
Severin et al. BMC Bioinformatics 2010, 11:240
http://www.biomedcentral.com/1471-2105/11/240

Open AccessM E T H O D O L O G Y A R T I C L E

BioMed Central
© 2010 Severin et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Methodology articleeHive: An Artificial Intelligence workflow system
for genomic analysis
Jessica Severin1,2, Kathryn Beal1, Albert J Vilella1, Stephen Fitzgerald1, Michael Schuster1, Leo Gordon1, Abel Ureta-
Vidal1,3, Paul Flicek1 and Javier Herrero*1

Abstract
Background: The Ensembl project produces updates to its comparative genomics resources with each of its several
releases per year. During each release cycle approximately two weeks are allocated to generate all the genomic
alignments and the protein homology predictions. The number of calculations required for this task grows
approximately quadratically with the number of species. We currently support 50 species in Ensembl and we expect
the number to continue to grow in the future.

Results: We present eHive, a new fault tolerant distributed processing system initially designed to support
comparative genomic analysis, based on blackboard systems, network distributed autonomous agents, dataflow
graphs and block-branch diagrams. In the eHive system a MySQL database serves as the central blackboard and the
autonomous agent, a Perl script, queries the system and runs jobs as required. The system allows us to define dataflow
and branching rules to suit all our production pipelines. We describe the implementation of three pipelines: (1)
pairwise whole genome alignments, (2) multiple whole genome alignments and (3) gene trees with protein homology
inference. Finally, we show the efficiency of the system in real case scenarios.

Conclusions: eHive allows us to produce computationally demanding results in a reliable and efficient way with
minimal supervision and high throughput. Further documentation is available at: http://www.ensembl.org/info/docs/
eHive/.

Background
The Ensembl project provides an integrated system for
the annotation of chordate genomes and the management
of genome information [1]. Ensembl produces several
releases per year. In every release, data updates are pro-
vided for recently sequenced species, for those species
with new assemblies and when additional information is
available. For instance, a new set of RNA-seq data can be
used to refine the structure of the genes or other features.
The data is provided through the Ensembl Genome
Browser (http://www.ensembl.org), a Perl API, via direct
querying of the underlying databases or via Biomart, a
data-mining tool [2]. The same public Perl API is used by
both the web server to fetch the data from the database
and the project members themselves for accessing data,
analysis and storing the results of the analyses.

Each Ensembl release requires the coordination of sev-
eral analysis teams involved in the process from gene
annotation to the final display of all data on the web. The
Ensembl Comparative Genomics group has approxi-
mately two weeks to create the comparative genomics
data. The number of species included in Ensembl grows
with nearly every release. For instance, Ensembl release
56 (September 2009) includes 50 genomes for which
genomic alignments and protein homologies predictions
are produced. Although most of the jobs required to cre-
ate the comparative genomics resources are small, some
of the steps in the pipeline involve comparisons between
all possible pairs of species in Ensembl, and the amount
of computational effort required for some of these steps
grows almost quadratically with the number of species.
As there is usually at least one new species or an updated
assembly in every release, this means that the most
expensive calculations, the ones involving all species, are
re-run for every release.

* Correspondence: jherrero@ebi.ac.uk
1 European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton,
Cambridge, CB10 1SD, UK
Full list of author information is available at the end of the article

Severin et al. BMC Bioinformatics 2010, 11:240
http://www.biomedcentral.com/1471-2105/11/240

Page 2 of 15

In order to solve these scalability challenges as the
number of species grows, we have designed a production
system able to process huge amounts of small jobs and
run autonomously with minimal manual intervention.
This new fault tolerant distributed processing system is
based on several concepts common in Artificial Intelli-
gence (AI), namely (a) blackboard systems, (b) network
distributed autonomous agents, (c) dataflow graphs, and
(d) block-branch diagrams. The basic goals of the system
are (a) to reduce the overhead of individual job process-
ing, (b) increase the maximum number of jobs that can
be in-flight at any one time, (c) provide fault tolerance,
and (d) allow concurrent runtime processing capable of
implementing complex algorithms with branching and
looping as part of the work flow.

We call our production system eHive and use it to man-
age and control the comparative genomics workflow and
job scheduling requirements. eHive is fully integrated
with and makes extensive reuse of the software modules
available in the family of Ensembl Perl APIs.

Artificial intelligence system design
The design of the eHive system is specifically inspired by
the descriptions of artificial life from sources such as
Reynolds [3] and incorporates several specific AI and
workflow graph theories described below. In artificial life
systems such as eHive, intelligent agents are created with
a basic set of behavior rules that depend in part on the
behavior of the agents closest to them. This programming
creates a cooperativity among the agents and results in
any given agent having the greatest behavioral effect on
the agents closest to it in the system and little or no effect
on an agent far away.

In these models, the system often exhibits global char-
acteristics resulting from agents working together locally
without explicit need for communication with all of the
other agents working simultaneously in the system. These
global characteristics, which are not explicitly pro-
grammed into the system, are termed "emergent behav-
ior" and are a critical advantage of the eHive over other
job scheduling methods. The rules for the eHive (and,
indeed, the name of the system) are modelled on a living,
active "honeybee" hive. In sort, we can summarize the
rules for each agent (i.e. "worker bee") as follows:

• Identify an available and appropriate work object
• Ensure any work objects arising from completion of
the current work object can be identified by follow-on
agents
• Work optimally through out the lifespan
• Die gracefully

Problem solving model
The key concept to enable the eHive system is the black-
board model of problem solving [4]. Briefly, a blackboard

model provides a means for knowledge sources (i.e.
"workers") to generate and store partial solutions to a
problem without direct communication between the
workers. Instead, the workers read and write information
to a central globally accessible database (the "black-
board"). In a blackboard model, the choice of worker type
is based on the solution state at any given time. For exam-
ple, if no tasks of type B can begin until at least 25% of
tasks of type A have been completed, no type B workers
will be created until the blackboard shows the completion
of at least 25% of the type A tasks. The strength of the
blackboard model is that each part of the problem is
solved by a specialist application in an incremental and
opportunistic way which responds to the ongoing
changes in the solution state. In combination with the
local model of behavior, a global pattern of system control
emerges without the explicit need for a central controller
to analyze the entire blackboard and make detailed deci-
sions.
Network distributed autonomous agents
Within the eHive a collection of agents actually do the
work. These agents can be classified as both collaborative
agents and reactive agents using the terminology of
Nwana [5]. Collaborative agents generally work autono-
mously and may be required to cooperate directly with
other agents in the system. In our application, the agents
are distributed across the compute cluster and communi-
cate only with the blackboard. Reactive agents respond to
the state of the environment (in our case the state of the
blackboard) and thus may change their behavior based on
the progression of the partial solution recorded on the
blackboard. When their interactions are viewed globally,
complex behavior patterns emerge from systems with
reactive agents.
Control structures
The two major control structures used for algorithm
development within the eHive system are data flow
graphs and block branch diagrams. Data flow graphs rep-
resent data dependencies among a number of operations
required to solve a problem. The block branch diagram
(BBD) is a common aspect of object oriented software
design. For each function, the BBD represents the control
structure, input and output parameters, required data
and dependent functions.

