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Abstract

Background: Genome-Wide Association (GWA) analysis is a powerful method for identifying loci associated with
complex traits and drug response. Parts of GWA analyses, especially those involving thousands of individuals and
consuming hours to months, will benefit from parallel computation. It is arduous acquiring the necessary
programming skills to correctly partition and distribute data, control and monitor tasks on clustered computers, and
merge output files.

Results: Most components of GWA analysis can be divided into four groups based on the types of input data and
statistical outputs. The first group contains statistics computed for a particular Single Nucleotide Polymorphism (SNP),
or trait, such as SNP characterization statistics or association test statistics. The input data of this group includes the
SNPs/traits. The second group concerns statistics characterizing an individual in a study, for example, the summary
statistics of genotype quality for each sample. The input data of this group includes individuals. The third group
consists of pair-wise statistics derived from analyses between each pair of individuals in the study, for example
genome-wide identity-by-state or genomic kinship analyses. The input data of this group includes pairs of SNPs/traits.
The final group concerns pair-wise statistics derived for pairs of SNPs, such as the linkage disequilibrium
characterisation. The input data of this group includes pairs of individuals. We developed the ParallABEL library, which
utilizes the Rmpi library, to parallelize these four types of computations. ParallABEL library is not only aimed at GenABEL,

when ParallABEL employed eight processors.

parallelization of GenABEL.

but may also be employed to parallelize various GWA packages in R. The data set from the North American
Rheumatoid Arthritis Consortium (NARAC) includes 2,062 individuals with 545,080, SNPs' genotyping, was used to
measure ParallABEL performance. Almost perfect speed-up was achieved for many types of analyses. For example, the
computing time for the identity-by-state matrix was linearly reduced from approximately eight hours to one hour

Conclusions: Executing genome-wide association analysis using the ParallABEL library on a computer cluster is an
effective way to boost performance, and simplify the parallelization of GWA studies. ParallABEL is a user-friendly

Background

GWA analysis [1] is a well established and powerful
method for identifying loci associated with variations of
complex genetic traits such as common diseases. Hun-
dreds of new genes have been implicated in human health
and disease during the last few years in various GWA
studies[2]. In a typical study, hundreds of thousands, or
millions, of single-nucleotide polymorphisms (SNPs) are
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typed in thousands of individuals in order to detect
genetic risk factors.

GenABEL is a specialized library package for GWA
analysis [3] implemented in R, an open source statistics
programming language and environment [4,5]. GenABEL
enables GWA analysis to be done using a regular desktop
computer due to its efficient data storage and memory
management. Nevertheless, analysis of very large data
sets are computationally challenging and may take hours
or weeks to complete. Examples include the utilization of
sophisticated adjustments for population stratification
and relationship structures, the estimation of linkage dis-
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equilibriums and the calculation of genome-wide iden-
tity-by-state, haplotypic tests, and permutation analyses.

To increase the computational throughput, a user can
partition their data into sets, and perform the analysis of
the sets across a network of computers; a concept known
as parallel and/or distributed computing. However, per-
forming such analysis requires high levels of computer
expertise. The user needs sufficient programming skills
to partition and distribute data, control and monitor
tasks across the computers, and merge output files. Occa-
sionally, a data set may fail to be processed, e.g. if the user
did not partition the data into small enough subsets to be
processed on a particular machine. Also, the outputs
from the computers may be scattered and their order
hard to follow.

Parallel computing is an intuitive, and powerful,
method for increasing computational throughput. A task
is separated into smaller tasks, and each is processed
independently, in parallel, using multiple Central Pro-
cessing Units (CPUs) or a cluster of computers. The out-
puts from each task must later be merged [6]. A general
architecture for parallel computing is shown at Figure 1.
Most tasks solved in GWA analysis are suitable for paral-
lelization, due to their computational independency, with
parallelization achieved at the data level. For example,
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association tests can usually be done separately for each
SNP and/or a small group of SNPs. Consequently, paral-
lelization is a beneficial way to reduce the computing
time, with few overheads incurved in large-scale GWA
analyses.

