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Abstract

Background: High-throughput DNA methylation arrays are likely to accelerate the pace of methylation biomarker
discovery for a wide variety of diseases. A potential problem with a standard set of probes measuring the methylation
status of CpG sites across the whole genome is that many sites may not show inter-individual methylation variation
among the biosamples for the disease outcome being studied. Inclusion of these so-called "non-variable sites" will
increase the risk of false discoveries and reduce statistical power to detect biologically relevant methylation markers.

Results: We propose a method to estimate the proportion of non-variable CpG sites and eliminate those sites from
further analyses. Our method is illustrated using data obtained by hybridizing DNA extracted from the peripheral blood
mononuclear cells of 311 samples to an array assaying 1505 CpG sites. Results showed that a large proportion of the
CpG sites did not show inter-individual variation in methylation.

Conclusions: Our method resulted in a substantial improvement in association signals between methylation sites and
outcome variables while controlling the false discovery rate at the same level.

Background
DNA methylation involves the addition of a methyl group
to DNA resulting in altered gene expression. DNA meth-
ylation is essential for normal cell functioning and aber-
rant methylation has been associated with a variety of
developmental disorders and human diseases [1-8]. From
a translational perspective, methylation markers hold
great promise to be used in clinical settings. That is, the
inherent stability of the methyl-cytosine bond renders
DNA methylation markers potentially superior to the less
stable RNA gene expression markers. Furthermore,
methylation markers can be measured using biosamples
that are easy to collect (e.g., saliva) and even in archived
biosamples. As a matter of fact, diagnostic tools using
DNA methylation markers are already under develop-
ment for early cancer screening [9].

Methylation of human DNA is restricted to CpG sites.
Historically, methylation studies typically focused on the
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CpG sites associated with only a few genes that were
hypothesized to be relevant to the disease of interest.
However, it has recently become technically and econom-
ically feasible to measure the methylation status of (tens
of) thousands of genes simultaneously using high-quality
commercial arrays [10-12]. Furthermore, the number of
sites that can be measured continues to increase rapidly
with a number of arrays already providing genome-wide
coverage [13-17]. These high-throughput methylation
profiling arrays create the opportunity to thoroughly
search for methylation markers across the whole genome
in a wide variety of biomaterial.

An important question that has received relatively little
attention in the methylation literature is whether all CpG
sites on the array should be used for subsequent analysis.
One potential problem with a standard set of probes
measuring the methylation status of CpG sites across the
genome is that certain probes may not show methylation
differences among individuals in the biosamples that are
studied. In order to predict disease status, the CpG sites
need to represent methylation variable positions [18] for
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the specific biosamples and individuals being studied.
From a statistical point of view, it is important to exclude
"non-variable sites," i.e., CpG sites that show no variation
among the individuals studied. The reason is that mea-
surements at these sites would largely reflect experimen-
tal "noise" caused by sample preparation, image
processing, etc., rather than true biologic differences
among the individuals. Consequently, any significant
association of these non-variable probes with the out-
comes of interest (e.g., disease status) is the result of
chance and is therefore a false positive finding. False pos-
itive findings are undesirable and should be minimized to
avoid wasting time and resources on leads that lack bio-
logical relevance. Furthermore, methods to control false
positives generally become more stringent in the pres-
ence of many markers without effect, thereby sacrificing
statistical power to detect true, biologically important
methylation markers.

In a sense, the issue resembles the situation in associa-
tion studies where single nucleotide polymorphisms with
very low minor allele frequency (i.e., the marker is not
polymorphic) are excluded after quality control analyses.
It is also reminiscent of expression array analysis where
genes with low intensity or variance are often filtered out
prior to further analyses [19,20]. Similar to gene expres-
sion, the methylation of many genes is biosample-specific
[1]. Efforts are being made to catalogue all methylation
variable positions in all major biosamples (Human Epige-
nome Project or HEP; http://www.epigenome.org). How-
ever, this information will not be available in the
foreseeable future for the vast majority of CpG sites on
commercial arrays and in (human) biosamples. The
implication is that a method is needed that can be applied
in all scenarios.