Results
Scheduling systems for large compute clusters are gener-
ally based on the idea of a central job queue and a central-
ized job manager. Cluster nodes are "dumb" and need to
be given explicit instructions for each and every job they
will need to execute. This creates a bottleneck in the cen-
tral controller. Many of these systems have a latency of
several seconds between the job submission and its exe-
cution and most are designed around the idea that jobs

Severin et al. BMC Bioinformatics 2010, 11:240
http://www.biomedcentral.com/1471-2105/11/240

Page 3 of 15

will run for an hour or more. They are not designed for
handling 100 million jobs that run for only a few seconds
each. To manage this increased job queuing overhead,
applications with large numbers of short jobs often
require another system on top of the job scheduler to
"batch" jobs so that they can match the parameters of the
job scheduler.

The basic function of the eHive system is to move the
job scheduling function away from the center, but still to
retain the ability to monitor and track jobs. This is
accomplished using the AI systems described above to
create a behavior model based on an analogy of a honey-
bee queen in a hive and her worker bees.

In the eHive, the jobs are no longer "scheduled" by a
central authority, but each autonomous worker created
by the queen now employs an algorithm of "job selection
and creation" based on observing the central Blackboard
with different levels of granularity. The result is a hive
behavior system with a very small (3 msec) job overhead,
fault tolerance and an ability to efficiently utilize CPU
clusters with more than 1000 processors.

Additionally, and significantly different than a central
job scheduler, the eHive system is a full algorithm devel-
opment platform. It implements the concept of dataflow
as well as branching and looping. It allows any algorithm
that can be described in block-branch notation to be
implemented as eHive processes including serial or paral-
lel algorithms.

Implementation
The Blackboard System of the eHive contains both the list
of all the jobs to run and the dataflow and branching
rules. The agents connect to the Blackboard to find new
jobs and to post newly created jobs back, thereby facili-
tating indirect communication with other workers. Nor-
mally, each job has to fetch some input data from a shared
resource like a network file system or a database. Also,
each job will typically store the results in a common data-
base, which would commonly create a bottleneck if too
many agents were running at once. Thus, the system is
designed to control the total number of simultaneous
agents. Ideally, each agent runs in a farm environment
with a job queuing system (Figure 1). Although Load
Sharing Facility (LSF) [6] is used by default in our imple-
mentation, the eHive has been successfully tested with
Sun Grid Engine (SGE) [7] and the Portable Batch System
(PBS) [8].

Blackboard System: the eHive database
The Blackboard is implemented as a MySQL database.
All the Autonomous Agents have read and write access to
this database. The main system relies on the following
tables (Figure 2):

• hive: The hive table keeps track of all the autono-
mous agents. It contains information about their sta-
tus, the number of jobs they have processed, when
they were born, as well as the time and cause of death
for dead agents.
• analysis: All of the different types of analyses are
listed in the analysis table. It includes two main
values: the module and the parameters columns.
The module corresponds to the name of a Perl mod-
ule in the production pipeline. It must implement the
following methods: fetch_input, run and
write_output, which are run in this order by the
autonomous agents. Configuration parameters for
this module are stored in the parameters column.
• analysis_stats: This table provides high level
statistics on the state of the analysis and its jobs. It
also defines the behavior of the workers.
• analysis_job: Each job is represented by one
entry in this table. There is a link to the analysis
table and both the input_id and the parameters
value from the analysis table define the specific
options for this job. This provides sufficient informa-
tion to run the job. Also, this table stores information
about the status of each job, the timestamp when the
job was started, a link to the hive table to record
which worker/agent processed this job. Upon job
completion, the actual total runtime of the job is also
recorded.
• analysis_ctrl_rule: This table sets control
rules (priorities) between the analyses. Ultimately, it
defines the order in which the jobs must be run. The
structure is very simple as it only contains two col-
umns: condition_analysis_url and
ctrled_analysis_id. The
condition_analysis_url defines the analysis
that must be done before starting the analysis referred
to in the ctrled_analysis_id column.
• dataflow_rule: This table defines the fate of
the output of a job. Upon completion, a job has the
opportunity to create new jobs based on its result.
This table can be used to connect the output of an
analysis to the input of another analysis. Depending
on the analysis, each job can create 0, 1 or several new
jobs at completion. Both this and the previous table
define the dataflow graph for the pipeline.
• monitor: This table is used to log the number of
running workers and the current throughput of the
eHive.

Autonomous Agents: the Workers
Each worker is a Perl script that runs autonomously in a
computational cluster environment. Its mission is to grab
and run jobs posted on the eHive blackboard and to
optionally post new jobs back. The only information

Severin et al. BMC Bioinformatics 2010, 11:240
http://www.biomedcentral.com/1471-2105/11/240

Page 4 of 15

given to a worker when it is launched is the URL for the
location of the blackboard database. The successful birth
of a worker results in the worker registering itself on the
blackboard. This can only happen if the code to run the
worker is accessible and functional and the blackboard is
reachable. These checks ensure a high level of fault toler-
ance even before starting to run the jobs. Therefore, most
pipeline failures occur before work happens, with very
few problems that arise mid-run. Then, the worker must
mature before being allowed to grab any job. During this
maturity process, the worker chooses a particular analysis
task as described below.

Once the worker is alive and registered with the central
blackboard, the worker queries the analysis,
analysis_stats, and hive tables to get a high-level
summary of all the different processing nodes in the sys-
tem, the numbers of current workers registered to each
analysis and the amount of pending work. Next, the
worker selects an analysis, registers this selection with
the blackboard, and then dynamically loads the code
module needed to run this analysis. We have taken
advantage of the runtime code loading abilities of Perl in
implementing this feature. Although the current imple-
mentation requires the code to be pre-distributed on the
nodes, Perl also allows the code to be streamed from the
blackboard database as text and loaded dynamically with
an eval statement. Once the worker has dynamically
loaded the processing module, it can run the jobs. The

worker then proceeds to grab jobs from the blackboard.
Once a job is finished it may post new jobs back to the
blackboard and thus create more work for other workers.