Several attempts had been made to parallelize genetic
association analyses. Grid Engine, a cutting-edge parallel
tool, can schedule parallel tasks involving genetic associa-
tion analysis programs [7] such as FBAT [8] and
UNPHASED [9]. The approach, first proposed by
Mishima et al., is based on non-parallel code combined
through process-based parallelization. The downside is
that the user still needs to monitor when each task is fin-
ished, and when the outputs from all the tasks can be
merged. Moreover, each process may take a very long
time to finish, and load balance can be problematic. A
granularity problem (a high computation to communica-
tion ratio) may occur, but higher power compute-nodes
or code parallelization are possible solutions. The R/par-
allel package has been used to automate loop parallel exe-
cution, but the application must run on a single computer
with multi-core processors, and does not currently sup-
port cluster computing [10]. Its inclusion would allow the
computing time limit of the package to be eliminated.
Misawa and Kamatani [11] developed the ParaHaplo

-
Computer Cluster Frontend-node

> Internet

Ethernet

1)

Compute-node 1 Compute-node 2 Compute-node 3

User

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Compute-node nJ

—————— — — — —— —— —— — — — — — — — —— — — —

Figure 1 Computer Cluster Architecture. The user can submit tasks to the cluster of computers via the Internet. Once the user submits a job to the
computer cluster, the frontend-node schedules and distributes the smaller partitioned tasks to the compute-nodes. The output from each compute-

node is merged by the frontend-node.
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package for haplotype-based whole-genome association
studies using parallel computing. It is aimed at correcting
multiple comparisons in multiple SNP loci in linkage dis-
equilibrium. There are other statistical analyses require-
ments in GWA studies, such as obtaining statistics for a
particular SNP or a trait, association test, characterizing
an individual in the study, and pair-wise statistics
between individuals. Furthermore, Ma et al. [12] devel-
oped EPISNPmpi, a parallel system for epistasis testing in
large scale GWA analysis.

Rmpi [13] is an R library which provides various func-
tions to parallelize tasks on R using the MPI (Message-
Passing Interface) [14]. Rmpi employs various functions
to manage flow analysis in parallel environment, and is
applicable for employing multi-core CPUs distributed
across many computers, not only multi-core CPUs on a
single computer. However, it is difficult, if not impossible,
for a non-programmer to write a parallel Rmpi program.
Therefore, SPRINT [15] was developed to implement
parallel R functions. Although users can use SPRINT eas-
ily, it does not specifically support GWA studies.

In this article, we present the development of our Paral-
1ABEL library, a new R library for parallelization of GWA
studies based on Rmpi. ParallABEL aims to speed up the
computation of GWA studies for various statistical analy-
sis requirements and also simplify analysis parallelization.
With ParallABEL, the users do not need to be experts
programming on partitioning and distributing data, con-
troling and monitoring tasks, and merging output files.

Implementation

GWA Function Grouping

Statistical analyses in GWA studies can be categorized
into four groups based on the nature of the statistics com-
puted and type of data used. These four groups can be
parallelized in distinct ways. Table 1 shows the name and
description of the GenABEL function in each group. The
first group contains statistics computed for a particular
SNP, or a trait, such as the SNP characterization statistics
(e.g. call rates, HWE testing), produced by GenABEL's
summary.snp.data or association test statistics (the
qtscore, milreg and mmscore GenABEL functions). The
second group holds statistics characterizing an individual
in the study, such as, summary statistics of genotype
quality for each sample (obtained with the GenABEL
perid.summary and hom GenABEL functions). The third
group consists of pair-wise statistics derived from analy-
ses between each pair of individuals in the study, includ-
ing genome-wide identity-by-state and genomic kinship
analyses. This is one of the most computationally inten-
sive analyses, obtained through GenABEL's ibs function.
The final group concerns pair-wise statistics derived for
pairs of SNPs, such as linkage disequilibrium characteri-
sation (the dprfast, rhofast and r2fast functions). While
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the number of SNP pairs is generally very large, analyses
are usually limited by their pair-wise physical distance,
making them less demanding than pair-wise individual
analyses, such as IBS computations.

We have developed the ParallABEL library to parallel-
ize the serial functions of these groups using Rmpi
library. The four implementation groups are named
Typel_parall_by_SNPs for the first group, Type2_
parall_by_individuals for the second group, Type3_
parall_by_pairs_of_individuals for the third group and
Type4_parall_by_pairs_of SNPs for the fourth group.

Data Partitioning

An advantage of ParallABEL is usage simplicity, hiding
otherwise tedious scripts for file management monitoring
tools. These functions not only partition input data with
automatic load balancing, but also gather output from
each processor automatically. Load balancing is critical
because an unbalanced work load will result in higher
loads for particular processors, which eventually under-
mines the overall performance.

