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Abstract

doublet parameters did not.

database of experiments that was used in their derivation.

Background: The enumeration of tetrameric and other sequence motifs that are positively or negatively correlated
with in vivo antisense DNA effects has been a useful addition to the arsenal of information needed to predict effective
targets for antisense DNA control of gene expression. Such retrospective information derived from in vivo cellular
experiments characterizes aspects of the sequence dependence of antisense inhibition that are not predicted by
nearest-neighbor (NN) thermodynamic parameters derived from in vitro experiments. However, quantitation of the
antisense contributions of motifs is problematic, since individual motifs are not isolated from the effects of neighboring
nucleotides, and motifs may be overlapping. These problems are circumvented by a next-nearest-neighbor (NNN)
analysis of antisense DNA effects in which the overlapping nature of nearest-neighbors is taken into account.

Results: Next-nearest-neighbor triplet combinations of nucleotides are the simplest that include overlapping
sequence effects and therefore can encompass interactions beyond those of nearest neighbors. We used singular
value decomposition (SVD) to fit experimental data from our laboratory in which phosphorothioate-modified
antisense DNAs (S-DNAs) 20 nucleotides long were used to inhibit cellular protein expression in 112 experiments
involving four gene targets and two cell lines. Data were fitted using a NNN model, neglecting end effects, to derive
NNN inhibition parameters that could be combined to give parameters for a set of 49 sequences that represents the
inhibitory effects of all possible overlapping triplet interactions in the cellular targets of these antisense S-DNAs. We
also show that parameters to describe subsets of the data, such as the mRNAs being targeted and the cell lines used,
can be included in such a derivation. While NNN triplet parameters provided an adequate model to fit our data, NN

Conclusions: The methodology presented illustrates how NNN antisense inhibitory information can be derived from
in vivo cellular experiments. Subsequent calculations of the antisense inhibitory parameters for any mRNA target
sequence automatically take into account the effects of all possible overlapping combinations of nearest-neighbors in
the sequence. This procedure is more robust than the tallying of tetrameric motifs that have positive or negative
antisense effects. The specific parameters derived in this work are limited in their applicability by the relatively small

Background

Antisense oligodeoxynucleotides are typically targeted to
bind mRNA sequences, leading to inhibition of gene
expression by activation of RNase H to cleave the mRNA,
obstruction of translation, alteration of splicing, or other
mechanisms. The experimental determination of an
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effective antisense DNA to inhibit the expression of a
particular gene product is expensive and time-consum-
ing, and efforts have long been made to develop a proce-
dure for the rational design of antisense DNA sequences
based on properties such as the DNA:RNA hybrid stabil-
ity, the region of the mRNA being targeted, and the sec-
ondary structures of the mRNA and DNA (reviewed by
Chan et al. [1]). Programs using in vitro thermodynamic
information for intrastrand and interstrand DNA and
RNA interactions can be used to help discriminate weak
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from potent antisense DNA sequences [2,3]. While
extremely important for understanding stabilities of base
pairs in vitro, the underlying thermodynamic information
in such programs (e.g. the RNAstructure program at
http://rna.urmc.rochester.edu/RNAstructure.html[4,5])
is limited in its use for predictions of hybridization stabil-
ity under intracellular conditions. Thermodynamic data
have been typically obtained for standard Watson-Crick
base pairs in unmodified nucleic acids under non-physio-
logical solution conditions, such as in the presence of 1 M
NaCl and in the absence of proteins and enzymes that
bind to nucleic acids. Most in vitro thermodynamic data
are adequately modeled by the assumption that stabilities
arise from interactions between adjacent base pairs and
therefore are nearest-neighbor in origin [6-8]. However,
Owczarzy et al. [8] have shown that there is a significant
enthalpic contribution to the stability of double-stranded
DNAs from NNN base pair triplets when the Na* ion
concentration falls below 55 mM, and the effect is
sequence-dependent. The range of magnitudes of these
NNN triplet contributions is up to about 1/3 of those of
the NN doublet contributions.