Each job is broken down into 6 distinct stages (READY,
CLAIMED, GET_INPUT, RUN, WRITE_OUTPUT,
DONE) which occur in order. As the worker runs each
job through the processing module, it reports back to the
blackboard its current stage. Only once all steps are com-
pleted and the processing module has not reported any
errors, will the worker set the status of the job to
"DONE". In addition each job records which worker
(worker_id) is running it and when it started process-
ing. This information provides the system the ability to
flag jobs that are suspected of being stalled or having
failed in an uncontrolled manner providing the second
level of fault tolerance within the system. These jobs can
be queried by the operator to figure out what went wrong
with the data or the algorithm.

Just like a worker bee, the agent is very efficient once it
is an adult but it has a limited life span. By default each
worker is given a life span of 1 hour. Although this spe-
cific time is due to the configuration of our shared cluster,
it is typical for a batch queuing system to penalize users
running long jobs. Thus, the life span limit permits a fair
use of the shared computational resources and results in
the eHive system taking maximum advantage of the com-
pute farm. Each worker is allowed to process as many
jobs as possible within that hour before dying, but natu-

Figure 1 eHive system overview. The eHive system is based on a Blackboard System implemented as a MySQL database. It contains a list of all the
jobs to run as well as dataflow and branching rules. The operator monitors and controls the system using a program called beekeeper. It connects to
the blackboard and creates workers as required. Workers run in a queuing environment, typically LSF. They run jobs for a particular analysis until no
more jobs are available or they reach the end of their one hour lifespan. The eHive also keeps track of the throughput of the pipeline as it runs.

��� ����	
�
�
����

� � ����
� � 	
�����

 � 	����
� � 	����

��	��	

��	��	

��	��	
��	��	

��	��	

��	��	

�
�
�
�

������
������
���������������������

�������������������������
����������������������������

��������	

��	��	

��	��	

��	��	

��	��	

���

��	��	

��

��!�
	
��"�#���

$

���%�&��	�

��	��	

Severin et al. BMC Bioinformatics 2010, 11:240
http://www.biomedcentral.com/1471-2105/11/240

Page 5 of 15

rally the worker is allowed to complete any job it has
started.

Dataflow graph
The general flow of work through the system is that of a
cascade. The workflow graph consists of analysis nodes
and dataflow rules as edges. In addition, control rules are
used to define dependencies between the analyses. This
can be used to force a particular analysis to wait until all
its dependent analyses have finished processing all their
jobs. This is important since in many algorithms there are
some steps which can be run in parallel, but there are
other steps which must be run sequentially. A typical
workflow has one analysis at the start and a handful of
jobs are defined. These jobs will create a cascade of jobs
and flow them out into the next analysis processes.

The workflow graph is allowed to be fully dynamic and
no restrictions are placed on the developer to implement
an algorithm. For instance, workers are allowed to create
analyses, dataflow rules, control rules and jobs as they
run. This is possible because a worker does not need to
know about the full structure of the pipeline. Instead, it
only needs to be aware of the steps immediately upstream
and downstream of itself in the dataflow graph.

External control and monitoring: the beekeeper
The beekeeper serves as a console for the person running
the eHive system. It is a Perl script which reports back the
progress of the work and creates new workers as they are
required. The workers are submitted to the LSF queue
provided that the total load of the system is low enough.
In normal conditions, the beekeeper is used in loop
mode. The script continuously checks the system and
creates workers until all the work is done. Since workers
are configured with a 1 hour lifespan and created in a
staggered manner, the script can sleep for 2 minutes
between each loop before needing to repeat the proce-
dure. Since the workers are self configuring, if too many
workers are accidentally created, they will simply fail to
mature due to lack of work.

The eHive system also includes basic monitoring func-
tionality. Every job in the system is logged with its actual
runtime so the average runtime for jobs can be estimated
from the historical jobs. The hive table described above
keeps track of each worker and their throughput and the
analysis_stats table maintains approximate esti-
mates of job progress and average runtime within each
analysis.

Figure 2 eHive database schema.

Severin et al. BMC Bioinformatics 2010, 11:240
http://www.biomedcentral.com/1471-2105/11/240

Page 6 of 15

Additionally, in every loop, the current number of
workers and throughput of the system (as the number of
jobs run per second) is logged into the monitor table.
These values can be used by the operator to assess the
effect of increasing or decreasing the number of workers
on the throughput.

Fault tolerance
Fault tolerance is an inherent part of the system. Since
jobs are processed by already running workers, most of
the common faults (hardware failures, lost disk mounts,
lost network connections, missing software) are all
caught before a job ever leaves the database/blackboard.
Jobs that fail to complete processing (hardware failure
mid-run, program error) are left in an 'unfinished' state
and are easily tracked and reset. Jobs are posted to the
blackboard where any worker is free to grab them. Once a
job is grabbed, no other worker should take the work, but
they are not prevented from doing so. This freedom
allows the developer to create ad-hoc "garbage collector"
processes which can reset jobs that appear to be stalled.
The blackboard itself does not implement any behavior or
restrictions; each behavioral aspect is encapsulated in the
workers and the dynamically loaded processing modules.
In the current implementation, this garbage collection of
failed workers and jobs is handled by the beekeeper
script.

When a job fails, it will be re-run automatically up to a
certain number of times. If the failure is persistent, the
status of the job in the analysis job table is set to FAILED
and the job is not re-run anymore. The maximum num-
ber of retries is defined in the analysis_stats table.
Usually one wants all the jobs to run successfully. In some
cases, though, it might be expected and acceptable to
have a small number of failing jobs. The percentage of
acceptable failures is defined in the analysis_stats
table. If there are too many failures, the system will halt at
this point. This may happen when there is a configuration
problem or any other specific issue like a problem with
the filesystem or a faulty cluster node. Usually, this means
some manual inspection is required to solve the issue. If
there is a problem with the configuration or the comput-
ing farm, the operator can reset these jobs and resume
the pipeline once the problem has been fixed. If there is a
problem with one or a few specific jobs because they
require more memory or temporary disk space for
instance, the operator can run these jobs manually under
different conditions and resume the pipeline afterwards.

Pipeline initialization
We use a loader script to feed the system with initial val-
ues. The loader script reads the parameters from a con-
figuration file. Most of the analyses, dataflow rules and
control rules are created at this time, although some are

created dynamically at a later stage. Several examples are
described in the next section.

After running the loader script, the operator needs to
launch the beekeeper. In normal conditions the pipeline
will run automatically until completion.

Applications and Case Studies
Pairwise alignments pipeline implementation
Aligning two genomes would be straightforward if one
could run the program in one single step. Unfortunately,
the size of the vertebrate genomes involves impractical
memory requirements for such an option. One naive pos-
sibility would be to split the problem by chromosome, but
these are still too large in many cases. For instance, chro-
mosome 1 of the marsupial Monodelphis domestica is
approximately 750 Mb long [9]. On the other hand, other
genome assemblies are fragmented in thousands of scaf-
folds (e.g. the assembly of the western European hedge-
hog, which has thus far been sequenced to only 2×
coverage, contains nearly 350000 pieces). In order to
overcome this problem, we chunk the chromosomes in
segments around 10 Mb in length and we group the
smaller fragments to sum up the same amount of
sequence. We call these objects "DNA Collections", and
these allow us to run comparison alignments of each
group of chromosome segments against each other in
jobs of comparable size and predictable duration.

