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Abstract

Background: Phosphorylation is a ubiquitous and fundamental regulatory mechanism that controls signal
transduction in living cells. The number of identified phosphoproteins and their phosphosites is rapidly increasing
as a result of recent mass spectrometry-based approaches.

Results: We analyzed time-course phosphoproteome data obtained previously by liquid chromatography mass
spectrometry with the stable isotope labeling using amino acids in cell culture (SILAC) method. This provides the
relative phosphorylation activities of digested peptides at each of five time points after stimulating Hela cells with
epidermal growth factor (EGF). We initially calculated the correlations between the phosphorylation dynamics
patterns of every pair of peptides and connected the strongly correlated pairs to construct a network. We found

controlled.

predicting direct kinase-substrate relationships.

that peptides extracted from the same intracellular fraction (nucleus vs. cytoplasm) tended to be close together
within this phosphorylation dynamics-based network. The network was then analyzed using graph theory and
compared with five known signal-transduction pathways. The dynamics-based network was correlated with known
signaling pathways in the NetPath and Phospho.ELM databases, and especially with the EGF receptor (EGFR)
signaling pathway. Although the phosphorylation patterns of many proteins were drastically changed by the EGF
stimulation, our results suggest that only EGFR signaling transduction was both strongly activated and precisely

Conclusions: The construction of a phosphorylation dynamics-based network provides a useful overview of
condition-specific intracellular signal transduction using quantitative time-course phosphoproteome data under
specific experimental conditions. Detailed prediction of signal transduction based on phosphoproteome dynamics
remains challenging. However, since the phosphorylation profiles of kinase-substrate pairs on the specific pathway
were localized in the dynamics-based network, our method will be a complementary strategy to explore new
components of protein signaling pathways in combination with previous methods (including software) of

Background

Post-translational modification (PTM) of proteins regu-
lates many biological phenomena [1]. Among the several
kinds of PTM, phosphorylation affects enzymatic activ-
ity, conformations, interactions, degradation, and locali-
zation of proteins, among other effects [2-4]; one of the
critical roles of phosphorylation is in the control of pro-
tein signaling [5]. More than 500 protein kinases are
thought to regulate protein signaling in humans [6]. In
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protein signaling, various reaction cascades transmit and
amplify signals in a highly regulated manner by means
of reversible site-specific protein phosphorylation [5].
Kinases recognize the specific surrounding sequences of
phosphosites when they phosphorylate their targets, and
the majority of the identified kinases are thought to
have their own unique target sequences, which are
known as “motif sequences” [7].

Liquid chromatography coupled with tandem mass
spectrometry (LC-MS/MS), combined with phosphopep-
tide enrichment technology [8], is a powerful method
for identifying large numbers of phosphosites [9]. This
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technology has achieved phosphorylation analysis at the
proteome level and has greatly expanded the new field
of phosphoproteomics. In recent years, phosphopro-
teome data has rapidly increased for various organisms,
including humans [10-12], mice [13], yeast [14-16], flies
[17,18], plants [19], and bacteria [20,21], as a result of
system-wide experiments to investigate the behavior of
signal transduction pathways under various stimuli and
environmental conditions. For example, at least one-
third of all human proteins have been revealed to be
phosphorylated [22]. The phosphoproteins and their
phosphosites identified in these studies have been stored
in public databases, such as Phospho.ELM [23], PHOS-
IDA [24], PhosphoSitePlus [25], and UniProt [26].

“Phosphoinformatics” approaches (i.e., bioinformatics
of the phosphoproteome) have derived many useful bio-
logical interpretations from the huge and complex body
of phosphoproteome data and have aided in the discov-
ery of novel biological principles of protein signaling
[27,28]. Understanding of the relationship between pro-
tein kinases and the specific sequence patterns of their
phosphorylation targets has increased rapidly and con-
siderable data has accumulated as a result of recent
phosphoproteome data mining studies [29,30] or the use
of predictive software such as Scansite [31] and NetPhos
[32]. Many kinases and their corresponding substrate
recognition motifs have been accumulated in databases,
such as the Human Protein Reference Database (HPRD)
[33], PhosphoSitePlus [25], and NetPhorest [34].

The relationships between enzymes and their sub-
strate motifs are useful for the discovery and recon-
struction of signal transduction networks in living
systems. Several computational approaches, including
NetworKIN [35], have been developed to predict signal-
ing pathways based on the unique phosphorylation tar-
get motifs of kinases and other -omics datasets (e.g.,
protein-protein interaction data and functional relation-
ship data for genes). However, the kinase specificity for
target motifs appears to be limited, and therefore the
accurate prediction of enzyme-substrate pairs based on
the documented motifs of the kinase targets remains
difficult. Although the current LC-MS/MS-based phos-
phoproteome approach excels at the identification of
phosphorylated components of the proteome, the iden-
tification of kinase-substrate relationships is fraught
with challenges [36].