A new concept in the design of effective antisense
DNAs was introduced by Tu et al. [9], who reported that
DNAs containing a TCCC tetranucleotide motif, comple-
mentary to GGGA in mRNA transcripts, were above
average in their ability to downregulate tumor necrosis
factor-a synthesis. That work pointed to the possible
existence of important sequence-dependent interactions
that extend beyond the nearest-neighbors and that influ-
ence antisense efficacy. Moreover, implicit in this work
was the concept that the analysis of experimental data
from antisense treatments of cells could yield sequence-
dependent information that might be more inclusive than
nearest-neighbor stabilities derived from in vitro mea-
surements.

Further studies have identified many other nucleotide
motifs that are positively as well as negatively correlated
with antisense nucleotide activity [10-12]. From an analy-
sis of 3913 S-DNA sequences, McQuesten and Peek [11]
reported 155 motifs of 2 to 5 nucleotides associated posi-
tively and 202 motifs associated negatively with antisense
effectiveness. Sipes and Freier [12] used a proprietary
database of over 12,000 antisense DNAs of all types to
derive a more limited set of tetrameric motifs, presented
as a few "aggregate motifs" with flexible base designa-
tions. These aggregate motifs were a summary of 24
tetramers that were positively correlated with an inhibi-
tory effect and 20 tetramers that were negatively corre-
lated with antisense inhibition. The identification of
motifs in an antisense DNA sequence does not by itself
allow a confident prediction of antisense effectiveness,
but the numbers of positive and negative motifs can be
combined in a serial fashion with other attributes in an
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"if-then" decision tree to give significantly enhanced pre-
dictions of antisense effectiveness of various DNA
sequences [12].

The reasons for the existence of motifs associated posi-
tively or negatively with antisense effectiveness are
unknown. Interactions that are NNN in extent could play
a role, but other effects might be even more important
within the cell. Most of the work to identify motifs has
been done with antisense oligomers containing phospho-
rothioate linkages to inhibit DNase degradation and still
allow RNase H activity, and the possibility of RNase-
dependent sequence specificity has been suggested [9].
Proteins that bind and sequester single-stranded DNA
sequences and inhibit productive mRNA binding could
be involved. Other possible reasons for the longer-range
sequence effects expressed as motifs have been discussed
by Tu et al. [9].

While valuable as an adjunct to other attributes of anti-
sense efficacy, motifs identified as being either simply
positive or negative in their effects are limited in their
predictive utility. Motifs of any length greater than NN
doublets have overlapping interactions within a sequence,
so that their combined effects are difficult to quantitate.
For example, positive tetramer motifs of (G/A)(G/A)CA
have a CA overlap with other positive motifs of CAG(G/
C) (with the motifs written as mRNA sites), and positive
motifs of (G/C)AGC have a GC overlap with other posi-
tive and negative motifs (respectively GCA(G/U) and
GC(G/C)C) [12]. In general, it is to be expected that attri-
butes assigned to motifs will be influenced by adjacent
sequences.

The present work illustrates how a NNN model can be
used to derive parameters that may more completely
encompass the sequence dependence of results from in
vivo antisense DNA experiments. The parameters
derived from such a model can be used to obtain an
unambiguous value for the inhibitory potential of any rel-
evant mRNA target sequence (or complementary anti-
sense DNA sequence), containing any combination of
overlapping next-nearest-neighbors.