We employ two different pipeline strategies for whole
genome alignments depending on the evolutionary dis-
tance of the genomes to be aligned. For relatively closely
related genomes follows the same strategy as Kent et al.
[10] for obtaining pairwise alignments. In brief, each
DNA collection of one species is aligned to every DNA
collection of the other species resulting in so-called
BlastZ-raw alignments. These pairings are chained
together with the axtChain program to form longer align-
ments we call BlastZ-chains. The last step involves the
program chainNet to find the best-in-genome alignment
in one of the two species. As a general rule, we use the
human or the mouse genome as the reference when
defining the best-in-genome alignments.

For greater evolutionary distances, we opt for using the
program BLAT [11] in translated mode instead. BLAT
performs the search in all 6 possible reading frames. By
using translated alignments we increase the sensitivity of
the method. Initially we find a large amount of short
overlapping alignments. We use the approach previously
described for finding the best-in-genome ones. This
strategy improves the specificity of the alignments by
reducing the total number of aligned base pairs without
compromising the overall coverage (Table 1).

Both pipelines share the same basic structure. One can
choose one or the other by simply swapping the BlastZ-
raw module by the translated BLAT one. This is an exam-

Severin et al. BMC Bioinformatics 2010, 11:240
http://www.biomedcentral.com/1471-2105/11/240

Page 7 of 15

ple of the flexibility provided by the modularity of the
pipelines implemented in the eHive system. Changing or
updating one particular step of the pipeline usually
requires the modification of only a single module.

Figure 3 shows the relationship between the different
analyses in the pipeline. We run the pipeline in two parts.
In the first one we obtain the raw alignments (Figure 3A)
between the two genomes. The second part of the pipe-
line (Figure 3B) consists on formatting the input, and
running the axtChain and axtNet programs. Table 2
shows the number of jobs for each analysis when aligning
the human and the pika genomes and Figure 3C shows
the timeline for the processing of these jobs. This pipeline
ran for more than two days. All the BLASTz jobs ran dur-
ing the first 17 hours. The pattern of pronounced grooves
is an indication of a heavy load in the compute farm: after
the workers exhaust their lifespan, new workers are
delayed by many other processes competing for the farm
resources. Despite filtering out all non best-in-genome
alignments, the final set of alignments covers all but one
human genes that have a direct (1-to-1) orthologous gene
in the pika genome.

We usually run the first part of the pipeline and load the
second part only after the first one has been successfully
completed, which explains the gap in the timeline (Figure
3C). The most expensive part of this pipeline is running
the axtChain software and the complexity of the chaining
process grows with the number of raw alignments found
in the first part of the pipeline. The break between both
parts of the pipeline allows us to check that we have

obtained a reasonable amount of raw alignments (up to
10 million) before attempting the chaining process. If we
obtain too many raw alignments, we usually restart the
pipeline using a more stringent set of parameters.

Multiple alignments pipeline implementation
Ensembl provides global whole-genome multiple align-
ments. Global aligners will align a set of homologous
sequences in which no major rearrangement has
occurred. We need to define these sets of sequences
beforehand, which we call a homology map. One of the
most interesting application of whole-genome multiple
alignments is the detection of conserved regions. Our
pipeline is divided in these three main steps: definition of
the homology map, alignment of homologous segments
and detection of conservation in the alignment.

First, we obtain the orthology map between the
genomes of interest using Mercator [12,13]. It uses
orthologous coding exons to define blocks of orthologous
segments. Each block is then aligned with Pecan [14].
Last, we use GERP [15] to detect conserved regions in the
alignment. GERP uses the concept of rejected substitu-
tions to score the conservation in every column of the
alignment. Then, it uses these scores to define a set of
constrained elements, which correspond to stretches of
the alignment where the conservation is higher than
expected by chance.

Figure 4A shows the resulting pipeline. The first part,
obtaining all the exon orthology relationships for Merca-
tor is the most complex one. The rest of the pipeline, run-

Table 1: Effect of the chain-net approach on the translated BLAT alignments

Alignment Chain&Net Alignments Genomic Coverage Coding Exon Coverage

Human-Chicken NO 894342 39885438 1.09% 20286249 49.55%

Human-Chicken YES 337551 39928606 1.09% 20024694 48.91%

Human-C.savignyi NO 142111 6039918 0.16% 4227643 10.33%

Human-C.savignyi YES 54447 5720330 0.16% 4052706 9.90%

Mouse-Tetraodon NO 509589 20480760 0.75% 14931981 42.29%

Mouse-Tetraodon YES 177447 19615452 0.72% 14450833 40.93%

Mouse-Xenopus NO 2061217 29538379 1.09% 18769694 53.16%

Mouse-Xenopus YES 239083 27926452 1.03% 18113364 51.30%

This table compares the result of the translated BLAT alignmnts before and after using the chain-net approach. While the total number of
alignments is reduced to less than 40%, the coverage is only slightly reduced.

Severin et al. BMC Bioinformatics 2010, 11:240
http://www.biomedcentral.com/1471-2105/11/240

Page 8 of 15

Table 2: Jobs in the Pairwise alignment pipeline for Human-Pika

Analysis Number of jobs Granularity

ChunkAndGroupDna 4 2 per genome

CreatePairAlignerJobs 1 1 per pipeline

BlastZ-e1886dc 97920 As many as required

UpdateMaxAlignmentLengthBeforeFD 1 1 per pipeline

CreateFilterDuplicatesJobs 2 1 per genome

TargetFilterDuplicates-e1886dc 113 1 per human segment

QueryFilterDuplicates-e1886dc 193095 1 per pika segment

UpdateMaxAlignmentLengthAfterFD 1 1 per pipeline

DumpLargeNibForChains 2 1 per genome

CreateAlignmentChainsJobs 1 1 per pipeline

AlignmentChains-26aa1260 425698 As many as required

UpdateMaxAlignmentLengthAfterChain 1 1 per pipeline

CreateAlignmentNetsJobs 1 1 per pipeline

AlignmentNets-34de6ee1 5770 As many as required

UpdateMaxAlignmentLengthAfterNet 1 1 per pipeline

PairwiseHealthCheck 2 2 per pipeline

TOTAL 722613

This table shows the final number of jobs run for each analysis. The last column gives a short explanation on the number of jobs for each
analysis. 113 human segments correspond to the 25 chromosomes (1 to 24, X, Y and MT) and an extra 88 supercontigs not yet assembled into
chromosomes. The pika genome is scattered in 193095 segments. Both AlignmentChain and AlignmentNets jobs are defined by the
CreateAlignmentChainJobs and CreateAlignmentNetsJobs jobs respectively.

ning Pecan and GERP, is straightforward. In this example,
part of the workflow graph is created dynamically. One
SubmitPep and one blast analysis are required per
species. These analyses are created dynamically by the
GenomeSubmitPep and GenomeDumpFasta analyses
respectively. They also add new control rules. The Cre-
ateBlastRules module is used to insert all the data-
flow rules between the SubmitPep and blast analyses.