On the other hand, by taking advantage of protein
labeling methods, the high-throughput LC-MS/MS-
based proteomics approaches have enabled us to com-
pare different states of intracellular proteomes, and sev-
eral studies have revealed the time course of
phosphoproteome behaviors [11,37,38]. Many phospho-
proteins have been shown to have multiple potential
phosphosites [28], and the phosphosites in each protein
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behaved in different ways in response to different exter-
nal stimuli. The time-course profile of phosphorylation
states at individual phosphosites across multiple cellular
states can be used to capture intracellular signal transi-
tions, for example, where signals are propagated from a
receptor on the cell membrane to downstream pathways
[39]. Recently, several enzyme-substrate prediction
approaches have started to use such time-course phos-
phoproteome data to solve the challenge of accurately
predicting signal transduction pathways [40]. Since the
phosphorylation profiles of substrates are affected by
their corresponding kinases, most of whose enzymatic
activities are enhanced by phosphorylation, it has been
generally assumed that in many cases, a kinase and its
substrate have similar phosphorylation profiles. This
concept of a “projection effect” of signaling proteins
seems to work well to predict direct relationships
between a kinase and its substrates in signaling path-
ways based on quantitative phosphoproteome data. For
example, Jorgensen and colleagues [27] have reported
the combination of quantitative phosphoproteome data
with computational prediction of the signaling pathway
utilizing NetworKIN and NetPhorest, and Locasale and
Wolf-Yadlin [40] have reported a new approach for the
prediction of a tyrosine signaling pathway in which they
used the principle of maximum entropy to represent
similarities in the phosphorylation profile as a network
construct and to predict specific pathways.

In this paper, we propose a phosphorylation
dynamics-based network approach that roughly clusters
the proteins localized within a condition-specific signal-
ing pathway. Although the maximum entropy-based
approach [40] predicts pair-wise connections of proteins
in tyrosine signaling, our proposed approach clusters all
types of phosphoproteins (pS, pT, and pY proteins) in a
network graph and suggests proteins that are localized
within a specific pathway activated by a given experi-
mental condition under which the dynamics of the
phosphoproteome are measured. In this study, we used
the time-course phosphoproteome data for the epider-
mal growth factor (EGF) stimulation of HeLa cells
previously obtained using LC-MS/MS based on
the stable isotope labeling using amino acids in cell cul-
ture (SILAC) approach [11]. This phosphoproteome
dynamics data consists of the phosphorylation activities
of digested phosphopeptides at five time points after the
EGF stimulation. Using this data, we constructed a
dynamics-based network by connecting pairs of phos-
phopeptides that exhibited similar patterns of phosphor-
ylation dynamics. According to several analyses based
on graph theory and comparisons with known signaling
pathways registered in public databases, we demon-
strated that the phosphopeptides corresponding to pro-
teins that participated in a signaling pathway were
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clustered within the dynamics-based network. Moreover,
we found that the dynamics-based network for EGF sti-
mulation was more strongly correlated with the known
EGF receptor (EGFR) signaling pathway than with other
known pathways. This suggests the biological specificity
of the EGFR signaling pathway. Although the time-
course data show that many phosphorylation sites,
including those that are not thought to be involved in
EGER signaling, seemed to be activated by the EGF sti-
mulation, only the known EGER signaling pathway was
markedly correlated with the time-course data at the
pathway level. The EGFR signaling pathway thus
seemed to be precisely controlled to avoid activation of
unrelated pathways. The phosphorylation dynamics-
based network approach will therefore prove to be a
useful strategy for providing an overview of and for
exploring condition-specific protein signaling; although
it cannot replace direct prediction methods, it can help
to improve their accuracy.

Results and Discussion

Construction of the phosphorylation dynamics-based
network

The projection effect exists in protein signaling: some
phosphorylation reactions are known to transfer signals
from one molecule to another (i.e., project their effects
onto the other molecule), and these reactions occur
continuously (e.g., when kinase A phosphorylates pro-
tein B, then protein B is activated and starts to behave
as a kinase; protein B, in turn, phosphorylates its target
substrates). Because most kinases are thought to gain
their enzymatic activities as a result of phosphorylation,
these signaling proteins and their targeted substrates
should have similar time courses for their phosphoryla-
tion behaviors. In this context, we proposed using a
phosphorylation dynamics-based network approach to
cluster proteins localized within a signaling pathway.