Although excluding non-variable CpG sites is relevant
in all instances, it may be particularly important for
peripheral biofluids, such as blood. Peripheral biofluids
are often analyzed when it is not feasible to obtain dis-
eased target tissue. Furthermore, methylation markers
that can be measured in peripheral biofluids are poten-
tially much better for diagnostic and prognostic purposes
because of the relatively simple, non-invasive manner in
which the biosamples can be collected. There is a consid-
erable amount of literature showing that methylation
markers are not limited to the affected tissue or cell type,
but can be detected in peripheral biofluids. A clear exam-
ple involves loss of imprinting of IGF2, one of the best-
studied epimutations, which is found in the colon as well
as lymphocytes and where either methylation marker is
associated with increased colorectal cancer risk [21]. Two
factors may explain why methylation markers can be
detected in peripheral biofluids. First, peripheral blood-
based studies may be useful in revealing methylation
changes predating or resulting from the epigenetic repro-
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gramming events affecting the germ line and early
embryogenesis [22-25]. As the epigenetic profile of
somatic cells is mitotically inherited, these epigenetic
mutations could be found in cells from peripheral blood.
Second, blood contains proteins, metabolites, cells that
have been modified as they circulate through diseased
tissues and cell-free DNA from diseased tissues and cells.
As such, traces of the aberrant methylation in diseased
target tissue may be present in peripheral biofluids. The
problem here, however, is that methylation markers in
peripheral biofluids will not uniquely reflect the physio-
logical and pathophysiological state of the relevant dis-
ease tissues. This fact could potentially reduce the ability
to detect biological variation in methylation status, and
further highlights the need for a method to filter non-
variable probes prior to conducting disease or phenotype
association tests to improve the statistical power to
detect biologically meaningful results.

The goal of this study was to propose and apply a
method to estimate the proportion of non-variable CpG
sites and exclude those sites from further analyses. Our
method essentially uses correlations between technical
replicates obtained by assaying the same samples twice.
We illustrate our method by analyzing methylation pro-
files generated using DNA extracted from the peripheral
blood mononuclear cells (PBMCs) of 311 human sub-
jects.

Methods

Probe and sample correlations

The array signal y;; for biosample i on probe j and repli-
cate number k can be written as:

Yijk = My + dy + ey

where m1; is the average signal at probe j, a; the biosam-
ple specific deviation at probe j, and e; the measurement
error (e.g. be caused by factors related to sample prepara-
tion, image processing, etc) for biosample i on probe j for
replicate k.

We obtained two replicates, k = 1..2, to evaluate the
magnitude of the methylation signal versus the measure-
ment error. One way to evaluate this involves calculating
for a given probe j the Pearson (product moment) corre-
lation between the two replicates using the data from all
biosamples. The use of this correlation coefficient
assumes that the association between the same probe
measured twice is linear. This correlation we will label the
"probe correlation". If we assume that for probe j the mea-
surement errors are uncorrelated across the two repli-
cates, COV(e;;, € p); = 0, the covariance between the
measured signals equals the variance of the biosample
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specific deviations at probe j: COV(y;, ¥ ;5); = VAR(A),.
Furthermore, if we assumes for the sake of simplicity that
the precision of the measurements is similar for the two
replicates, VAR(e;;) = VAR(e;,) = VAR(E);, then the vari-
ance of the measured signals equals VAR(y;;) = VAR(y;,)
= VAR(A)j + VAR(E)j. Consequently, the correlation for
probe j across the two replicates becomes:

VAR(A) i

(v )’zz)] VAR(A)]‘+VAR(E)j

(1)

where VAR(A); and VAR(E); are random variables
obtained as a conditional covariance, and not a fixed
quantity obtained from applying the variance functional
to an unconditional random variable. This probe correla-
tion is an index of the signal-to-error ratio, as it equals
the biological variation in methylation signals across bio-
samples divided by the total variance that includes the
error variance as well.

Equation (1) implies that probe correlations can be low
for two reasons. First, the measurement error may over-
whelm the true methylation signal so that the probe
mainly measures error (i.e., VAR(E); >> VAR(A); Second,
the probe correlation may be low because there is little
biological variation in methylation status among biosam-
ples (i.e, VAR(A)) ~ 0). To explore the two possibilities,
we can examine the sample correlations as well as the
correlation between all probe correlations and the corre-
sponding probe variances.