Results

NNN parameters for mRNAs targeted by antisense S-DNAs
A data set of 112 antisense experiments, using 20-mer
antisense S-DNAs, two cell lines and four gene targets
(see Methods), was analyzed by singular value decompo-
sition (SVD) [13] to determine the values of NNN triplet
(trinucleotide sequence) parameters, P, and parameters
associated with differences due to the cell line and gene
targeted, that best fit the experimental results. As
explained under Methods, a simplifying assumption
made in the analysis was that the mRNA targets of the S-
DNA sequences were closed circular sequences 20 nucle-
otides long. A statistical test showed that the NNN model
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including the cell and gene parameters was acceptable, in
that the probability Q that the observed x2 from a fit to
the data would be larger by chance was 0.33 (a larger Q
indicates a better fit; values of Q > 0.1 are adequate) [13].
An SVD analysis in which the cell parameter was omitted
gave a worse fit, as expected, with a Q value of 0.0013.
Table 1 lists a (non-unique) set of derived parameters, P
(numerical values of the percent change in the amount of
cellular protein) associated with all 64 NNNs in the
mRNA target. Although these derived values are gener-
ally not meaningful in terms of the individual NNN, their
sum does give a unique value for the predicted change in
net expressed protein when they are combined into a
complete closed circular mRNA target sequence (13,14).
A positive sum indicates an inhibition of the amount of
accumulated protein, while NNNs with negative values
act to reduce the inhibitory effect when they are present
in a target mRNA sequence.

The same data were also subjected to an analogous
SVD analysis using the simpler NN model of 16 possible
dinucleotide sequences, plus other parameters for the cell
line and targeted genes (results not shown). The Q value
from using the NN model to fit the experimental data was
imperceptibly small, showing that the simpler NN model
was inadequate to account for the data.

Values of the percent reductions in accumulated pro-
tein (i.e. the percent reductions in protein accumulated in
the cells in 20-24 h) for the 112 experiments were recal-
culated from the parameters in Table 1 and, as expected,
were highly correlated with the measured experimental
values (correlation coefficient r = 0.792), as seen in Figure
1.

Parameters for independent sequence combinations

As mentioned above, the NNN triplet parameters are not
independent and generally are not meaningful by them-
selves, with the exception of parameters for the four
homotrinucleotide sequences, AAA, UUU, CCC, and
GGG. That is, an actual mRNA sequence has a restricted
combination of the NNNs, and, correspondingly, the
parameters in Table 1 are physically meaningful only
when they are combined within an actual sequence [14].
There are 15 linear equations that constrain the numbers
of the NNN triplets in a closed, circular single-stranded
sequence (analogous to the three equations that constrain
the presence of the 16 possible NN [14]). Thus, while the
parameters of Table 1 can be combined to estimate the
effectiveness of an antisense S-DNA against any given
target mRNA sequence (limited of course by the NNN
model and the genes, cell type, and other aspects of the
database), there are only 49 combinations of the 64 NNN
that make up an irreducible, linearly independent set of
sequences. In seeking mRNA sequences that have an
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array of NNN triplets that correlate with being effective
antisense S-DNA targets, one has to consider combina-
tions of the NNN parameters, not the individual parame-
ters themselves. Although there are innumerable sets of
such irreducible combinations that may be chosen, any
set provides a succinct description of the sequence-
dependent inhibitory properties of mRNA targets (and
the complementary S-DNAs that bind to them) used in
the database.

An example set of 49 independent combinations of 12-
mer mRNA sequences is given in Table 2, along with their
calculated parameters in descending rank. This set of
sequences was chosen to be as simple as possible and
includes the four homonucleotides, six repeating dinucle-
otides, and 20 repeating trinucleotides, with the remain-
ing sequences being 19 repeating tetranucleotides. This
set was shown to be linearly independent by singular
value decomposition. (That is, a 64 row x 49 column
matrix, with the numbers of NNN within the 49
sequences constituting the columns, had no zero singular
values [results not shown].) The P values in Table 2 are
the summed NNN values from Table 1. For example, the
P value for (ACU), is P(ACU), = 4 x P(ACU) + 4 x
P(CUA) + 4 x P(UAC) = 4 x (3.81 + 13.27 + 0.94) = 72.1%
reduction in net protein accumulation. The standard
errors in Table 2 were derived using the complete vari-
ance-covariance matrix from the SVD analysis. On aver-
age, errors for these combinations of NNN P values were
90% correct when simply calculated as the square root of
the sum of squares of the errors on the P values for the
component NNN (from Table 1), neglecting the covari-
ance values. The errors on the P values for the indepen-
dent combinations were significant, but they were less for
the ten combinations that were ranked to have the high-
est inhibitory parameters (+ 15% error on average) than
for the ten combinations with the lowest inhibitory
parameters (+ 18% error on average).