The input data of Typel_parall by SNPs contains
SNPs equally partitioned into P subsets (where P is the
number of available processors). If the number of SNPs is
M, the number of SNPs in a subset is:

num _SNPs = floor (M | P)

If there are M SNPs and 4 processors, the SNPs will be
partitioned into 4 smaller subsets. Each containing M/4
SNPs as shown in Figure 2. However, the last subset to be
generated may contain more SNPs than others, caused by
integer division. For example, if there are 801 SNPs and 4
processors, Subset 1 to Subset 3 will contain 200 SNPs,
but Subset 4 will have 201. The SNPs in each subset will
execute on separate processors.

The input data for Type2_parall by_individuals con-
sists of individuals, partitioned like Typel_parall_by
_SNPs

The input data for Type3_parall by_pairs_of
_individuals is a pair of individuals, and performs a more
complicated partitioning than Typel_parall_by_SNPs
and Type2_parall_by_individuals. The data is divided
until the number of processors is equal to, or less than,
the number of subsets for load balancing on each proces-
sor. If the number of processors is equal to the number of
subsets, then each processor executes an individual pair
of each subset. If the number of processors is less than
the number of subsets, then each processor executes an
equal number of individual pairs (where possible). Figure
3 shows Type3_parall_by_pairs_of_individuals with N
individuals. The statistics is calculated from the cross
operation of an individual in a row with an individual in a
column. The input data is partitioned into 4 subsets using
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Table 1: GWA analyses grouping
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function name of GenABEL

Description

group

summary.snp.data

qtscore

mireg

mmscore

Provides summary of observed genotypes, allelic frequency,
genotypic distribution, P-value of the exact test for HWE and
chromosome

Fast score test for association between a trait and genetic
polymorphism

Linear and logistic regression and Cox models for genome-wide SNP
data

Score test for association between a trait and genetic polymorphism,
in samples of related individuals

perid.summary

Produces call rate and heterozygosity per person 2

hom Computes average homozygosity (inbreeding) for a set of people, 2
across multiple markers. Can be used for Quality Control (e.g.

contamination checks)

ibs Given a set of SNPs, computes a matrix of average IBS for a group of 3
people

dprfast Given a set of SNPs, computes a matrix of D' 4

rhofast Given a set of SNPs, computes a matrix of rho

r2fast Given a set of SNPs, computes a matrix of r2 4

The name and description of function of GenABEL in each group

the data partitioning shown in Figure 3A. However, if the
number of processors is more than 4, the subsets are par-
titioned again. Subset 1 and Subset 4 are split into 8 sub-
sets during the first stage of the data partitioning, while
Subset 2 and Subset 3 are divided into 8 subsets by row, as
shown in Figure 3B. There are 16 subsets altogether in the
second stage of the data partitioning.

SNP

34 +1
3M/4

M2 +1
M2

M/4 + 1
M/4

Figure 2 Data partitioning for Type1_parall_by_SNPs. Data parti-
tioning for Type1_parall_by_SNPs Type2_parall_by_individuals when
M=2800and P=4.

The SNPs input of Type4_parall_by_pairs_of SNPs will
be partitioned in a similar way to Type3_parall_by
_pairs_of_individuals.

Implementation

The workflow for GWA analysis on a single processor or
computer is presented in Figure 4A. This workflow runs.
The genotype and phenotype data is processed by the
GenABEL library, which works under the R program.
GenABEL sequentially processes the raw data, producing
statistical data as its outputs.

This sequential workflow may take a very long time to
produce some demanding statistical analyses. Our novel
parallel workflow for producing statistical data in GWA
studies is shown in Figure 4B, and can save computing
time. The genotype and phenotype data is passed for dis-
tribution to the SUN Grid Engine, a job scheduler. It
queues jobs and assigns them to processors in a cluster.
LAM/MPI (Local Area Multicomputer/Message Passing
Interface) [16] has various functions which can be called
by Rmpi to parallelize R. ParallABEL parallelizes GenA-
BEL using this Rmpi library. The statistical data from this
workflow has been validated by comparing it with the
outputs from the non-parallel approach. ParallABEL runs
not only on Linux cluster, such as the Rocks Cluster Dis-
tribution, but also on any Operating System that supports
R and LAM/MPI or Open MPI, such as the Unix and
Solaris Operating Systems. It can also run on computer
clusters lacking the Sun Grid Engine by executing imme-
diately. However, the administrator will normally not
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Figure 3 Data partitioning for Type3_parall_by_pairs_of _individuals. A) The first data partitioning for Type3_parall_by_pairs_of_individuals
when the number of individuals = N. There are 4 equal subsets. B) The second data partitioning for Type3_parall_by_pairs_of_individuals when the
number of individuals = N. There are 16 equal subsets.