The sample correlation for a given biosample i equals
the correlation between the two replicates calculated
across the data from all probes. Using assumptions simi-
lar to those upon which equation (1) is based, the sample
correlation for biosample i measured on two occasions
equals:

VAR(M);
VAR(M);+VAR(E);

COR(yj1,7j2) = (2)

where VAR(M), is the variance in methylation signals
across all probes for biosample i and VAR(E), is the vari-
ance in the measurement error across all probes for bio-
sample i. If measurement error is large relative to
differences among probes in their methylation status, in
addition to observing low probe correlations, we would
expect the sample correlations to be low. In contrast, the
combination of low probe correlations and high sample
correlations suggests little variation in true methylation
across biosamples.

A second way to examine whether low probe correla-
tions are caused by large error variances as opposed to
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low variances in true methylation status uses all probes to
calculate the correlations between technical replicate
probe correlations and the total probe variances. If the
probe correlation is low primarily due to large measure-
ment errors, we would expect a negative correlation
between the probe correlations and the total probe vari-
ances. This notion stems from the observation that
probes with large error variance, VAR(E);, will on average
have large total variance because VAR(Y)j = VAR(M); +
VAR(E)j, but lower probe correlations, as follows from
equation (1). On the other hand, if probe correlations are
low because of low variances in true methylation status
we would expect a positive correlation. This is because
probes with larger variation in true methylation signal,
VAR(M);, will on average have larger total variance,
VAR(Y);, in addition to larger probe correlations accord-
ing to equation (1).

Mixture modeling

Although the above analyses enable us to get a general
sense of the magnitude of the true methylation status ver-
sus the measurement error, it does not provide specific
guidelines about which individual probes to include in
further analyses. For this purpose, we propose to use all
probe correlations as inputs for a mixture model. This
model assumed a mixture of normal distributions (i.e.
conditional normality of the probe correlations). A com-
plex issue in mixture modeling involves the choice of the
number of underlying distributions/classes [26]. For
example, a statistical test for comparing models with dif-
ferent number of classes does not exist. In comparing
models with different number of classes, the "best” model
is therefore often the one with a substantially better fit
according to some information criterion. Furthermore,
the interpretation of the classes is critical in choosing the
number of classes. In this specific application, the main
purpose of the mixture modeling is to eliminate probes
showing little variation in true methylation status across
biosamples. For that purpose a mixture model where one
of the classes has a mean probe correlation close to zero
pointing to the probes with no biological variation is suf-
ficient. Based on such an estimated mixture model we
can then estimate the (posterior) probability of each
probe belonging to the class with the zero probe correla-
tion. If that posterior probability is high, that probe can
subsequently be eliminated from further (association)
analyses.

We used MATLAB' (The MathWorks, Inc., Natick,
MA) to estimate mixture models. MATLAB uses the
Expectation-Maximization algorithm to estimate the
parameters of the mixture model. In the Expectation step,
the posterior probability of each probe is calculated using
the current model parameters (i.e., the mixing propor-
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tions, means, and variances). In the Maximization step,
the model parameters are estimated using the current
posterior probabilities. The cycle of Expectation and
Maximization steps is repeated until convergence is
achieved.

Application to lllumina’ GoldenGate® methylation array
Subjects, biosamples and methylation assays

DNA was extracted from whole blood samples from 311
middle-aged and older males and females who had partic-
ipated in the Lung Health Study (LHS) [27,28] and Genet-
ics of Addiction Project (GAP) at the University of Utah.
All participants provided written informed consent, and
the blood sampling was part of a study protocol approved
by the University of Utah Institutional Review Board. Of
the 311 subjects, 145 were cigarette smokers with spiro-
metrically defined chronic obstructive pulmonary disease
(COPD) [29], and 166 did not have COPD (91 never
smokers and 75 smokers).

The GoldenGate" Assay for Methylation (Illumina Inc.,
San Diego, CA) was used to assess the DNA methylation
status of 1505 CpG sites from 807 genes, simultaneously.
Prior to methylation profiling, bisulfite conversion of the
DNA biosamples was conducted using the EZ DNA
Methylation Kit™ (Zymo Research Corp., Orange, CA) in
a 96-well format, as per the manufacturer's protocol; 2 pg
of genomic DNA was used for bisulfite conversion. Fol-
lowing conversion, 250 ng of DNA was used for the
methylation assay. The BeadStudio” Methylation Module
(Ilumina Inc., San Diego, CA) was used to read fluores-
cent signals from scanned images collected from the Illu-
mina Beadarray” Reader.