In this study, we used the time-course phosphopro-
teome data previously reported by Olsen et al. [11].
This data provides the relative phosphorylation activities
of digested peptides at each of five time points (0, 1, 5,
10, and 20 min) after the EGF stimulation (for details,
see the Methods section). We extracted 1,050 peptides
for which the relative phosphorylation activities were
available at each of the five time points. Using this time-
course data, we constructed dynamics-based networks
by connecting all pairs of phosphopeptides with similar
phosphorylation activity profiles. We calculated the
similarity of every possible pair of phosphorylation pro-
files using Pearson’s correlation coefficient (R). The
dynamics-based network was then constructed to con-
nect all phosphopeptide pairs with R values greater than
a given threshold.
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We constructed three dynamics-based networks, using
threshold values of R > 0.97, 0.98, and 0.99. The
dynamics-based network reconstructed with a threshold
value of R > 0.99 contained 4,907 edges and 851 nodes
(of which 377 and 474 nodes were cytoplasmic and
nucleic, respectively; Figure 1A and Additional File 1).
The network with R > 0.98 consisted of 10,626 edges
and 959 nodes (of which 423 and 536 were from the
cytoplasm and nucleus, respectively; Additional File 2),
and the network with R > 0.97 consisted of 16,481 edges
and 1,015 nodes (of which 442 and 573 were from the
cytoplasm and nucleus, respectively; Additional File 3).

EGFR signaling pathways are more abundant in the
cytoplasm than in the nucleus
To determine whether the phosphorylation dynamics-
based network reflected the biological properties of a
cell, we analyzed the network features using graph the-
ory. First, we separated the dynamics-based network
with R > 0.99 into cytoplasmic and nucleic subnetworks
(for details, see the Methods section). The network den-
sities of the cytoplasmic and nucleic networks were
2.25% and 1.52%, respectively (Figure 1B). The higher
density in the cytoplasmic subnetwork indicates that in
the cytoplasm, more peptides have similar phosphoryla-
tion patterns than in the nucleus, which in turn suggests
that the EGF stimulation triggers more phosphorylation
reactions in the cytoplasm than in the nucleus.
Consistent with this observation, the overall degrees of
the cytoplasmic nodes were higher than those of the
nucleic nodes in the dynamics-based network with R >
0.99 (Figure 1C), although fewer phosphopeptides were
identified in the cytoplasm than in nucleus, as described
previously (in the section “Construction of the phos-
phorylation dynamics-based network”). We obtained
similar results even if we calculated node degrees sepa-
rately in subnetworks that consisted only of nucleic
nodes and only of cytoplasmic nodes (Figure 1D). These
results may reflect the fact that in the larger cellular
space of the cytoplasm, many long and alternative path-
ways can be activated to amplify and transmit signals
into the nucleus, where the mandatory signals are trans-
mitted through shorter, more highly regulated nuclear
pathways to precisely control gene expression.

Time course of the phosphoproteome reflects the cellular
fraction

The network density for the whole dynamics-based net-
work with R > 0.99 (1.36%) was sparser than the densi-
ties of the cytoplasmic and nucleic subnetworks (Figure
1B). As illustrated in Figure 1A, this suggests that in the
dynamics-based network, phosphopeptides from the
same cellular fraction (i.e., the cytoplasm or nucleus) are
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Figure 1 Characteristics of the phosphorylation dynamics-based network. (A) We generated the dynamics-based network by connecting
pairs of peptides with similar (R > 0.99) time courses of phosphorylation activities. The network was visualized using Cytoscape (version 2.6.1)
[45] and eXpanda (version 1.0.6) [46]. (B) Network density of the whole dynamics-based network and of the cytoplasmic and nucleic
subnetworks. (C) Cumulative proportion, P > (k), for the node degrees (k) based on analysis of the whole dynamics-based network
simultaneously (i.e, not separately as in Figure D) (R > 0.99). For each group of cytoplasmic and nucleic nodes in the network, circles represent
the proportions of proteins having more than k interacting partners. (D) Cumulative proportion for the node degrees with the cytoplasmic and
nucleic subnetworks analyzed separately. (E, |, K) Patterns of the cellular fractions (cytoplasmic and nucleic): (E) binary, (I) triangular, and (K)
square motifs that appeared in the dynamics-based network. The names of each motif pattern appear under the corresponding diagram: T,
triangular; B, binary; S, square. (F-H, J, L) Appearance of each motif (proportion of total) in the dynamics-based network. (F-H) Triangular motifs
appeared in the dynamics-based network of (F) R > 0.99, (G) R > 0.98, and (H) R > 0.97. (J) Binary and (L) square motifs appeared in the
dynamics-based network with R > 0.99. Black bars represent percentages of the corresponding motif patterns in the real dynamics-based
network; white bars represent the mean values of the percentages estimated using negative controls generated by random edge rewiring
(RER, n = 1000). Error bars represent standard deviations. Significance levels: *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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tightly connected, whereas connections are less likely
between the cytoplasmic and nucleic nodes.