Figure 4 GWA Computing Workflow. A) Sequential GWA Computing Workflow, which runs on a single processor or computer. B) Parallel GWA
Computing Workflow which runs on a multiprocessor or a set of computers.
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allow a user to run a parallel program without utilizing a
queuing process from the Sun Grid Engine.

To parallelize GWA studies, ParallABEL running on the
frontend-node partitions input data into smaller subsets
so that tasks can be fairly distributed among the proces-
sors. It sends tasks to idle processors on compute-nodes.
When the computation on a compute-node has finished,
the frontend-node will send another task to the idle pro-
cessor - a cycle that continues until all the tasks are com-
pleted, which is known as the 'task pull' method [17].
When all the tasks are finished, the frontend-node auto-
matically merges all the outputs.

Users can use ParallABEL to parallelize GenABEL
GWA functions as easily as using GenABEL for sequen-
tial analyses. An example of the milregp command
sequentially on a processor is shown in Figures 5A and
6A. The executing command that parallelizes mlregp to
run on multiple processors using Typel_parall_by_SNPs
is shown in Figures 5B and 6B.

Results

Our computer cluster, Hanuman, runs Rocks Cluster Dis-
tribution version 4.3, which includes the SUN Grid
Engine version 4.3 [18]. The cluster consists of 5 IBM
servers xSeries 336s, comprising of a frontend-node and
four compute-nodes. All servers have 2 SINGLE-CORE
Intel Xeon (2.8 GHz) processors and 4 GB RAM. The
frontend-node and all the compute-nodes are connected
through an Ethernet switch, and the user can connect via
the Internet. The cluster provides LAM/MPI version
7.1.2, R program version 2.8.1, Rmpi library version 0.5-6,
and GenABEL version 1.4-2, which are utilized as com-
ponents by our ParallABEL library.

The North American Rheumatoid Arthritis Consor-
tium (NARAC) data is part of a dataset employed to
observe associations between disease and variants in the
major-histocompatibility-complex locus [19]. The
NARAC genotype data contains 545,080 SNPs from
2,062 individuals. The data was used to measure the per-
formance of ParallABEL by employing 868 individuals for
cases, and 1,194 individuals as controls.

Trace results from Typel_parall by SNPs, Type2_
parall_by_individuals, Type3_parall_by_pairs_
of_individuals, and Type4_parall_by_pairs_of SNPs for
the NARAC data are shown in Figure 7. Typel_parall_
by_SNPs was executed by the GenABEL mlreg function,
Type2_parall_by_individuals was executed by the GenA-
BEL hom function, Type3_parall _by_pairs_of_ individu-
als was executed by the GenABEL ibs function, and
Type4_parall_by_pairs _of SNPs was executed by the
GenABEL r2fast function.

ParallABEL reduced the computing time for
Type3_parall_by_pairs_of_individuals, especially with 8
processors. The Type3_parall _by_pairs_of_individuals
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executing speed on eight processors was approximately
seven times faster than on one processor. On a single pro-
cessor, the complete analysis took 8.1 hours, but only 1.1
hours with 8 processors. The computing time for
Typel_parall_by_SNPs also tends to be like that for
Type3_parall_by_pairs_of_individuals.

The computing time for the sequential version of
Type2_parall_by_individuals can be very short (e.g. 20
seconds). While the parallel version took longer (5.3 min-
utes for 2 processors), due to the overhead of data parti-
tioning, data distribution, and data merging. Data
distribution can be time consuming because the data
must be saved on the frontend-node before the compute-
nodes can load it, and the frontend-node must also speed
time communicating with the compute-nodes. In addi-
tion, GenABEL is tailored to quickly retrieve subset of
SNPs, as this is a typical GWA scan procedure, but is
much less efficient in retrieving subsets of individuals,
which is less typical. Thus the overhead of data partition-
ing in subsets of individuals prevailed over the gain
achieved by parallel processing. These results highlighted
a place where GenABEL data storage and processing is
ineffective, and we are currently working on better algo-
rithms to do by-individual analyses.