The 311 DNA biosamples were analyzed using five Illu-
mina GoldenGate matrices. Technical replicates were
obtained for 126 biosamples by analyzing each on two
separate matrices. The methylation status of each CpG
site was calculated based on fluorescent intensities corre-
sponding to the methylated allele (Cy5) and the unmethy-
lated allele (Cy3). In order to remove measurement
artefacts prior to calculating the methylation status, Cy3
and Cy5 fluorescent intensities were independently cor-
rected for background signal, as well as differential
bisulfite conversion levels between biosamples using an
ordinary least squares regression model. Following signal
correction, the methylation measurement y for biosample
i on probe j was calculated as the ratio of fluorescent
intensities from the methylated allele (Cy5) to the total
fluorescent signal from both the methylated and the
unmethylated alleles (Cy3) such that:

Cy5ij

= Cr5i4Cr3i (3)
Cy5ij+Cy3i;

YVij
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Because this quantity is a ratio, y; is a continuous num-
ber between 0 and 1. Complete technical details for Cy3
and Cy5 corrections and y; calculations are provided in
Additional file 1: Supplementary Note 1.

Association analyses

The outcomes in this analysis were four measures of lung
function or decline in lung function measured spiromet-
rically as the forced expiratory volume in 1 second (FEV;)
[30]. These four measures were derived by fitting mixed
models to longitudinal spirometric, smoking history, and
demographic data obtained over the subjects’ 17-year
average participation period in the LHS and GAP. Con-
ceptually, these measures represent different underlying
biological processes driving lung function decline. We
focused on age-related decline (Age decline), pack-years-
related decline (Pack-years decline), and the intensifying
effects of smoking, in terms of number of cigarettes per
day (CPD), on decline with age (CPD x Age decline) that
together accounted for the vast majority of individual dif-
ferences in lung function decline in these subjects. In
addition, we included Baseline lung function measured at
subjects’ entry into the study as an outcome measure as it
has also been shown to vary in magnitude across individ-
uals [31].

Technical details for the outcome variables are pro-
vided in Additional file 1: Supplementary Note 2.

To test for association between DNA methylation vari-
ables and lung function decline outcome variables, we
performed regression analyses with the probes as predic-
tor variables. The F-test statistic was used to perform sig-
nificance tests. Separate analyses were conducted on all
probes as well as on only the subset of probes that
remained after selection. Two criteria were used to evalu-
ate the performance of our probe selection method. First,
we estimated the proportion of markers without effect
(py) using the estimator proposed by Meinshausen and
Rice [32] which performs well in scenarios where p, is
close to one. Thus, after successful probe selection, we
would expect a smaller proportion of markers without
effects. Secondly, we studied the distribution of g-values
[33,34]. The calculated g-values are positive false discov-
ery rates (pFDRs) that use the p-value of the tests as
threshold for declaring significance. More precisely, if the
P-values of the m tests are denoted p,, i = 1...m, we can
estimate the pFDR by:

—  pomt
pFDR(t) = 20T *
#{pj<t}

Thus, the pFDR is estimated by dividing the estimated
number of false discoveries (i.e. estimated number of
tests for which null hypothesis is true x the probability ¢



Meng et al. BMC Bioinformatics 2010, 11:227
http://www.biomedcentral.com/1471-2105/11/227

of rejecting a marker without effect) by the total number
of significant tests (i.e. total number of P-values smaller
than £) that includes the false and true positives. To guar-
antee that the estimated g values are increasing in the
same order as the p values, q values are estimated as:

4(p;) = min FDR(t)
£2p;

Successful probe selection would result in more signifi-
cant results across a range of pre-specified g-value
thresholds used to declare significance.

Results

Probe selection

Probe correlations (defined in Equation 1) were calcu-
lated using the 126 replicate biosamples and are shown in
Figure 1. The mean of probe correlations across the 1505
probes was 0.268 (SD = 0.246). This suggested that, on
average, sample differences in methylation status only
accounted for only 26.8% of the total variation. Equation
(1) indicates two possible reasons for the low probe cor-
relations. First, \/AR(E)j may be much larger than VAR(A)j
so that the true methylation signals are overwhelmed by
the measurement error. Alternatively, VAR(A);, the meth-
ylation difference among biosamples, may be close to
zero. To explore whether large error variance versus lim-
ited variation in methylation signal caused the small
probe correlations, we also calculated the sample correla-
tions (defined in Equation 2) shown in Figure 2. In sharp
contrast to the probe correlations, the sample correla-
tions calculated using the 126 replicate biosamples were
high, with a mean of 0.995 (SD = 0.0037).
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Figure 1 The distribution of probe correlations. The distribution of
probe-level correlations across technical replicates for each probe is
shown. Pearson correlation coefficients were calculated for the 1505
CpG probes using 126 replicate biosamples distributed across five
methylation matrices.
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Figure 2 The distribution of sample correlations. The distribution
of sample correlations across technical replicates for each probe is
shown. Pearson correlation coefficients were calculated for the 1505
CpG probes using 126 replicate biosamples distributed across five