The actual number of jobs required to build the set of
12-way amniote multiple alignments is listed in Table 3

and Figure 4B show the corresponding timeline. Using
eHive and up to 450 compute nodes, we can run over 20
million BLAST jobs [16] (including the extraction of the
sequences from the database and the automatic creation
of all the jobs) in approximately 1.5 days.

Ensembl GeneTrees pipeline implementation
The Ensembl GeneTrees are re-built for each release
using all the genes from all the species available at that
time [17]. We use only the longest protein as a represen-

Severin et al. BMC Bioinformatics 2010, 11:240
http://www.biomedcentral.com/1471-2105/11/240

Page 9 of 15

Figure 3 Pairwise Alignment Pipeline. Each analysis is represented by a blue box. The blue arrows show the flow of information from one analysis to
the other, either using the dataflow rules (solid arrow) or by massive creation of new jobs as part of the analysis (dashed arrows). Red arrows represent
control rules, i.e. analyses that cannot start until the previous one has finished. Black arrows show the creation of new analyses during the execution of
the pipeline. Turquoise arrows show alternative paths taken when a particular job fails. The green arrows mark the initial jobs required to run the pipeline.
(A) First part of the Pairwise alignment pipeline where we build the set of raw alignments. First, the ChunkAndGroupDna module creates one DNA
Collection for each genome. CreatePairAlignerJobs and CreateFilterDuplicateJobs create the BlastZ, QueryFilterDupli-
cates and TargetFilterDuplicates for these DNA Collections. The BlastZ analysis runs all the BLAST [16] jobs. In order to avoid border effects
due to the initial chunking process of long chromosomes, we allow partially overlapping chunks. The QueryFilterDuplicates and TargetFil-
terDuplicates analyses remove the duplicates and resolve the inconsistencies in the overlap between these chunks of sequences. UpdateMax-
AlignmentLength analyses are needed to perform efficient ''region queries'' in a MySQL database. (B) Second part of the Pairwise alignment pipeline
where raw alignments are chained and netted. The DumpLargeNibForChains module formats the input files for the axtChain program. The Cre-
ateAlignmentChainJobs process creates one AlignmentChains job per pair of genomic segments. The netting is performed using the same
strategy: a single CreateAlignmentNetJobs job creates all the AlignmentNets jobs. Last, the PairwiseHealthCheck analysis runs a set
of sanity tests on the resulting data. (C) Timeline of this pipeline when aligning the human and the pika genomes.

Severin et al. BMC Bioinformatics 2010, 11:240
http://www.biomedcentral.com/1471-2105/11/240

Page 10 of 15

tative of all the alternative transcripts of a gene. All the
resulting proteins of one species are compared with the
proteins of all the other species and the results are stored
in the database. This part of the pipeline is very similar to
the beginning of the previous Multiple-alignment pipe-
line, except that whole proteins and not only exons are
aligned.

In the second part of the pipeline (Figure 5A), we build
clusters using the BLAST hits, align the sequences in the
cluster, infer the phylogeny from the multiple alignment
using TreeBeST [18,19], extract homology relationship
from the phylogenetic tree and calculate dN/dS values for
pairs of proteins. This particular pipeline shows an exam-
ple of the use of branching rules to handle exceptions.
When the cluster of genes is too large, the multiple align-
ment cannot be resolved or phylogeny inference program
fails, the cluster is broken in smaller parts and the pipe-
line continues with these.

Table 4 shows the number of jobs required to run this
pipeline for 39 species. The few Muscle and TreeBeST
jobs that failed were sent to the BreakPAFCluster
analysis for fragmenting the corresponding cluster of
proteins. The resulting clusters were sent back to Mus-
cle as new jobs. Figure 5B shows the timeline for the
whole pipeline. Running all the initial BLAST jobs took
approximately 70 hours on the compute farm, with a peak
of 450 concurrent jobs.

Discussion
Here we describe the eHive system for large-scale
genomic analysis. The eHive leverages a number of AI
technologies to enable the management of hundreds of
millions of compute jobs on clusters of thousands of pro-
cessors. Our system is considerably more efficient that
existing job scheduling systems that rely on a central job
queue and a centralized job manager. We demonstrate
the use of eHive's ability to manage complex pipeline
workflows with several examples from the Ensembl proj-
ect, including the creation of whole genome pairwise
alignments, multi-species alignments and the construc-
tion of Ensembl GeneTrees.

Flexibility
One of the main advantages of the eHive system is that
the pipeline can be dynamically modified. Not only new
jobs, but also new analyses, control rules and data flow
rules can be created, deleted or modified as required.
Also, the life cycle of the workers can be adapted to suit
different needs. For instance, one could configure work-
ers which never died and just slept until new jobs
appeared. This would in effect create a system analogous
to a distributed object processing system but which used
a blackboard for communication, rather than a distrib-
uted object communication method.

Over time, we will want to change some parts of our
pipeline. For instance, Multi-LAGAN [20] was used in
our pipelines to build multiple alignments before the
deployment of Pecan [14]. Similarly, our most current
analysis pipeline uses Enredo [14] rather than Mercator
[12], and we have recently added Ortheus to our multiple
alignment pipeline to infer ancestral genomic sequences
[21]. These changes are easily implemented by simply
substituting or adding a step in the pipeline, with little or
no changes in the rest of the modules. Typical changes
that may be required in the other modules would be the
addition of more information in the output of the jobs for
the dataflow to work.

Performance
Probably, the main bottleneck in the eHive system could
be the access to the blackboard, i.e. to the MySQL data-
base. Most of the stress on the database happens on the
analysis_job and the analysis_stats tables. We
use the InnoDB engine for these tables as it supports row-
level locking. This allows several workers to update the
tables in parallel. Also, to reduce the access to the
analysis_stats table, the workers report about the
number of jobs executed in batches. As a result, the sys-
tem can easily handle more than 30 million jobs, as
shown in the examples.

Some pipelines may require ad-hoc solutions to over-
come other bottlenecks. For instance, in the GeneTrees
pipeline, instead of storing all the protein alignments in
one single table, we create one table per species to speed
up the storing process. Furthermore, there is one analysis
per species to run the alignments and the eHive tries to
maximize the number of different alignment analyses
running at once to take full advantage of this partitioning
of the data.