We analyzed the patterns of several local network
motifs that appeared in the dynamics-based network,
where each node was either nucleic or cytoplasmic (Fig-
ure 1E, I, and 1K). The triangular motif (in which the
three nodes are connected together by three edges) in a
biological network is the smallest clump of nodes that
reveals the connection patterns of nodes in a locally
dense network, and is thought to be a basic motif that
reflects biologically relevant phenomena [16]. As Figure
1E shows, there are four possible triangular motifs (T)
in the dynamics-based network, which consist of various
combinations of nucleic and cytoplasmic nodes: all
nodes are cytoplasmic (T3.9), two are cytoplasmic and
one is nucleic (T,.1), one is cytoplasmic and two are
nucleic (T;.,), and all nodes are nucleic (Ty.3). In each of
the dynamics-based networks (with R > 0.97, 0.98, and
0.99), we calculated the proportion of each of the four
triangular motifs and compared it with the expected
results generated by random edge rewiring (RER, used
as the negative control; n = 1,000; for details, see the
Methods section). In the dynamics-based network with
R > 0.99, the proportions of T3, and T(.; were 16.50%
and 14.75%, respectively, which were significantly higher
than the expected negative control values of 12.24 +
1.74% (s.d.) and 11.77 + 1.12% in the random networks
(P < 0.001 and 0.01, respectively; Figure 1F). Conversely,
the proportions of T,.; and T;., were 35.40% and
33.34%, which were significantly lower than the corre-
sponding control values of 38.30 + 1.09% and 37.69 +
1.70% (P < 0.05 and 0.001, respectively; Figure 1F). The
dynamics-based networks generated with thresholds of
R > 0.97 and 0.98 showed similar patterns (Figure 1G,
H). Consequently, the triangular motif analysis supports
the hypothesis that phosphopeptides identified in the
same cellular fraction were localized (clustered) in the
dynamics-based network. We also analyzed the number
of binary (Figure 1I) and square (Figure 1K) motifs in
the dynamics-based network with R > 0.99, and
observed similar patterns (Figure 1], L).

The connectivity of phosphopeptides within a given
cellular fraction suggests that the phosphorylation
dynamics-based network is a valid approach for the
reconstruction of the entire protein-based signal path-
way, because in most cases, signal transmission occurs
between proteins that lie close together. We expected
that the validity of our approach would depend partly
on the threshold R. To test this hypothesis, we defined a
phosphopeptide localization score for the dynamics-
based network as the sum of the proportions T,y and
Ty.3, and calculated the O/E value for the localization
score (where O is the observed localization score in the
real network and E is the expected average score in the
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RER network with # = 1,000). The resulting average O/
E values with R > 0.99, 0.98 and 0.97 were 1.30, 1.17,
and 1.12, respectively. Therefore, the higher R threshold
generates a dynamics-based network that more accu-
rately reflects the actual intracellular signaling network.

The EGF stimulation activates many signaling proteins
Given the projection effect of protein signaling, proteins
whose phosphorylation behaviors are similar to those of
many other proteins are thought to be activated by
upstream signals and to transmit a signal to down-
stream proteins. Accordingly, in the dynamics-based
network for the EGF stimulation, phosphopeptides with
many interacting partners (a high node degree) would
have corresponding proteins that are activated by the
EGF stimulation. Indeed, many biological function
annotations (derived by means of gene ontology) of the
phosphopeptide nodes represented as hubs in the
dynamics-based network with R > 0.99 were related to
signal transmission (e.g., “cell cycle” and “insulin recep-
tor signaling”; Table 1) and vice versa (Additional File
4). These results suggest that many signaling proteins,
including those unrelated to the EGFR signaling, gain
their enzymatic activities as a result of the EGF stimula-
tion (see the section “The EGFR signal is precisely
transmitted to its downstream components under the
control of whole-proteome pathways” for additional dis-
cussion of this point).