methylation matrices.

The high sample correlations indicate that the mea-
surement errors are relatively small compared with the
methylation variations among probes, because large mea-
surement errors would yield large denominators in Equa-
tion 2 and result in low sample correlations. Accordingly,
the high sample correlations that we observed suggest
that the low probe correlations are not caused by large
measurement errors but rather reflect low variation in
methylation among the individuals studied. This conclu-
sion was supported when we plotted the correlation
between the 1505 probe correlations and the 1505 total
probe variances (see Additional file 1: Figure S1). The
correlation was 0.436, meaning that probes with high
probe correlations also tended to have a relatively larger
total variance. This observation also supports the idea
that low probe correlations are primarily due to low
methylation-related variation among biosamples rather
than large measurement errors.

We then attempted to determine which probes should
be removed prior to conducting the subsequent statistical
analyses. Figure 1 shows that the distribution of 1505
probe correlations is bi-modal. This suggested that
probes may fall into two different classes, one with little
methylation variation and low probe correlation, and the
other with more methylation variation and relatively high
probe correlation. Indeed, when we fitted a two-class
mixture model the first class had an estimated mean of
0.09 (SD = 0.016) with a mixing proportion of 0.58. These
results indicate that nearly 60% of probes had very little
variation, highlighting the significance of this probe
selection problem and pointing to the probes that should
be eliminated prior to association analyses. The second
class had an estimated mean probe correlation of 0.51
(SD = 0.019) with a mixing proportion of 0.42. This
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showed that there were also probes showing variation in
methylation that could potentially be disease biomarkers.

Based on the mixture model, the posterior probabilities
of each probe belonging to each class were estimated.
The extreme bimodal distribution of the posterior proba-
bilities (Figure 3a) further supported the validity of using
a two-class mixture model in this context, and implies
that most of the probes can be assigned to one or the
other of the classes with reasonably high confidence. Fur-
thermore, the observed bimodality yields the desirable
property of cut-off stability where the choice of threshold
does not have a major impact on the number of probes
selected (Figure 3b). Accordingly, given that probes with
higher correlations are more likely to reflect biologically
relevant methylation variation, we selected the 634
probes with posterior probability 0.5 as members of the
class for subsequent analyses.

We found that a class with mean probe correlation of
zero was obtained with the two-class model. This makes
the two-class model the most parsimonious model for
our purpose of eliminating non-variable probes. In addi-
tion, Figure 1 shows that the two-class solution has good
face validity as the probe correlation distribution was
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Figure 3 a - Posterior probability distribution from mixture mod-
el. The posterior probability distribution, indicating the likelihood of a
probe belonging to the subset of highly correlated, informative
probes. b - The number of probes selected at different posterior
probability thresholds. The number of probes (y-axis) that will re-
main at different posterior probability thresholds (x-axis) calculated
from the two-class mixture model.
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clearly bimodal and Figure 3 shows that the two-class
solution gives an excellent separation of the two compo-
nents where very few probes having a substantial poste-
rior probability of belonging to both classes. For sake of
completeness, in Additional file 1 figure S2 we also plot-
ted two fit indices (AIC and BIC) for solutions with 1-6
classes. S2 shows a dramatic improvement in fit going
from a one- to two-class solution with very little addi-
tional improvement in fit using more than two classes.
Such plots too have been proposed as a selection crite-
rion [26] and suggest here that a two-class solution may
be the most parsimonious mixture model for the purpose
of selecting probes showing no inter-individual variation.