Scalability
The eHive system allows one to define control and data-
flow rules which refer to other databases, possibly in dif-
ferent servers. The conditions defined in the
analysis_control_rule table can be an URL to an
analysis in another eHive database. Additionally, the
dataflow_rule table also supports URLs for submit-
ting jobs to other eHive systems. One can design a system
where a particular analysis is managed in a secondary
eHive database. The primary eHive system can submit
jobs to the secondary using the dataflow rules and wait
until they are resolved using the control rules. This cur-
rent implementation requires independent beekeepers
for each eHive system.

Other eHive applications
It is possible to use the eHive system as a simple batch job
throttling manager. This is possible with the SystemCmd
module provided with the eHive system. This application

Severin et al. BMC Bioinformatics 2010, 11:240
http://www.biomedcentral.com/1471-2105/11/240

Page 11 of 15

Figure 4 Multiple alignments pipeline. Colours and conventions are used as in Figure 3. (A). This pipeline can be divided in 4 blocks. In the first part
there is one job per species, which prepares all of the BLAST jobs. The second part (one job per coding exon) runs the BLAST jobs. In the third part,
Mercator builds the orthology map using all the previous BLAST results. In the last part, each Mercator block is aligned with Pecan and GERP defines
the local conservation in each alignment. In this pipeline, the SubmitPep_X_Species and blast_X_Species analyses are created dynami-
cally by the GenomeSubmitPep and GenomeDumpFasta jobs respectively. GenomeLoadExonMembers (1 job per species) loads all the cod-
ing exons and create 1 GenomeSubmitPep and 1 GenomeDumpFasta job for each genome. The GenomeSubmitPep analysis creates 1
SubmitPep_X_Species analysis per genome and all the jobs for each of these analyses. GenomeDumpFasta creates a BLAST database for each
set of coding exons and the corresponding blast_X_Species analysis. CreateBlastRules creates all the dataflow rules between the
SubmitPep_X_Species and the blast_X_Species for all the other species. Mercator builds the orthology map using the results of all the
previous BLAST jobs and then Pecan aligns all the orthologous genomic segments in each Mercator block. Last, the Gerp is run on each Pecan align-
ment. (B) Timeline for the 12-way Multiple alignment pipeline.

Severin et al. BMC Bioinformatics 2010, 11:240
http://www.biomedcentral.com/1471-2105/11/240

Page 12 of 15

of the eHive can be very useful for running thousands of
commands when throttling and fault tolerance are
required since simultaneously submitting all the jobs to a
traditional queueing system like LSF or SGE could satu-
rate such systems and cause failures. In such a use case,
the eHive system will keep an up-to-date list of pending,
running and finished jobs and the beekeeper will create
new workers as needed without any manual intervention.

The eHive system is currently being adapted to applica-
tions beyond Ensembl's comparative genomics pipelines
as it is especially applicable to those analyses that consist
of a large number of short running jobs and those which
require a cascading workflow environment for optimal
resource usage.

Alternatives to eHive
Other systems allow the users to design complex pipe-
lines. For instance, XBaya [22] and Taverna [23,24]
include a graphical interface to compose the workflow.
On the other hand, they focus on using web services.
Swift [25] is more similar to eHive in that both have been
developed to allow running large-scale workflows using

local compute resources, although remote resource can
also be used.

eHive has some properties that make it especially well
suited for running the pipelines aforementioned. First, it
is designed to run recursive tasks. The workers are a spe-
cial case of state machines who can go through one single
state during their lifespan. As a result, these workers are
specialized and optimized to run the same task repeti-
tively. Second, eHive does not require a central controller.
The beekeeper is only needed to create new workers. It
does not assign specific tasks to any of them and does not
know in which order the tasks must be solved. This is key
to permit more flexibility in the system. For instance, the
workers can change the structure of the workflow during
the execution time. Last, eHive is fault tolerant: a job can
be re-run several times after a failure before stopping the
pipeline.

XBaya and Taverna use the advantage of the state
machines, as each web service is specialized in running
one particular task, Taverna also implements means to
recover from temporary failures, but eHive is the only of
these options not using a central controller and support-

Table 3: Jobs in the Multiple alignment pipeline for 12 amniotes

Analysis Number of jobs Granularity

SubmitGenome 12 1 per genome

GenomeLoadExonMembers 12 1 per genome

GenomeSubmitPep 12 1 per genome

GenomeDumpFasta 12 1 per genome

CreateBlastRules 12 1 per genome

SubmitPep_* 1978219 1 per peptide

blast_* 21760409 All coding exons vs all other species

Mercator 1 1 per pipeline

Pecan 8549 1 per Mercator block

Gerp 12514 1 per Pecan alignment*

ConservationScoreHealthCheck 2 2 per pipeline

TOTAL 23759754

This table shows the final number of jobs run for each analysis. All the SubmitPep_xxxxx and blast_yyyyy jobs have been grouped for
simplicity. There are more GERP jobs than Pecan ones because alignments over 1 Mb long are split in 1 Mb segments.

Severin et al. BMC Bioinformatics 2010, 11:240
http://www.biomedcentral.com/1471-2105/11/240

Page 13 of 15

Figure 5 The GeneTree pipeline. Colours and conventions are used as in Figure 3. (A) The figure shows only the second half of the pipeline as the
first part is very similar to the first two blocks of the Multiple alignment pipeline (panel 4A). The main difference is that we use the BLAST between the
whole proteins as a block instead of splitting them in coding exons. In short, the proteins are clustered and aligned and a phylogenetic tree is built
on top of each alignment. Then, the OrthoTree module calls orthologues and paralogues and the last 3 modules handle the calculation of dN/dS
values for pairs of proteins. This pipeline contains alternative routes depicted in turquoise used when some particular exceptions are thrown, namely
when Muscle is unable to align all the proteins in a cluster or when TreeBeST cannot infer the phylogenetic tree. This can happen when the cluster of
proteins is too large. We use the BreakPAFCluster module to split these clusters in sub-groups and restart the alignment. (B) Timeline for the
GeneTree pipeline. This figure shows the progress of the GeneTree pipeline for Ensembl release 49 (39 species). The pipeline is monitored approxi-
mately every 2 minutes. BLAST and SubmitPep jobs co-occur in one phase of the pipeline. In another phase, Muscle, TreeBeST and Ortho-
Tree also run at the same time.

Severin et al. BMC Bioinformatics 2010, 11:240
http://www.biomedcentral.com/1471-2105/11/240

Page 14 of 15

ing dynamic pipelines. Another characteristics of eHive is
the MySQL back-end to keep track of the jobs. This
allows eHive to effectively handle millions of jobs. It also
provides the operators with a standard and friendly way
to access the data as many graphical interfaces are avail-
able for querying relational databases.