The phosphorylation dynamics-based network reflects
known signaling pathways

To evaluate whether the dynamics-based network
reflects actual signaling phenomena at the pathway level,
we compared the network with R > 0.99 with known
signal transduction pathways registered in public
databases.

For this comparison, we used the shortest path length
(SPL; for details, see the Methods section) to evaluate
the closeness of pairs of nodes in the network and the
pathways. In the dynamics-based network, each edge
between two nodes denotes a similarity in the time
course of the phosphorylation profiles, and in the
known signaling pathways, each edge that connects an
enzymatic protein and its substrate represents a phos-
phorylation reaction. Although the edges in the known
signaling pathways are directional, we treated them as
nondirectional in this study because we only needed to
investigate whether the phosphorylation dynamics pat-
terns of two phosphosites were strongly correlated when
their corresponding proteins were located close together
in the known pathway, regardless of the reaction
direction.

We initially obtained 46 kinase-substrate reactions in
the EGEFR signaling pathway from NetPath [41] as the
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Table 1 Proteins with a degree = 30 in the dynamics-based network.

IPI Degree
accession

Biological process

IPI00002591 45

phosphatidylinositol biosynthetic process; receptor-mediated endocytosis;

phosphoinositide phosphorylation; phosphoinositide-mediated signaling

IPI00294391 44
IPI00438229 43

regulation of cell shape; signal transduction

epithelial to mesenchymal transition; regulation of transcription from RNA polymerase

II promoter; positive regulation of gene-specific transcription

IPI00148057 42

cell surface receptor linked signal transduction; chromatin modification; regulation

of transcription from RNA polymerase II promoter; regulation of growth

IPI00291916 42
IPI0O0000858 40
IPI00299263 40

IPI00093253 39
IPI00009975 39

IPI00003406 38
neuronal synaptic plasticity

IPI00170770 37
IPI00550206 37
IPI00017030 37
IPI00464952 36
IPI00010141 36
IPI00552897 36
IPI00026673 35

anti-apoptosis

DNA replication
DNA repair; cell cycle

polymerase II promoter
IPI00298731 35
IPT00425404 35
IPI00217957 34
IPI00438170 34
IPI00097495 34
IPTI00021954 33

microtubule-based movement

insulin receptor signaling pathway

regulation of Rab GTPase activity

regulation of transcription, DNA-dependent

intracellular protein transport; protein secretion; vesicle-mediated transport;
regulation of ARF GTPase activity

double-strand break repair via homologous recombination
regulation of transcription, DNA-dependent

regulation of dendrite development; actin filament organization; regulation of

multicellular organismal development; transcription

regulation of transcription, DNA-dependent

nuclear mRNA splicing, via spliceosome

multicellular organismal development; negative regulation of transcription from RNA

protein import into nucleus; transcription

multicellular organismal development; transcription

protein transport; cell communication

retrograde vesicle-mediated transport, Golgi to ER; COPI coating of Golgi vesicle;

regulation of ARF protein signal transduction

IPI00298935 33
dependent

IPI00414262 32
IPI00181006 32
IPI00004472 32

IPI00431698 32
dependent

IPI00004233 32
IPI00296388 31.33
IPI00219430 30

cell proliferation; cell cycle

activation of JUN kinase activity

oxidation reduction; chromatin modification; regulation of transcription, DNA-

regulation of transcription, DNA-dependent; apoptosis
protein amino acid phosphorylation; protein kinase cascade; ion transport

interspecies interaction between organisms; regulation of transcription, DNA-

regulation of transcription, DNA-dependent; chromatin remodeling

transcription initiation from RNA polymerase II promoter; androgen receptor signaling

pathway; regulation of transcription, DNA-dependent

IPI00301503 30
spliceosome

RNA splicing, via transesterification reactions; nuclear mRNA splicing, via

Here, “Node degree” indicates the mean degree of phosphopeptides of the corresponding protein in the dynamics-based network with R > 0.99. The biological
process represents the result annotated by means of gene ontology, as described in the Methods section.