Type4_parall_by_pairs_of SNPs was executed by the
GenABEL r2fast function. A single processor can not
pass all the SNPs in the NARAC data to r2fast due to
CPU memory limitations so, the analysis was done sepa-
rately for each chromosome. Even then, a single proces-
sor can not call r2fast with a chromosome with more
than 10,000 SNPs, which affects 20 chromosomes in the
data. However, Parall ABEL can run r2fast with a chromo-
some with more than 10,000 SNPs by employing a set of
processors. The chromosome data is automatically parti-
tioned based on the number of SNPs, as shown in Table 2.
If the number of SNPs for a chromosome is between 11
and 14,000, then the data is partitioned into at least 4 bal-
anced subsets. If the number of the SNPs is between
14,001 and 28,000, then the data is divided into at least 16
balanced subsets. If the number of SNPs is between
28,001 and 65,000, then the data is split into at least 64
balanced subsets. The data is automatically partitioned
until the number of processors is equal to, or less than,
the number of subsets for load balancing on each proces-
sor. The trace example results for Type4_parall_by_pairs
_of_SNPs of NARAC data are shown in Figure 7.

Type4_parall_by_pairs_of SNPs took only 1.4 days to
execute on eight processors, indicating that time-saving
with ParallABEL is linearly correlated to the number of
nodes. This suggests that with more SNPs, more comput-
ing time will be saved by ParallABEL.

If the number of available processors is P, the parallel
computing time for P processors is time_P_cpus, and the



Sangket et al. BMC Bioinformatics 2010, 11:217
http://www.biomedcentral.com/1471-2105/11/217

Page 7 of 11

where

output.s <- mlreg.p(formula, data)

formula = formula for the function
data = genotype and phenotype data

A)

where

Jun = “mireg.p”

output.p <- typel.p(npro, fun, data, formula)

npro = the number of processors of all compute nodes

data = genotype and phenotype data
formula = formula for the function

B)

Figure 5 A comparison of using a sequential and parallel function. A) Executing the mlreg.p function sequentially on a processor B) Parallelizing
the mireg.p function on more than one processor. The user supplies the function name and number of processors to the parallel function.

serial computing time for a processor is time_a_cpu; the
overhead for P processors is:

overhead = time _ P _ cpus — time _a _cpu | P

Different numbers of processors produce different
overheads depending on data partitioning, network com-
municating, and data merging. However, the overheads
can be predicted based on the overhead of eight proces-
sors shown in Figure 7. The computing time on a large
cluster for Typel_parall_by_SNPs,
Type3_parall_by_pairs_of_individuals and
Type4_parall_by_pairs_of SNPs extrapolated from Fig-
ure 7 applying the above overhead equation are shown in
Figure 8. It is clear that ParallABEL also saves the com-
puting time on a large cluster. In addition, the time-saving
rates for these types are much increased when the num-
ber of processors is between 2 and 50. Nevertheless, the

time-saving rates are slowly increased when the number
of processors is greater than 100. This applies to the par-
ticularly and relatively small data set analyzed here. With
bigger data sets, the time-saving rates can be larger. How-
ever, the user should optimize the number of processors
according to the gain in computational throughput.

Discussion and conclusions

We have presented the ParallABEL library which employs
parallel computing to reduce computing time for data
intensive tasks. ParallABEL can run on clustered comput-
ers that support LAM/MPI and R. With clustered com-
puters, processors or even personal computers can be
easily added as new compute-nodes. ParallABEL runs on
both distributed and shared memory architectures as it
was developed with MPI. For a distributed memory
architecture, MPI usually uses a computer network for
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library(GenABEL)

data <- ge03d2.clean/,]

formula <- dm2~sex+age

output.s <- mlreg.p(formula=formula, data=data)

A)

library (ParallABEL)
library(GenABEL)

data <- ge03d2.clean(,]
formula <- dm2~sex+age

output.p <- typel.p(npro=2, fun=mireg.p, data=data, formula=formula)

B)

Figure 6 A comparison execute sequential and parallel function. A) Execute the mlreg.p function sequentially on a processor B) Parallelize the

mireg.p function on more than one processor.

task communications. For a shared memory architecture,
MPI does not employ the network for task communica-
tions. This means that a distributed memory architecture
may exhibit more overhead than a shared memory archi-
tecture (for example, eight single-core processors versus a
single eight-core processor). In our experiments,
Typel_parall by SNPs took only 6 minutes to execute on
a shared memory architecture but 14 minutes on a dis-
tributed memory architecture. The overhead of a shared
memory architecture was tested on a server, which has 2
QUAD-CORE Intel Xeon(R) (2.8 GHz) processors and 8
GB. The server runs on CentOS version 5.4, and provides
Open MPI version 1.4.1.