One aspect of the ranking of the P values for the inde-
pendent sequences in Table 2 is in general agreement
with known stabilities of S-DNA:RNA and DNA:RNA
hybrids in vitro. The independent mRNA sequences that
contain only purines are generally ranked as more favor-
able targets than matching sequences that contain only
pyrimidines, as shown in Table 3. (An exception in this
table is that (UCC), has a larger P value than (AGG),.)
This asymmetric pattern of hybrid stabilities undoubt-
edly has its origin in the stabilities of NN interactions and
has been documented in studies of S-DNA:RNA and
DNA:RNA oligomer hybrids, with hybrids being ther-
mally and thermodynamically more stable when the RNA
strand has a dominant purine content, for sequences of
the same A + U(T) content [6,15,16].
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Table 1: 64 mRNA triplets and associated inhibition parameters, P.

NNN triplet or other parameter (5' to 3' Values of antisense inhibition Number of NNN triplet or other
in mRNA) parameter P (%) from fitto 112 parameter in data set
sequences * standard error from SVD
analysis
AAA 2.98 +2.08 30
AAC 5.96 +1.45 32
AAG 0.48 £1.82 36
AAU -3.52+1.76 30
ACA -3.78 +1.67 48
ACC 4.63+2.79 25
ACG 1.82+1.69 28
ACU 3.81+1.66 33
AGA 3.23+£1.99 40
AGC 3.86+1.46 39
AGG 4.83+1.82 52
AGU -4.72+£2.20 17
AUA 0.29+242 15
AUC 3.27+£2.07 19
AUG 0.45+1.63 67
AUU 1.05+1.97 21
CAA 1.83 £1.65 37
CAC -1.51+1.31 46
CAG -1.47 £1.49 38
CAU 5.77 £1.62 29
CCA -0.99+£2.14 26

CCcC -3.73+2.06 30
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Table 1: 64 mRNA triplets and associated inhibition parameters, P. (Continued)
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cCG 3.09+1.28 58
ccu 548+1.76 35
CGA 543+ 164 40
CGC 7.38+1.32 33
CGG 565+ 1.49 51
CGU -5.02+1.96 19
CUA 1327 +2.79 14
cuc 137 £1.75 31
cuG 0.87 £1.75 44
cuu -4.62+1.64 28
GAA 3.57+2.00 53
GAC 1.08 +1.67 37
GAG 2.19+1.07 63
GAU 487 +1.71 47
GCA 6.89 + 1.64 46
GCC -1.26 +1.57 58
GCG 3.96+1.59 41
GCU 6.20 + 1.91 31
GGA 296 +1.10 82
GGC -2.70£1.10 56
GGG 206+1.28 76
GGU 8.28+1.99 30
GUA -8.59 +2.99 15
GUC 1.85+1.84 24
GUG -3.40+1.46 42
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Table 1: 64 mRNA triplets and associated inhibition parameters, P. (Continued)
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GUU 1043 +2.95 18
UAA -248 +344 8
UAC 0.94+1.91 19
UAG 1037 £2.55 1
UAU -2.06 +2.69 16
UCA 250+ 1.75 30
ucc 420+1.98 36
ucG 457 +247 16
ucu -4.60 + 2.60 18
UGA -4.28 +£1.93 38
UGC 726 +£1.14 48
UGG -1.93£1.33 65
uGuU 1.75 £2.00 33
UUA 1.80 £3.21 10
uuc 0.19+2.06 26
uuG 4.88+2.28 31
uuu 0.81+2.59 25
A549 cell 1059+ 1.78 62
CRAF1 3.65+2.33 52
BCL2 -3.10£1.85 29
AKT2 8.97 +4.43 7
PKC-a -3.75+2.76 24

Values of parameters, P, for 64 NNN mRNA triplets obtained from an SVD solution of inhibitory data for 112 antisense S-DNA sequences
targeted to mRNAs encoded by four genes, in two cell lines. Except for the NNN parameters for AAA, UUU, CCC, and GGG, and the parameter
for the cell line, the parameters are meaningful only in combinations. The parameters are the percent changes in net protein accumulation
assigned to the NNN such that they may be summed to give inhibitory values for closed-circular mRNA antisense targets. (Positive values

denote a decrease in accumulated protein.)
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Experimental % Reduction
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Table 2: Inhibition parameters for linearly independent
combinations of next-nearest-neighbor triplets.