Conclusions
One of our most important requirements is reducing the
manual supervision of the pipelines. The eHive system
can run in a fully automated manner and re-run jobs if
they fail a reasonable number of times. Strictly speaking,
the operators only need to make sure that the beekeeper

is running and potentially fix any data issue if a job con-
sistently fails. Another important feature is the ability of a
worker to run more than one job, avoiding the overhead
involved in submitting and scheduling a job in the queue-
ing system. This is especially relevant when many short
jobs must be run but we still want to control the process
at the job level.

In conclusion, we have developed the eHive system to
take full advantage of our compute farm when running
our pipelines. The system is flexible enough to run virtu-
ally any pipeline, from the simplest case running as batch
job throttling manager to scenarios where several eHive
systems are interconnected and use different compute

Table 4: Jobs in the GeneTree pipeline for Ensembl release 49

Analysis Number of jobs Failed jobs Granularity

GenomeDumpFasta 39 - 1 per genome

GenomeLoadMembers 39 - 1 per genome

GenomeSubmitPep 39 - 1 per genome

CreateBlastRules 39 - 1 per genome

SubmitPep_* 682412 - 1 per peptide

blast_* 26614068 - All vs all peptides

UpdatePAFids 1 - 1 per pipeline

PAFCluster 1 - 1 per pipeline

Muscle 26484 7 1 per genetree

BreakPAFCluster 95 - As many as required

TreeBeST 26477 9 1 per genetree

OrthoTree 26468 - 1 per genetree

CreateHomology_dNdSJob 1 - 1 per pipeline

Homology_dNdS 3646340 1364 1 per orthologous gene pair

Threshold_on_dS 1 - 1 per pipeline

TOTAL 31022503 1380

This table shows the final number of jobs run for each analysis during the execution of the GeneTree pipeline for 39 species. All the
SubmitPep_xxxxx and blast_yyyyy jobs have been grouped for simplicity. The table also shows the number of jobs that failed.
Muscle and TreeBeST jobs were recovered using the BreakPAFCluster analysis. This breaks the cluster and creates new Muscle jobs.

Severin et al. BMC Bioinformatics 2010, 11:240
http://www.biomedcentral.com/1471-2105/11/240

Page 15 of 15

farms. It can easily be used for other purposes and
adapted to other compute farms with little or no effort.

Authors' contributions
JS, MS and AUV designed the system. JS developed and implemented the first
versions. LG, KB, AV and JH maintain the code and have added new functional-
ity. SF, KB, AV and JH obtained the results. PF, JS and JH designed and wrote the
manuscript. All the authors read and approved the final manuscript.

Acknowledgements
We acknowledge the support of Guy Coates and Tim Cutts for maintaining the
Ensembl compute infrastructure. The Ensembl project receives primary finan-
cial support from the Wellcome Trust and additional support from the Euro-
pean Union, the UK Biotechnology and Biological Sciences Research Council
(BBSRC) and EMBL. Open access charges were paid by the Wellcome Trust.

Author Details
1European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton,
Cambridge, CB10 1SD, UK, 2RIKEN Yokohama Institute, Omics Sciences Center
(OSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
and 3Eagle Genomics Ltd., Babraham Research Campus, Cambridge CB22 3AT,
UK

References
1. Hubbard TJ, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y,

Clapham P, Clarke L, Coates G, Fairley S, Fitzgerald S, Fernandez-Banet J,
Gordon L, Graf S, Haider S, Hammond M, Holland R, Howe K, Jenkinson A,
Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E,
Lawson D, Longden I, Megy K, Meidl P, Overduin B, Parker A, Pritchard B,
Rios D, Schuster M, Slater G, Smedley D, Spooner W, Spudich G, Trevanion
S, Vilella A, Vogel J, White S, Wilder S, Zadissa A, Birney E, Cunningham F,
Curwen V, Durbin R, Fernandez-Suarez XM, Herrero J, Kasprzyk A, Proctor
G, Smith J, Searle S, Flicek P: Ensembl 2009. Nucleic Acids Res 2009,
37:D690-D697.

2. Smedley D, Haider S, Ballester B, Holland R, London D, Thorisson G,
Kasprzyk A: BioMart--biological queries made easy. BMC Genomics
2009, 10:22.

3. Reynolds CW: Flocks, herds and schools: A distributed behavioral
model. Proceedings of the 14th annual conference on Computer graphics
and interactive techniques 1987:25-34.

4. Nii HP: The blackboard model of problem solving and the evolution of
blackboard architectures. AI Magazine 1986, 7:38-53.

5. Nwana HS: Software agents: An overview. Knowledge Engineering Review
1996, 11:205-244.

6. Platform LSF Family [http://www.platform.com/Products/platform-lsf-
family]

7. Sun Grid Engine [http://gridengine.sunsource.net/]
8. OpenPBS [http://www.openpbs.org]
9. Mikkelsen TS, Wakefield MJ, Aken B, Amemiya CT, Chang JL, Duke S,

Garber M, Gentles AJ, Goodstadt L, Heger A, Jurka J, Kamal M, Mauceli E,
Searle SM, Sharpe T, Baker ML, Batzer MA, Benos PV, Belov K, Clamp M,
Cook A, Cuff J, Das R, Davidow L, Deakin JE, Fazzari MJ, Glass JL, Grabherr
M, Greally JM, Gu W, Hore TA, Huttley GA, Kleber M, Jirtle RL, Koina E, Lee
JT, Mahony S, Marra MA, Miller RD, Nicholls RD, Oda M, Papenfuss AT, Parra
ZE, Pollock DD, Ray DA, Schein JE, Speed TP, Thompson K, VandeBerg JL,
Wade CM, Walker JA, Waters PD, Webber C, Weidman JR, Xie X, Zody MC,
Broad Institute Genome Sequencing Platform, Broad Institute Whole
Genome Assembly Team, Baldwin J, Abdouelleil A, Abdulkadir J, Abebe A,
Abera B, Abreu J, Acer SC, Aftuck L, Alexander A, An P, Anderson E,
Anderson S, Arachi H, Azer M, Bachantsang P, Barry A, Bayul T, Berlin A,
Bessette D, Bloom T, Boguslavskiy L, Bonnet C, Boukhgalter B, Bourzgui I,
Brown A, Cahill P, Channer S, Cheshatsang Y, Chuda L, Citroen M,
Collymore A, Cooke P, Costello M, D'Aco K, Daza R, De Haan G, DeGray S,
DeMaso C, Dhargay N, Dooley K, Dooley E, Doricent M, Dorje P, Dorjee K,
Dupes A, Elong R, Falk J, Farina A, Faro S, Ferguson D, Fisher S, Foley CD,
Franke A, Friedrich D, Gadbois L, Gearin G, Gearin CR, Giannoukos G,
Goode T, Graham J, Grandbois E, Grewal S, Gyaltsen K, Hafez N, Hagos B,
Hall J, Henson C, Hollinger A, Honan T, Huard MD, Hughes L, Hurhula B,

