the protein is also reported, along with information about 
being a putative target for the nonsense-mediated decay (NMD) pathway. Links are provided to the UCSC genome 
browser and other external resources.

Conclusion: TassDB2, available via http://www.tassdb.info, provides comprehensive resources for researchers 
interested in both targeted experimental studies and large-scale bioinformatics analyses of short distance tandem 
splice sites.

Background
Alternative splicing (AS), a process which enables the
production of multiple mRNA transcripts by the same
gene via the variable inclusion of parts of the primary
transcript, is very widespread in eukaryotes - almost all
multi-exonic human genes are believed to undergo AS
[1,2]. Thus, AS is a major contributor to the complexity
and diversity of eukaryotic transcriptomes and pro-
teomes. The splice variants produced can either exhibit

different properties (e.g. half-life, translational effi-
ciency), be translated into different protein isoforms with
potentially different functions, or can be degraded via
pathways such as the nonsense-mediated decay (NMD)
[3]. AS can often be specific to a tissue type or develop-
mental stage, and the majority of human AS events are
believed to be regulated in this sense [1]. The regulation
of AS has been shown to play an important role in several
developmental processes in various organisms, and
defects in AS can lead to diseases [4].

Subtle AS, involving splice sites separated by a distance
of 2-12 nt, is an important, evolutionarily widespread
subclass of AS [5]. Such AS is called subtle because the
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resulting mRNA isoforms differ by only a few nucle-
otides. While alternative acceptors (AA) and alternative
donors (AD) together constitute about a third of all AS
events in humans, subtle AS events comprise about a
third of AA and AD events - for example, subtle events
constitute 1,586 (38%) out of 4,179 AA events and 774
(28%) out of 2,728 AD events in the "alt events" track of
the UCSC genome browser [6] for a combined total of
34% (2,360/6,907). Another reason for treating these
events separately is that the mechanisms behind such
events are likely different from those involving splice sites
separated by larger distances - for example, the emer-
gence of a second polypyrimidine tract can be observed
for alternative acceptors separated by 8 or more nucle-
otides, and events which result in a frame-preserving dif-
ference of transcript length are seen to be more common
than frame-shifting ones, once we move beyond a differ-
ence of 12 nt [7,8]. In the following, we shall use the nota-
tion Δx to denote a subtle splice event involving sites
separated by x nucleotides, so for example, the class Δ3
shall be used to mean all GYNGYN and NAGNAG AS
events (Y stands for C or T; N for A, C, G, or T), and so
on.

It is a matter of debate as to what fraction of subtle AS
events are truly functional, as opposed to being a result of
a noisy process in which the spliceosome stochastically
selects between nearby competing alternatives [5,9-11].
Consistent with estimations that a fraction of those subtle
AS events is under purifying selection [12], there are sev-
eral known cases where they result in functionally differ-
ent protein isoforms or affect the translational efficiency
when located in the untranslated regions (UTR) [5].
Moreover, subtle AS can also have a decidedly unsubtle
effect in cases where a premature stop codon can be cre-
ated, which is especially likely in cases where the splice
sites are separated by a distance which is not a multiple of
3. Mutations that create frame-preserving tandem splice
sites affecting the coding region are selected against [13],
and in the case of ABCA4 (Δ3 acceptor, [14]) and WT1
(Δ9 donor, [15]) are associated with human disease. In the
human EDA gene, AS at a conserved Δ6 donor leads to
isoforms with distinct receptor binding specificity [16].
For more examples and further details regarding the
functional consequences of subtle AS, the reader is
referred to [5].

TassDB1 (TAndem Splice Site DataBase, version 1), the
first database devoted to subtle AS, provides large collec-
tions of Δ3 donors and acceptors in eight species [17]. We
have extended TassDB1 considerably, to create TassDB2,
which provides a comprehensive collection of all human
and mouse donors and acceptors in the Δ2-Δ12 range.
We note that while TassDB provided data on 8 species,
TassDB2 only includes 2 species, human and mouse. This
is because the transcriptome coverage by ESTs/mRNAs

in the remaining species was insufficient for detection of
a non-negligible number of AS events involving the larger
distances in the Δ2-Δ12 range. TassDB2 includes data on
the conservation of the tandem motifs in five vertebrates
(human, mouse, dog, chicken and zebrafish). Thus,
TassDB2 provides comprehensive information on 22
event types, compared to 2 (NAGNAG and GYNGYN) in
TassDB1. Thus TassDB2 is effectively a new database
rather than just a simple extension. A user-friendly search
interface features both a "quick search" mode, in which a
user can search using gene symbol, as well as an
"advanced search" mode, in which several different crite-
ria can be specified by the user, and the possibility to
download result datasets.

Construction and content
Data
TassDB2 uses an annotation pipeline based on transcript-
to-genome mappings taken from the UCSC genome
browser [18]. We used the RefSeq annotation as well as
the UCSC 'knownGene' set for human (build hg18) and
mouse (build mm9). The exon-intron structure as well as
the protein-coding sequence (CDS) annotation was as
per the UCSC annotation. Alternative tandem splicing
events were identified using BLAST against all ESTs and
mRNAs from the respective species as described in
[19,20].