Independent sequence (12-
mer) (5'to 3'in mRNA)

Antisense inhibition
parameter P (%) per 12-mer

(ACU), 721+147
(UUG), 68.2+21.2
(CG)g 68.0 £ 14.7
(AACU); 61.7+17.1
(GGUQ); 61.0£11.3
| | |
0 10 20 30 40 50 60 70 (uGa), 573+9.0
5 .
NNN-Calculated % Reduction (UUAG), 53.6 4 20.7
Figure 1 Experimental versus NNN-calculated percent reduction
in accumulated protein. Experimental values of percent reduction in (AACG), 503 +106
net protein accumulation from 112 antisense S-DNA experiments ver-
sus values calculated by summing NNN parameters from Table 1. The
experimental values and errors are given in additional file 1. The corre- (AUQ), 46.2+£14.0
lation coefficient r = 0.792. Symbols are as follows: x (PKC-a), blue tri-
angle (BCL2), red triangle (AKT2), grey circle (CRAF2 in A549 cells), black
circle (CRAF2 in T24 cells). (GGUA); 447156
ucc 442+ 140
Parameters for cell type and targeted gene e,
Cell- and gene-specific parameters were included in the
SVD analysis of the reductions in accumulated protein (VUGO), 41.2£100
according to the NNN model. A549 cells were more sen-
sitive targets than were T24 cells by 10.6 + 1.8% in the (AAGQ); 392+7.5
extent of protein inhibition (Table 1). With respect to the
mRNAs of the four targeted genes, four parameters were (AGQ), 37.1£107
derived (Table 1), but only three of these four parameters
were independent. (This is because only one of the genes (CCUG), 37.0+10.2
could be specified for each targeted mRNA sequence,
which constrained the sum of occurrences of the four tar- (CCG), 36.8+0.1
geted genes to be 1.0 in any given row of the matrix of
values, Ny |, that was analyzed.by SVD. See Methods.) A 3574949
One way of expressing the inhibition parameters for spe-
cific genes is in terms of their differences from the aver-
. (GGAQ), 345+82
age (Table 4). Then, any three of the difference
parameters make an independent set, with the fourth
being a dependent parameter that is the negative sum of (ACG), 333117
the three chosen to be independent. The inhibition
parameters of Table 4 show that protein accumulation (uuca), 30.5+19.6
from either the CRAF1 or AKT2 mRNA targets was
reduced more than the average, while the accumulation (AAG), 29.1£16.1
of protein from either the BCL2 or PKC-a mRNA targets
was reduced less than the average. (UUCA), 285+95

Values of predicted inhibition parameters for antisense
S-DNAs targeted to different cell types, and/or to
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Table 2: Inhibition parameters for linearly independent
combinations of next-nearest-neighbor triplets. (Continued)
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Table 2: Inhibition parameters for linearly independent
combinations of next-nearest-neighbor triplets. (Continued)