EGFR (NetPath) pathway (Figure 2A). Since the
dynamics-based network in this study was constructed
on a pilot scale by connecting only proteins with similar
phosphorylation profiles, we did not use phosphatase-
related reactions that are believed to have inversely cor-
related time-course profiles between the phosphatase
and its substrate. In the EGFR (NetPath) pathway, 11

proteins (red nodes in Figure 2A) matched to the
dynamics-based network; for these 11 proteins, 30 pro-
tein pairs had corresponding phosphopeptides that were
reachable in the dynamics-based network. We compared
the SPLs of these 30 protein pairs in the EGFR (Net-
Path) pathway with the SPLs of their corresponding
phosphopeptide pairs in the dynamics-based network,
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Figure 2 Comparison of the dynamics-based network with known cellular signaling pathways. (A) Known epidermal growth factor
receptor (EGFR) signal transduction pathways in the EGFR (NetPath) analysis obtained from the NetPath database. Phosphorylation reactions are
indicated by directed arrows from protein kinases to their target substrate. Red protein nodes indicate that the phosphorylation dynamics of the
peptide or peptides were included in the dynamics-based network with R > 0.99. (B) Density distribution for the shortest path lengths (SPLs) of
all reachable two-phosphopeptide nodes in the dynamics-based network (bars). Each asterisk denotes a pair of proteins in the EGFR (NetPath)
known signaling pathway data; the asterisk color denotes the SPL of the two proteins in the known signaling network, and the position of each
asterisk denotes the SPL of the corresponding two phosphopeptides in the dynamics-based network. (C-G) Comparison of SPLs in the dynamics-
based network with those in each of the five known signaling networks. (C) EGFR (NetPath), (D) All (NetPath), (E) All - EGFR (NetPath), (F) Kinases
(Phospho.ELM), and (G) All (Phospho.ELM). In each panel, the SPLs of the two proteins in the known network were assigned to the bins
indicated on the horizontal axis; for protein pairs in each bin, we calculated the SPLs of their corresponding peptide pairs in the dynamics-based
network (only for the reachable peptide pairs in this network), and the resulting mean value is shown on the vertical axis. The bin labeled “All"
also included unreachable pairs in the known network. (D) In the comparison with EGFR (NetPath), Pearson’s correlation coefficient (R) was
calculated without the “All" bin.
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and found a marked correlation between the two data-
sets (Figure 2B and 2C), suggesting that the dynamics-
based network for the EGF stimulation accurately clus-
tered proteins that are close to each other in the actual
EGER signaling pathway.

The data size for the EGFR (NetPath) pathway was
limited. To quantitatively measure the correlation
between the dynamics-based network and the known
pathways with a larger dataset, we prepared two other
datasets of known signaling pathways from NetPath: All
(NetPath), consisting of a total of 296 phosphorylation
reactions in the database, and All - EGFR (NetPath),
generated by eliminating all the EGFR (NetPath) reac-
tions from the All (NetPath) pathways. Although the
SPLs of the All (NetPath) group were significantly corre-
lated with those of the dynamics-based network (Figure
2D), the All - EGFR (NetPath) had no correlation with
the dynamics-based network (Figure 2E). The average
SPLs of the phosphopeptides in the dynamics-based net-
works that corresponded to protein pairs in the known
datasets of EGFR (NetPath), All (NetPath), and All -
EGFR (NetPath) were 4.50, 5.71, and 6.80, respectively
(Figure 2C-E). Moreover, those SPLs which corre-
sponded to neighboring protein pairs (i.e., SPL = 1) in
the same datasets were 2.75, 5.20, and 15.00, respectively
(Figure 2C-E). Thus, two proteins that participated in
the EGER signaling pathway were also shown to be
close in the dynamics-based network for the EGF stimu-
lation, and those localized in the non-EGEFR signaling
pathway were shown to be more distant. The correlation
between the dynamics-based network and the All (Net-
Path) pathway might have resulted from the indirect
effect of the proteins belongs to the EGFR signaling
pathways in the All (NetPath) group.

We further compared the dynamics-based network
with two known signaling pathway networks generated
from Phospho.ELM [23]: All (Phospho.ELM), consisting
of a total of 1,140 kinase-substrate reactions, and
Kinases (Phospho.ELM), generated by selecting 201 pro-
tein pairs in which both were annotated as protein
kinases from the All (Phospho.ELM) dataset. Since
Phospho.ELM covers phosphorylation reactions that
were identified by means of large-scale, high-throughput
measurements, and might include reactions that are not
meaningful in living cells, the Kinases (Phospho.ELM)
pathway was the more biologically relevant dataset. We
confirmed that the dynamics-based network for the EGF
stimulation was more similar to the Kinases (Phospho.
ELM) group than to the All (Phospho.ELM) (Figure 2F
and 2QG); for example, the average SPLs in the
dynamics-based network corresponding to neighboring
protein pairs with SPL = 1 in the respective datasets of
Kinases (Phospho.ELM) and All (Phospho.ELM) were
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3.33 and 5.50, respectively. These results suggest that
the dynamics-based network constructed according to
the time-course data for the EGF stimulation reflects
the actual intracellular EGFR signaling pathways, and
that our approach can be used to understand proteins
localized in other condition-specific signaling pathways.