For each tandem splice site and the confirmed or puta-
tive AS event, TassDB2 contains the following data: the
splice site motif, its genomic locus, its location in the
transcript (5'/3'-UTR or CDS with intron phase 0/1/2),
the (predicted) impact of the splice event on the protein,
the sequences and length of the up-/downstream exon
and the intron, and information about the ESTs/mRNAs
that indicate usage (if any) of the splice sites. Their
nomenclature is E/e for intron-proximal acceptor/donor
(distal part of the tandem becomes exonic) and I/i for
intron-distal ones (entire tandem becomes intronic). As
the strength of the splice sites in a tandem often helps to
distinguish between alternatively and non-alternatively
spliced tandem motifs [7,9,20], we also computed splice
site scores for both splice sites in each tandem [21].

TassDB2 holds splice site specific data as well as tran-
script-dependent data. Some features, such as the tandem
motif (the two NAGs or GTNs, and the intervening
sequence, if any - Δ2 being a special case, with motifs
NAGAG and GTGTN), the genomic locus and the splice
site scores, are independent of transcript annotation.
However, other features such as intron phase, protein
impact, EST confirmation and predicted targeting by
NMD depend on the CDS annotation and the exon-
intron structure of the transcript. The features "protein
impact", "position in protein", and "NMD e/i" are all com-
puted separately for each transcript, as detailed in the



Sinha et al. BMC Bioinformatics 2010, 11:216
http://www.biomedcentral.com/1471-2105/11/216

Page 3 of 7
original TassDB paper [17]. Targeting by NMD is pre-
dicted in the usual manner - for each transcript with a
stop position upstream/5' of the last exon-exon junction,
we calculated the nucleotide distance between the stop
position (corresponding to the given splice variant) and
the position of the last exon-exon junction, and if this dis-
tance was greater than 50, targeting by the NMD pathway
was predicted.

Database Design
The web-frontend to TassDB2 is created in HTML with
PHP and JavaScript. The data is stored in a relational
database, running under the MySQL database system.
The data is primarily organized in the database tables
splicesite, spliceeventdata, and transcript (Figure 1).

The table splicesite contains sequence-dependent infor-
mation such as the genomic locus, the splice site pattern
with its sequence context, the splice site scores, and con-
served tandem sequences (if available) in human/mouse,
chicken, dog, and zebrafish. All transcript-dependent
data is stored in table spliceeventdata: the transcripts
which have the tandem site in their exon-intron struc-
ture, the annotated splice site, the number of ESTs for

each (potential) tandem splice variant along with the two
BLAST queries used to find the ESTs, the predicted pro-
tein impact, and the NMD prediction. The table tran-
script contains the information on the transcripts that is
independent from the splice sites. The three main tables
are linked through the ss2transcript2sed table.

Additionally, each splice site is linked to information on
its gene (table gene), and its conservation in other species
(table splicesite_conservation; species are human, mouse,
dog, chicken, zebrafish, representing the major vertebrate
clades). Here, conservation simply means that both spe-
cies contain tandem splice sites - the neighbouring nucle-
otides need not be conserved. The splicing events are
linked to their supporting ESTs in the table est. The user
interface contains links giving a detailed description of
each data field.

Summary statistics of human tandem splice sites in
TassDB2 are given in Table 1.

Utility and Discussion
While several databases on AS ignore subtle AS events,
others (e.g. [6,22-25]) contain them but provide no
straightforward way of searching for them via the user

Figure 1 The database scheme of TassDB2. The figure shows the details of all eight tables, and their interdependencies.
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interface. To the best of our knowledge, none of the exist-
ing databases on AS provide the option of searching for
alternative donors or acceptors separated by a specific
distance. While some of the databases contain a compa-
rable number of subtle AS events (Additional file 1), these
have to be teased out from the raw data using computer
programs, whereas TassDB2 lets the user search for them
in a straightforward manner. Moreover, it is the only
database to contain an exhaustive list of putative tandem
splice sites, as these surely contain a subset which shall be
revealed as being alternative, once more transcript data
(such as RNA-seq data from next-generation sequencing
platforms) is available. We demonstrated this for NAG-
NAG events in our work on NAGNAG AS prediction
[26], where we experimentally confirmed the existence of
subtle AS for many putative events (chosen on the basis
of our predictions).

User interface - quick search and advanced search
We anticipate that the most frequent use of TassDB2 will
be a search for tandem splice sites of a given gene. There-
fore, TassDB2 provides a"quick search" interface where a
user need only specify a gene symbol or a transcript
accession number, and the entire information of both
confirmed and unconfirmed tandem splicing events for
this gene is displayed.