(CGG), 27.6+92 (uug), -36.1+14.9
Gy 248+154 @, -44.8 +24.7
(GGCA); 22.7+£9.7 (AAGU); -46.0 £ 20.5
Values of inhibition parameters, P (percent change, with positive
(AGG), 224+86 values indicating a decrease in accumulated protein) for an
example set of 49 linearly independent 12-mer mRNA sequence
combinations of NNN triplets. Values are ranked in decreasing
(GGAU), 19.0+7.5 order. Percent standard errors were derived from the complete
SVD variance-covariance matrix (i.e. including the covariances).
(AAC), 16.0£11.2
mRNAs encoded by different genes, can be compared by
(AAUQ); 12218 adding or subtracting the appropriate values at the bot-
tom of Table 1 from the combinations of NNN parame-
(UGG), 11.8+97 ters for a given target mRNA sequence. If all of the target
mRNA sequences being compared are for the same cell
WUy, 9.7 +31.1 type and gene, then the use of these cell- and gene-spe-
cific parameters is unnecessary, since in this case they are
(ACO), 854181 simply constant offsets and do not affect relative values
being derived.
(GGCU); 73£9.1 NN parameters do not fit the data
Individual data sets in our SVD analysis were subjected to
(AG)s 6.2+12.6 statistical analyses using in vivo NN parameters (although
as mentioned above the NN model did not fit our data),
(UUAQ), 58+16.7 and also using in vitro NN free energy values AG°(37°C)
for DNA:RNA hybrids, in comparison with the use of the
(UCG), 56+ 156 in vivo NNN parameters from Table 1. The percent inhi-
bition by each sequence in the data set was calculated as
(AUG), 424128 for Figure 1 from the NNN parameters in Table 1, and
analogous calculations were performed using the in vivo
NN parameters. For the in vitro NN calculations, the total
(AUU), 32x160 free energy was calculated by summing the AG°(37°C)
values derived by Gray (Table C1C in [6]) using data from
(CCAG); 04115 Sugimoto et al. [15]. For all of the calculations, the 20-
mer target mRNAs were assumed to be closed circular
UG)s 9.9+154 sequences. The results for the four largest data sets from
the current work are shown in the first four rows of data
(AU), -10.6 + 26.0 in Table 5. With the exception of the data for PKC-« inhi-
bition in T24 cells, the calculations from both sets of NN
(AAUG), 113 +101 parameters were more poorly correlated with the experi-
mental data than were calculations using the NNN
(AGU), 1184159 parameters. The in vitro NN parameters appeared to be
better correlated with data obtained using T24 cells than
with data obtained using A549 cells, but it should be
U0 (194198 noted that exactly the same S-DNA sequences were used
in experiments to inhibit CRAF1 inhibition in both cell
(AAU), -228+17.7 lines. This supports the notion that the cellular context
can affect the efficacy of antisense S-DNA inhibition in a
(AQs -318+124 non-nearest-neighbor fashion. The generally poor corre-
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Table 3: Inhibition parameters for independent sequence combinations of NNN that contain only purines or pyrimidines.

Parameters P (%) for five purine-containing independent
sequences

Parameters P (%) for five pyrimidine-containing independent
sequences

(A)y, 357249 (uco), 442+140
(AAG), 29.1+16.1 ), 9.7 £31.1

G, 248+ 15.4 (UQ), -19.4+19.8
(AGG), 224+86 (UUQ), -36.1+14.9
(AG)s 6.2+126 )1, -44.8 £ 247

Inhibition parameters, P, from Table 2 for the five independent sequence combinations that contain only purines and the five that contain
only pyrimidines. The former are generally more favorable target sequence combinations than those containing only pyrimidines.

lation of the in vitro NN predictions with our data was
not obviously due to the fact that the experimental data
were obtained with S-DNAs, since the relative thermal
stabilities of S-DNA:RNA hybrids are similar to those of
unmodified DNA:RNA hybrids of the same sequences
[16].

It is not surprising that the calculated reductions in net
protein accumulation using the NNN parameters fit the
experimental data from which they were derived (Table
5). However, these parameters were not generally ade-
quate to fit data from the literature in which antisense S-
DNAs were used to inhibit the synthesis of a cellular pro-
tein or mRNA. Four sets of published inhibitory data in
which 20 or more S-DNA sequences were used were
compared with calculations from the NNN parameters
and from both sets of NN parameters. The fits were poor,
and in only one case was the correlation coefficient above

Table 4: Inhibition parameters for independent
combinations of targeted genes.