Association analysis

To evaluate the statistical advantages of the proposed
probe selection method, we first estimated the propor-
tion of probes without effect (p,). Table 1 shows that ps
after probe selection were consistently lower than pgs
before probe selection. In an absolute sense the improve-
ment in pys is not large, but this is because we do not
expect a priori that a large number of methylation probes
are associated with the outcome of interest. Figure 4 dis-
plays the distribution of g-values before (Figure 4A) and
after (Figure 4B) probe selection, providing a better con-
ceptual representation of the practical impact of probe
selection. A substantial improvement, as indicated by an
increase in the number of identified significant probes,
was observed for the outcome variables Age decline, CPD
x Age decline and Baseline lung function. At the same
pEDR level, the number of significant probes consistently
increased. In other words, probe selection seems to
improve the statistical power to find probes that are asso-
ciated with the outcomes while controlling the false dis-
covery rate at the same level.

Discussion
New high-throughput methylation profiling arrays offer
the opportunity for systematic searches for methylation
markers across a wide variety of biomaterial. The poten-
tial problem with a standard set of probes measuring the
methylation status of CpG sites across the whole genome
is that a proportion of the sites may not show inter-indi-
vidual methylation variation in the biosamples for the
disease outcome being studied. In this article, we propose
a method to estimate the proportion of non-variable CpG
sites and to exclude those sites from further analyses.
Excluding such CpG sites prior to further analyses is
important to minimize false-positive findings and to
improve statistical power to detect true, biologically rele-
vant methylation markers.

We applied our method to methylation profiles gener-
ated using DNA extracted from the PBMCs of 311 sub-
jects. Approximately 60% of the CpG sites did not show
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Table 1: p, estimates using test results from regression analyses

Outcome Before probe selection After probe selection
Age decline 0.9996 0.9781
Pack-years decline 0.9992 0.9986
CPD x Age decline 0.9970 0.9715
Baseline lung function 1.0009 0.9904

CPD, cigarettes per day.

inter-individual variation in methylation. The probes on
the array used in this study involve a cancer panel that
was studied using whole blood collected from patients
without cancer. It may therefore very well be that in can-
cer tissue, more probes would show inter-individual vari-
ation. However, arrays with a standard set of probes
measuring the methylation status of CpG sites across the
whole genome for high-throughput methylation profiling
arrays are increasingly used to search for methylation
markers across the whole genome in a wide variety of bio-
material. The point we would like to convey is that a

A 120
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Figure 4 pFDR analyses. (A) The number of significant probes detect-
ed at different g-value thresholds from the regression analyses be-
tween DNA methylation changes and four outcome measures of lung
function or decline prior to probe selection described herein. (B) The
number of significant probes detected at different g-value thresholds
after probe selection. A greater number of significant probes was iden-
tified for a given g-value cutoff for Age decline, CPD x Age decline and
Baseline lung function outcomes after probe selection.

(large) proportion of CpGs on such standard arrays may
not vary with respect to methylation status. Inclusion of
these so-called "non-variable sites" will increase the risk
of false discoveries and reduce statistical power to detect
biologically relevant methylation markers. Furthermore,
we expect the same problem to apply to technologies that
sequence the methylated fraction of the genome. That is,
part of the methylomes may not show inter-individual
variation.

In our analyses, the FDR was used to illustrate our
probe selection method. The apparent gain in power we
observed should generalize to other methods for control-
ling false discoveries. For example, when a set or family of
m tests is performed, we can also control the family-wise
error rate (FWE) ensuring that the probability of one or
more false discoveries is less than the chosen significance
level, a. The Bonferroni correction is a simple and com-
monly used method to control the FWE. The threshold
p-value (a') used to declare significance computed with
the Bonferroni correction is a' = a/m. This simple equa-
tion shows that a reduction in the number of probes ()
using a probe selection method such as the one described
herein results in a much more liberal threshold p-value
and hence better power to detect true methylation mark-
ers. For our follow up association analyses, probes were
either included or excluded. This binary choice seemed
justified by the bimodal distribution of the posterior
probabilities (Figure 3) suggesting that the vast majority
of probes could be assigned to one of the two categories
with high probability. It is possible that in other scenarios
the posterior probabilities may follow a more continuous
distribution making the decision of which probes to
exclude more arbitrary. In these scenarios an alternative
would be to include all probes and then weigh them dif-
ferentially in the analysis (e.g., by p-value weighting) [35]
according to their posterior probabilities of showing vari-
ability or not. For example, a probe with a high probabil-
ity of showing no variability would have a weight close to
zero and would essentially be excluded from the analysis,
while a probe with a high probability of showing variabil-
ity would get a large weight because any association with
the outcome of interest would much more likely be true.
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We explored several variables to see if they could pre-
dict the variable sites. First, we examined whether probe
correlation could be predicted from methylation levels.
However, the correlation between methylation levels and
probe correlation was 0.205 (Additional file 1: Figure S3).
This very modest correlation means that a simple rule
excluding all probes that never exceed a certain percent-
age methylation will not perform as well as the proposed
method.