Husby ME, Kamat A, Kanga B, Kashin S, Khazanovich D, Kisner P, Lance K,
Lara M, Lee W, Lennon N, Letendre F, LeVine R, Lipovsky A, Liu X, Liu J, Liu
S, Lokyitsang T, Lokyitsang Y, Lubonja R, Lui A, MacDonald P, Magnisalis V,
Maru K, Matthews C, McCusker W, McDonough S, Mehta T, Meldrim J,
Meneus L, Mihai O, Mihalev A, Mihova T, Mittelman R, Mlenga V,
Montmayeur A, Mulrain L, Navidi A, Naylor J, Negash T, Nguyen T, Nguyen
N, Nicol R, Norbu C, Norbu N, Novod N, O'Neill B, Osman S, Markiewicz E,
Oyono OL, Patti C, Phunkhang P, Pierre F, Priest M, Raghuraman S, Rege F,
Reyes R, Rise C, Rogov P, Ross K, Ryan E, Settipalli S, Shea T, Sherpa N, Shi L,
Shih D, Sparrow T, Spaulding J, Stalker J, Stange-Thomann N, Stavropoulos
S, Stone C, Strader C, Tesfaye S, Thomson T, Thoulutsang Y, Thoulutsang D,
Topham K, Topping I, Tsamla T, Vassiliev H, Vo A, Wangchuk T, Wangdi T,
Weiand M, Wilkinson J, Wilson A, Yadav S, Young G, Yu Q, Zembek L,
Zhong D, Zimmer A, Zwirko Z, Jaffe DB, Alvarez P, Brockman W, Butler J,
Chin C, Gnerre S, MacCallum I, Graves JA, Ponting CP, Breen M, Samollow
PB, Lander ES, Lindblad-Toh K: Genome of the marsupial Monodelphis
domestica reveals innovation in non-coding sequences. Nature 2007,
447:167-177.

10. Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D: Evolution's
cauldron: duplication, deletion, and rearrangement in the mouse and
human genomes. Proc Natl Acad Sci USA 2003, 100:11484-11489.

11. Kent WJ: BLAT--the BLAST-like alignment tool. Genome Res 2002,
12:656-664.

12. Dewey CN: Aligning multiple whole genomes with Mercator and
MAVID. Methods Mol Biol 2007, 395:221-236.

13. Lall S, Grün D, Krek A, Chen K, Wang YL, Dewey CN, Sood P, Colombo T,
Bray N, Macmenamin P, Kao HL, Gunsalus KC, Pachter L, Piano F, Rajewsky
N: A genome-wide map of conserved microRNA targets in C. elegans.
Curr Biol 2006, 16:460-471.

14. Paten B, Herrero J, Beal K, Fitzgerald S, Birney E: Enredo and Pecan:
Genome-wide mammalian consistency-based multiple alignment with
paralogs. Genome Res 2008, 18:1814-1828.

15. Cooper GM, Stone EA, Asimenos G, NISC Comparative Sequencing
Program, Green ED, Batzoglou S, Sidow A: Distribution and intensity of
constraint in mammalian genomic sequence. Genome Res 2005,
15:901-913.

16. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment
search tool. J Mol Biol 1990, 215:403-410.

17. Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E:
EnsemblCompara GeneTrees: Complete, duplication-aware
phylogenetic trees in vertebrates. Genome Res 2009, 19:327-335.

18. TreeSoft: Softwares for Phylogenetic Trees [http://
treesoft.sourceforge.net/treebest.shtml]

19. Ruan J, Li H, Chen Z, Coghlan A, Coin LJ, Guo Y, Hériché JK, Hu Y,
Kristiansen K, Li R, Liu T, Moses A, Qin J, Vang S, Vilella AJ, Ureta-Vidal A,
Bolund L, Wang J, Durbin R: TreeFam: 2008 Update. Nucleic Acids Res
2008, 36:D735-D740.

20. Brudno M, Do CB, Cooper GM, Kim MF, Davydov E, NISC Comparative
Sequencing Program, Green ED, Sidow A, Batzoglou S: LAGAN and Multi-
LAGAN: efficient tools for large-scale multiple alignment of genomic
DNA. Genome Res 2003, 13:721-731.

21. Paten B, Herrero J, Fitzgerald S, Beal K, Flicek P, Holmes I, Birney E:
Genome-wide nucleotide-level mammalian ancestor reconstruction.
Genome Res 2008, 18:1829-1843.

22. XBaya: A Graphical Workflow Composer for Web Services [http://
www.extreme.indiana.edu/xbaya/]

23. Oinn T, Greenwood M, Addis M, Alpdemir MN, Ferris J, Glover K, Goble C,
Goderis A, Hull D, Marvin D, Li P, Lord P, Pocock MR, Senger M, Stevens R,
Wipat A, Wroe C: Taverna: lessons in creating a workflow environment
for the life sciences. Concurrency and Computation: Practice and
Experience 2006, 18:1067-1100.

24. Hull D, Wolstencroft K, Stevens R, Goble C, Pocock MR, Li P, Oinn T:
Taverna: a tool for building and running workflows of services. Nucleic
Acids Res 2006, 34:W729-W732.

25. Zhao Y, Hategan M, Clifford B, Foster I, Von Laszewski G, Raicu I, Stef-Praun
T, Wilde M: Swift: Fast, reliable, loosely coupled parallel computation.
IEEE Workshop on Scientific Workflows 2007.

doi: 10.1186/1471-2105-11-240
Cite this article as: Severin et al., eHive: An Artificial Intelligence workflow
system for genomic analysis BMC Bioinformatics 2010, 11:240

Received: 21 October 2009 Accepted: 11 May 2010
Published: 11 May 2010
This article is available from: http://www.biomedcentral.com/1471-2105/11/240© 2010 Severin et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.BMC Bioinformatics 2010, 11:240

	Abstract
	Background
	Results
	Conclusions

	Background
	Artificial intelligence system design
	Problem solving model

	Results
	Implementation
	Blackboard System: the eHive database
	Autonomous Agents: the Workers
	Dataflow graph
	External control and monitoring: the beekeeper
	Fault tolerance
	Pipeline initialization

	Applications and Case Studies
	Pairwise alignments pipeline implementation
	Multiple alignments pipeline implementation
	Ensembl GeneTrees pipeline implementation

	Discussion
	Flexibility
	Performance
	Scalability
	Other eHive applications
	Alternatives to eHive

	Conclusions
	Authors' contributions
	Acknowledgements
	Author Details
	References