Antisense inhibition
parameter P (%)

Parameters for each of four
gene combinations

CRAF1 minus average 220+236
BCL2 minus average -4.54 +1.86
AKT2 minus average 7.53+437
PKC-a minus average -5.20+2.83

Values are the differences from the average of the four gene
parameters in Table 1. Any set of three of the four parameters is
an independent set. The fourth is a dependent parameter, since
itis a linear combination (i.e. the negative sum) of the three
parameters chosen to be independent. Percent standard errors
were derived from the SVD variance-covariance matrix.

0.5 for calculations with any of the three parameter sets.
In this case, the in vivo NNN and in vivo NN parameters
were able to fit the inhibition data for PKC-a in A549
cells by Dean et al. [17]; results are shown in the last row
of Table 5. Other sets of published data tested were: (1) 33
northern blot experiments for inhibition of expression of
mRNAs for adhesion molecules (E-selectin and VCAM-
1) in HUVEC cells [18], (2) 28 experiments for inhibition
of COL1A1 collagen expression in mouse NIH 3T3 fibro-
blasts [19], and (3) 33 experiments for inhibition of angio-
tensin type-1 receptor levels in CHO cells [20].

Discussion

One outcome of our study, in agreement with that of oth-
ers [11], is that nearest-neighbor parameters, whether
derived from in vivo data or from in vitro thermodynamic
data, are not sufficient to fit sequence-dependent anti-
sense data derived from in vivo cell culture experiments.
Sequence effects that extend beyond those of the nearest-
neighbors are likely to have numerous origins, adding to
the complexity of predicting effective antisense targets
mentioned in the Background. One source of these
effects might involve sequence preferences of the binding
sites of proteins that either inhibit or activate antisense
inhibition, and these in turn could be influenced by the
chemistry of the antisense DNA. For example, phospho-
rothioate-modified oligomers have been shown to bind
with high affinity to single-strand DNA binding proteins
and cellular proteins [21], while 2'-O-methyl modified
RNAs have reduced non-specific protein binding and
higher affinity for complementary RNAs [22-24]. It
would be interesting to see how derived NNN and NN in
vivo parameters depend on the use of different antisense
DNA chemistries in which non-specific effects are
reduced.
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Table 5: Fits of data sets with NNN or NN parameters.
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Fit with in vivo NNN

Fit with in vivo NN Fit with in vitro NN

parameters parameters parameters
Experimental No. of rNNN Psig rNN Psig (NN) rNN Psig
data Oligos
CRAF1 (A549 26 0.636 <0.001 0.146 0.474 0.242 0.234
cells)
CRAF1 (T24 26 0.748 <0.001 0.493 0.010 0.403 0.041
cells)
BCL2 (A549 29 0.635 <0.001 0.148 0.441 0.231 0.229
cells)
PKC-a (T24 cells) 24 0.903 <0.001 0.130 0.544 0.639 <0.001
Published data 20 0.561 0.010 0.716 <0.001 0.368 0.110
PKC-a (A549
cells) [17]

Correlation coefficients, r, and the significance of correlation, Psig,
parameters or in vivo or in vitro nearest-neighbor (NN) parameters. P,

For this work, we considered it preferable to use experi-
mental values that were all obtained by the same method
in our own laboratory and yet provided a database large
enough to demonstrate the NNN method of extracting
sequence-dependent parameters. Therefore, a relatively
small experimental database of 112 antisense experi-
ments was used to derive the next-nearest-neighbor pro-
tein inhibition parameters summarized in Tables 1 and 2.
The NNN parameters we derived were generally not valid
predictors of the most effective targets reported in other
published antisense experiments. This may reflect the
plethora of effects of phosphorothioate-modified DNAs
and/or the use of particular cellular systems and tech-
niques. NNN parameters derived from experiments with
second and third generation antisense oligomers [1]
could be more widely applicable.