The EGFR signal is precisely transmitted to its
downstream components under the control of
whole-proteome pathways

As discussed above, given the projection effect of pro-
tein signaling, the fact that many signaling proteins
unrelated to EGFR signaling appear as hubs in the
dynamics-based network (Table 1, Additional File 4)
indicates that these unrelated signaling proteins may be
activated by the EGF stimulation. Many signaling pro-
teins seem to be indiscriminately activated, and this
would lead to side-effects that transmit and amplify
inappropriate signals within the cell. However, we found
that the dynamics-based network was correlated specifi-
cally with the EGFR signaling pathway (Figure 2C-E). In
particular, the average SPL for the phosphopeptide pairs
in the dynamics-based network that corresponded to
neighboring protein pairs in the EGFR signaling pathway
was 2.75, whereas that in the non-EGEFR signaling path-
way was 15.00 (Figure 2C and 2E). The adjacent protein
pairs in the non-EGEFR signaling were therefore farther
apart in the dynamics-based network for the EGF stimu-
lation. These results suggest that at the pathway level,
the EGFR signaling system is precisely activated to
transmit and amplify signals along the appropriate intra-
cellular pathway and to not transmit signals along inap-
propriate pathways.

Conclusions

The dynamics-based network generated using the time-
course phosphoproteome data for the EGF stimulation
was clearly correlated with the known EGFR signaling
pathways. Although recently developed computational
methods predict direct signaling relationships between
enzyme proteins and their substrates based on sub-
strate-recognition motifs, our network construction
approach is useful because it groups pairs of proteins
localized within a signaling pathway based on the simi-
larity of their phosphorylation dynamics data. The
dynamics-based network, in turn, will complement the
results of enzyme-substrate predictions based on the
enzyme-specific target sequence motif (e.g., NetworKIN,
Scansite, and NetPhos) and will therefore increase their
prediction accuracy. The new approach will also serve
as a guide to explore enzyme targets even when the
enzyme’s motif information is unavailable. Furthermore,
the dynamics-based network for the EGF stimulation
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allowed us to infer that EGFR signaling is independently
activated and precisely controlled at the whole-pathway
level under conditions where many unrelated enzymatic
proteins are activated by the EGF stimulation. In the
near future, when we obtain more condition-specific
time-course phosphoproteome data with higher resolu-
tion, the phosphorylation dynamics-based network
approach will improve both our general understanding
of whole cellular signaling pathway and our understand-
ing of conditionally activated signaling pathways; it will
not replace recently developed prediction approaches for
direct enzyme-substrate relationships, but will improve
their accuracy.

Methods

Time-course phosphoproteome data

We used the time-course phosphoproteome data of
Olsen et al. [11] in this study. In this dataset, the rela-
tive abundances of cytoplasmic and nucleic phospho-
peptides of HeLa cells were measured at five different
time points (0, 1, 5, 10, and 20 min) after EGF stimula-
tion using SILAC-based LC-MS/MS analysis. In this
dataset, each phosphopeptide had a unique identifier
along with the International Protein Index (IPI) [42]
accession numbers of the corresponding protein, the
relative abundances at each of the five time points, and
the cellular fraction in which each was isolated (cyto-
plasm or nucleus). Note that throughout this study, we
defined a given phosphopeptide that was obtained from
both cellular fractions (nucleus and cytoplasm) as two
different phosphopeptides. We selected 1,050 phospho-
peptides whose relative abundances were completely
measured at all five time points for additional analysis.
Among the 1,050 phosphopeptides, 459 were cytoplas-
mic and 591 were nucleic. Since some IPI accession
numbers in Olsen et al. were outdated, we updated
these numbers according to a newer version of the
human IPI data (version 3.58).

Phosphorylation dynamics-based network

Using the time-course phosphoproteome data, we gen-
erated a phosphorylation dynamics-based network by
connecting pairs of phosphopeptide nodes with similar
time-course abundance profiles; the degree of similar-
ity was defined using Pearson’s correlation coefficient
(R). Among the time-course phosphoproteome data, R
values for all possible pairs of phosphopeptides were
calculated using the R statistical software (version
2.8.0) [43], and we generated a phosphorylation
dynamics-based network by applying a given threshold
value of R. In this study, we used three R thresholds
(0.97, 0.98, and 0.99) to generate three corresponding
dynamics-based networks.
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Subnetworks of the dynamics-based network

The phosphorylation dynamics-based network with R >
0.99 was separated into two subnetworks based on the
two cellular fractions: a cytoplasmic subnetwork and a
nucleic subnetwork. For example, the cytoplasmic sub-
network was composed of cytoplasmic phosphopeptide
nodes and edges connecting pairs of cytoplasmic nodes.