ParallABEL allows the user to specify the number of
processors employed for data execution. We expect com-
putational performance to increase linearly with the
number of processors when using Typel_parall_by_
SNPs, Type3_parall_by_pairs_of_individuals, and Type4_
parall_by_pairs_of SNPs. In addition, ParallABEL is
faster than GenABEL on one processor. Computing times
for Type3_parall by_pairs_of_individuals and Type4_
parall_by_pairs_of SNPs are longer than those for Typel

_parall_by_SNPs because the input data consists of pairs
of individuals and SNPs respectively, which are much
larger than the SNPs input for Typel parall by SNPs. In
addition, if the number of SNPs is n, then the number of
inputs for Typel_parall_by_SNPs is n but the number of
inputs data for Type4_parall_by_pairs_of SNPs is n*n.
ParallABEL can save much more computational time
when utilizing Type3_parall_by_pairs_of_individuals and
Type4_parall_by_pairs_of SNPs than when using Typel_
parall_by_SNPs. Therefore, as the amount of input data
increases, the time saved by ParallABEL also increases.
Parall ABEL does not only reduce the computing time but
also is as easy-to-use as the more conventional GenA-
BEL.

ParallABEL can not reduce the computing time when
the data size is too small, such as the result shown when
employing the hom function of Type2_parall_by_ indi-
viduals, because the computing time is too short. In that
case, the overheads of data partitioning and output merg-
ing overwhelm the computational performance.
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Figure 7 Trace results from ParallABEL for NARAC data. Trace results from Type1_parall_by_SNPs, Type2_parall_by_individuals,
Type3_parall_by_pairs_of_individuals, and Type4_parall_by_pairs_of_SNPs for NARAC data. When Type1_parall_by_SNPs is executed by the GenA-
BEL mireg function, Type2_parall_by_individuals is executed by the GenABEL hom function, Type3_parall_by_pairs_of_individuals is executed by the
GenABEL ibs function, and Type4_parall_by_pairs_of_SNPs is executed by the GenABEL r2fast function. If there is only one processor, then the data is
analysed using GenABEL. If there is more than one processor, the data is analysed using ParallABEL package.

Availability and requirements + Other requirements: LAM/MPI or Open MPI,

« Project home page: Rmpi, GenABEL
http://www.sci.psu.ac.th/units/genome/CGBR/Paral- + License: GPL for non-profit organizations

1ABEL/index.html + Any restrictions to use by non-academics: license
http://parallabel.r-forge.r-project.org/ needed

+ Operating system(s): Platform independent
+ Programming language: R


http://www.sci.psu.ac.th/units/genome/CGBR/ParallABEL/index.html
http://parallabel.r-forge.r-project.org/

Sangket et al. BMC Bioinformatics 2010, 11:217 Page 10 of 11
http://www.biomedcentral.com/1471-2105/11/217

Table 2: Data partitioning for each chromosome

Chromosome name Number of SNPs Number of subsets
19,20,21,22, X, Y 11-14,000 4
9,11,12,13,14,15,16,17,18 14,001-28,000 16
1,2,3,45,6,7,8,10 28,001-56,000 64

The least number of subsets of each chromosome partitioned by the number of SNPs

computing time (log secs)

=—4=—Type1_parall_by_SNPs
3.2 days = Type3_parall_by_pairs_of_individuals
—§=—=Typed_parall_by_pairs_of_SNPs
100000 4
150 hioww 15.2 hours 14.9 hours
—— —
17.5 hours
15.5 hours 15.0 hours
4.2 hours
10000 -
34 .5 mins
12.1 mins
1000 4 10.5 mins ; ,
6.9mins 63mins 6B1mins 6.0 mins 6.0 mins 5.9 mins
100 1 1 1 I 1 1 1

2 50 100 150 200 250 300

number of processors

Figure 8 The computing time on a large cluster. The computing time on a large cluster for Type1_parall_by_SNPs,
Type3_parall_by_pairs_of_individuals and Type4_parall_by_pairs_of_SNPs extrapolated from Figure 7 applying the overhead equation.
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