Second, Bock at al. [36] studied 1,705 amplicons (aver-
age size 287 bp) from human chromosomes 6, 20 and 22
in three tissues (CD4+ T lymphocytes, CD8+ T lympho-
cytes and melanocytes) from 10 different biosample
donors. These authors considered total variation as a
measure of inter-individual differences. One of their main
findings was that probes that were more likely to show
inter-individual differences in methylation were less likely
to be in CpG islands. Although our measure of inter-indi-
vidual differences is more refined (e.g. the total variance
measure used by Bock et al. may be high because of a
large error component rather than large inter-individual
differences in methylation), we did observe a correlation
of .436 (Additional file 1: Figure S1) between our measure
and the total variance meaning that the two measures are
related. Using our measure of inter-individual differ-
ences, we observed that 61.2% of the probes classified as
being variable were in CpG islands versus 75.4% of the
probes classified as being non-variable. We therefore rep-
licate the findings of Bock et al. Implications of this find-
ing are that, for example, focusing on CpG islands (as
some commercial arrays do) could be somewhat limited
in terms of explaining variation in diseases.

Third, Christensen et al. [37] used the same array as the
one in the present study to compare methylation patterns
across 11 tissues from 217 samples. We downloaded their
spreadsheet reporting the mean probe methylation levels
of all 11 tissues. For each probe we calculated the vari-
ance across the 11 tissue means and then correlated the
probe correlations from our study with these between-
tissue variances. The correlation was 0.29 (see also Addi-
tional file 1: Figure S4). Because tissues came from differ-
ent subjects in the Christensen et al. study, the between-
tissue variance is a function of both differences between
tissues as well as differences between subjects. However,
since the between-tissue variance heterogeneity was
much larger than the within-tissue heterogeneity and
within-tissue heterogeneity was reduced because we used
the mean across all subjects to estimate the tissue specific
methylation levels, the between-tissue variance will for
an important part capture differences between tissues.
Thus, these analyses provide some support for the
hypothesis that probes showing more inter-individual
variation are more likely to show variation across differ-
ent tissues.
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In this study we used two technical replicates. More
technical replicates could be used to improve the probe
selection. The mixture modelling could then be per-
formed using interclass correlations (e.g. as estimated
using mixed models) as input. How much the probe
selection can be improved will depend on factors such as
the measurement error and amount of biological varia-
tion. Furthermore, rather than doing more replicates for
the same number of biosamples, probe selection can also
be improved by increasing the number of biosamples for
the same number of replicates. Optimization algorithms
can in principle be constructed to determine the optimal
balance between number of replicates and biosamples for
a given budget.

Our approach provides a statistical framework to filter
out non-variable probes in any analysis, regardless of the
individuals, biosamples, or CpG sites that are studied.
The technical replicates are a key component of this
approach. Extra methylation arrays and lab work for
those replicates may increase the cost of the study. How-
ever, since the probe selection method improves the
power to detect disease-relevant methylation markers
and aims to minimize unnecessary false discoveries, a
substantial savings in time and resources can be poten-
tially achieved in the subsequent biomarker verification
process. Furthermore, for a given scenario, methylation
profiles for technical replicates need to be performed
only once. The probes showing no variation could then
be catalogued and excluded from future studies that use
similar biosamples. However, given the tremendous vari-
ability in individuals that are studied (e.g., having differ-
ent (sub)types of diseases), biosamples that are used, and
CpG sites that are interrogated by the different arrays, it
is unlikely a comprehensive catalogue can be established
in the near future. For many research scenarios, the use of
a framework such as proposed here to filter out non-vari-
able probes may be the best alternative.

Conclusion

In this study, we proposed a statistical method to estimate
the proportion of non-variable probes and eliminate
those probes from further analyses. Excluding those non-
variable probes resulted in a substantial improvement in
association signals between probes and outcome vari-
ables while controlling the false discovery rate at the same
level.
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