Node degree and network density

We used the cumulative percentage distribution to pro-
vide an overview of the node degrees (the number of
connections at each node) in a given dynamics-based
network. We also calculated the network density to
measure the overall connectivity within a given
dynamics-based network. Here, network density repre-
sents the proportion of connected edges in a network
relative to all possible node pairs. That is:

Density = 2E / [N(N —1)]

where E and N are the numbers of edges and nodes,
respectively.

Negative control of the dynamics-based network

We used random edge rewiring (RER) to prepare nega-
tive controls for the dynamics-based network. RER ran-
domly selects two edges within a given network and
randomly rewires (connects) them; it repeats this opera-
tion a sufficient number of times until all pair-wise
interactions in the queried network have disappeared or
until the number of iterations reaches 100 times the
number of interactions. During this process, each rewir-
ing operation is retried if a pair of nodes redundantly
wired at two edges occurs in the network. RER does not
change the degree of each node in a given network.

Network motifs in the dynamics-based network

We observed the cellular fraction patterns (cytoplasmic
or nucleic) of the binary, triangular, and square motifs
(Figure 1) revealed in the dynamics-based network. For
the dynamics-based networks with R > 0.97, 0.98, and
0.99, we counted the numbers of these motifs and com-
pared the results with those estimated using the negative
controls.

Gene Ontology

Gene ontology annotations of human proteins were
obtained from Swiss-Prot (version 57.1) using the Swiss-
Prot IDs [26] (see below).

Known signaling and kinase-substrate reaction datasets
To validate whether the dynamics-based network
reflected actual intracellular phosphorylation reactions,
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we compared the dynamics-based network for R > 0.99
with datasets [23,41] for the following five types
of known signaling pathways: From NetPath, we used
all the available phosphorylation reactions, only the
phosphorylation reactions related to EGFR signaling (the
“EGFRI1 signaling pathway”), and all non-EGFR signaling
reactions to create the known-pathway datasets “All
(NetPath)”, “EGFR (NetPath)”, and “All - EGFR (Net-
Path)”, respectively. From Phospho.ELM (version 8.2),
we obtained all available kinase-substrate reactions, and
denoted these as the “All (Phospho.ELM)” dataset.
Among these pathways, we generated a subset com-
posed only of kinase proteins, denoted the “Kinases
(Phospho.ELM)” dataset, based on the kinase informa-
tion registered in the Human Protein Initiative (Release
57.13) [44].

Identifier standardization using the Swiss-Prot ID

All protein and peptide identifiers in the multiple data-
sets used in this study were standardized into Swiss-Prot
ID numbers to permit data integration and comparison.
Each peptide identifier in the dynamics-based network
was assigned to its corresponding Swiss-Prot ID accord-
ing to the identifier cross-reference list in the IPI data-
base (version 3.58), the Swiss-Prot database (version
57.1), or both. (Note that in some cases, multiple pep-
tides corresponded to a single Swiss-Prot ID.) UniProt
accessions of proteins in the documented NetPath and
Phospho.ELM phosphorylation reactions were standar-
dized to their corresponding Swiss-Prot IDs according
to the cross-reference lists in Swiss-Prot (version 57.1)
and UniProt (Release 12), respectively. Since the protein
accessions in Phospho.ELM are based on UniProt
(Release 12.3), we used the cross-references in UniProt
(Release 12), which was the nearest available version, for
the Phospho.ELM data.

Shortest path length (SPL)

We defined the closeness of two nodes in a network
using the shortest path length (SPL), which represents
the minimum number of steps (edges) between two
nodes. The SPL of every possible and reachable pair in a
given network was calculated using the Dijkstra algo-
rithm provided by version 1.4 of the Boost::Graph pack-
age, which was obtained from the Comprehensive Perl
Archive Network (http://www.cpan.org/).

Statistics

We determined the statistical significance of the differ-
ences between a single real value and the expected value
from a group of repeatedly generated random values by
calculating the proportion of random values that were
greater than or equal to the real value (or less, depend
on the instances).
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Additional file 1: The dynamics-based network reconstructed for
R > 0.99.

Additional file 2: The dynamics-based network reconstructed for
R > 0.98.

Additional file 3: The dynamics-based network reconstructed for
R > 0.97.

Additional file 4: Node degrees in the dynamics-based network for
R > 0.99 and the corresponding biological processes from the gene
ontology annotation.
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