Often, however, users might be interested in informa-
tion which requires a selection of tandem splice sites with
specific features. To address this, TassDB2 also provides
an "advanced search interface" (Figure 2) where the
search can be restricted using one or more of the follow-

ing features: (i) Δ - the distance between the splice sites,
(ii) frame-preserving or/and frame-shifting, (iii) number
of ESTs/mRNAs that match both splice forms, (iv) "minor
isoform ratio", that is the fraction of ESTs/mRNA that
support the minor isoform, (v) tandem site conservation
in any or all of five organisms (human, mouse, dog,
chicken, and zebrafish) (vi) splice site scores for the two
splice sites, (vii) the difference in the splice site scores,
and (ix) location in the UTR or CDS. Thus, it is easy to
formulate queries such as: "Show all confirmed Δ3 events
with a minor isoform ratio ≥ 0.4", "Show all tandem splice
sites where both splice forms are represented by at least
two ESTs/mRNAs and the minor isoform ratio is ≥ 0.15"
or "Show all confirmed frame-shifting tandem donors
which are located in the CDS". Additionally, the search
can be restricted to certain genes.

User interface - reporting results
The result of the search consists of two parts: (i) a sum-
mary table listing the affected genes and their number of
tandem splice sites of each type, and (ii) detailed tables
containing information regarding the individual tandem
splice sites. These detailed result tables also provide links
to the ESTs/mRNAs for both splice forms as well as links
to the UCSC genome browser. If the transcript specific
data differ between transcripts, TassDB2 shows detailed
result tables with more than two columns. Features that
differ between transcripts are shown in black while those
that are identical in all transcripts are shown in grey
color.

Table 1: Statistics of human tandem splice sites in TassDB2.

Donors #% Acceptors #%

Delta Tandem splice sites Confirmed* alternative Tandem splice sites Confirmed alternative

2 9,825 1.9 164 1.7 11,135 6.7 252 2.3

3 11,164 2.2 166 1.5 12,542 7.5 2,272 18.1

4 130,104 25.3 955 0.7 11,852 7.1 961 8.1

5 36,643 7.1 269 0.7 11,314 6.8 609 5.4

6 54,142 10.5 275 0.5 16,495 9.9 396 2.4

7 45,161 8,8 150 0.3 17,290 10.4 179 1.0

8 42,670 8.3 150 0.4 15,386 9.2 175 1.1

9 46,688 9.1 249 0.5 18,645 11.2 212 1.1

10 47,092 9.1 217 0.5 17,294 10.4 160 0.9

11 44,831 8.7 157 0.4 15,832 9.5 123 0.8

12 46,654 9.1 267 0.6 18,819 11.3 204 1.1

Total 514,974 100.0 3,019 0.6 166,604 100.0 5,543 3.3

* Tandem splice sites are considered confirmed if both splice forms have at least one supporting EST/mRNA.
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Examples
Searching for all confirmed tandem splice sites in the
gene HHIP (hedgehog interacting protein) in human
leads to the result page shown in Figure 3: HHIP has one
confirmed Δ4 tandem acceptor event, with the upstream
and downstream acceptor supported by 30 and 34 ESTs/
mRNAs, respectively. The event is predicted to lead to
targeting by NMD according to one of the representative
transcripts (uc003ijs.1, NM_022475), but not according
to the other (uc003ijr.1).

While AS has now been established as a widespread
phenomenon and a substantial contributor to the com-
plexity of eukaryotic transcriptomes and proteomes, it is
still a matter of great debate as to how many AS events
are truly functional [9-12,27,28]. The literature regarding
this question is the motivation behind providing the
options for searching by splice site score difference and
minor isoform ratio in TassDB2. It has been observed
that comparable splice site strength is often indicative of
both splice sites in a tandem being used, whereas a higher

Figure 2 The advanced search interface of TassDB2.
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fraction of ESTs/mRNA supporting the minor isoform is
a good test of whether the event is likely to be genuine AS
events rather than just noise [29,30]. As an example,
searching for all confirmed tandem splicing events with a
minor isoform ratio of ≥ 0.45 yields 300 results, and
increasing the threshold of supporting ESTs/mRNAs to ≥
10 for each variant yields 170 results.

The TassDB2 resource also includes the BayNAGNAG
webserver (available at http://www.tassdb.info/baynag-
nag/), which uses Bayesian networks to predict the splic-
ing outcome at NAGNAG tandem splice sites in an EST/
mRNA independent way based on splice site features
[26].

Conclusions
TassDB2 is a comprehensive resource for information
regarding subtle AS. Users can easily search for individual
genes, as well as by various criteria corresponding to dif-
ferent features of the tandem splice sites. Some of the cri-
teria can be used to enrich for splicing events which are
likely to have functional significance. The results can be
downloaded for further exploration, and flat files have
also been made available for those who wish to carry out
their own large-scale bioinformatics studies (see Addi-
tional files 2 and 3 for all confirmed subtle AS events in

Human and Mouse, respectively). Thus TassDB2 should
be a very useful resource for scientists interested in subtle
AS.

Availability and requirements
TassDB2 is freely available for online use at http://
www.tassdb.info

TassDB2 can be used via any standard internet browser.
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