From our data the all-purine independent sequences
had larger inhibitory parameters than did the all-pyrimi-
dine independent sequences (Table 3), and this is consis-
tent with the finding that some mRNA motifs such as
GGGA, originally identified by Tu et al. [9], are purine-
rich and are associated with effective antisense mRNA
targets. In fact, there were 16 occurrences of the GGGA
motif in the mRNA targets that ranked in the top 50%
(most inhibited) of our experiments and only 4 in mRNA
targets among the bottom 50% (least inhibited). However,
there is no explicit relationship between the NNN inde-
pendent sequence parameters derived in the present

sig

between the indicated data sets and in vivo next-nearest-neighbor (NNN)
is the significance of the correlation coefficient by the t-test and is the
probability of being wrong in rejecting the null hypothesis. The smaller the value of P

sig the more significant the correlation.

work and isolated tetrameric motifs, since the former
include the contributions of overlapping sequences. As
an example of the contrasting information in motifs and
in a set of NNN parameters that include the contribu-
tions of overlapping sequences, consider the mRNA
motif GGGA. A 12-mer sequence (GGGA), with three
adjacent GGGA segments would have an inhibition
parameter P of 23.0 + 6.0% according to our SVD analysis
and would rank in the middle of the values for the set of
independent sequences in Table 2. However, the inhibi-
tion parameter can be very different for other 12-mer
sequences. A higher P value of 46.8 + 7.4% is calculated
for (GGGAUC),, and a value of only 4.4 + 7.5%, an order
of magnitude lower, is calculated for (GGGAGU),. That
is, a motif like GGGA may be part of a very favorable
antisense target sequence, but just noting the presence of
a GGGA motif, without considering the contributions of
overlapping NNN within the full target sequence, over-
looks additional information that determines how favor-
able that given target sequence might actually be.

It should be noted that sequences such as (GGGA); that
are not listed among the linearly independent set in Table
2 are linearly dependent combinations of sequences such
as (GGQG), and (AGQG), that are in Table 2, and conse-
quently they have parameters that are linear combina-
tions of those in the table. Thus, parameter P for
(GGGA); may be calculated as P(GGGA); = (1/4) x
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P(GGG); + (3/4) x P(AGG), = (1/4) x 24.8 + (3/4) x 22.4
= 23.0%. Parameters for more complex dependent
sequences may be tedious to derive from those in Table 2,
but they are easy to calculate by adding the values of the
NNN parameters in Table 1 to give an identical result.

A final point is that, once derived, the parameters for
NNN are straightforward to apply to calculate ranked
inhibitory values for any other sequence. If the database
includes measurements for different gene mRNA targets,
cell lines, DNA chemistry, and other experimental vari-
ables such as exon/intron regions of the mRNA, these
potentially can be included in the SVD analysis to provide
offset parameters as illustrated in Table 4 for the different
genes targeted in the present work. Aspects of new
mRNA targets that are not part of the experimental data-
base, such as accessible regions of the mRNA secondary
structure and the uniqueness of the target sequence
within the genome, would have to be considered as addi-
tional steps in the design of effective antisense DNAs.

Conclusions

Retrospective analysis of actual sequence-dependent
antisense inhibition data can provide useful information
for the selection of mRNA targets and the subsequent
design of effective antisense DNA sequences. We have
shown that the sequence dependence of antisense inhibi-
tion extends beyond that of interacting, adjacent nearest-
neighbors in the nucleotide sequence of the mRNA target
(or antisense DNA oligomer). Extracting the maximal
information requires taking into account the effects of
overlapping sequences, such as overlapping NNN triplets
that share common NN doublets. The simplest fashion in
which this can be done is the extraction of NNN parame-
ters by SVD, and the parameters can then be easily
summed to evaluate the antisense potential of any
sequence combination. The use of these parameters
allows the percent reduction in net protein expression to
be predicted for given mRNA target sequences, and the
prediction includes all of the information for the particu-
lar distribution of NNN triplets in that sequence. This
method allows that sequence to be uniquely ranked
among all others with different NNN triplet combina-
tions. This is unlike the ranking of sequences based on
their contents of positive and negative inhibitory motifs.
Standard errors are also provided by an SVD analysis,
while errors are not readily available for combinations of
motifs.

We have also shown that SVD analysis can include
other information about the target sequence, antisense
DNA chemistry, or experimental protocol that might
affect the inhibitory potential of the mRNA target
sequences in the database. There were larger reductions
in the accumulation of protein (= 10%) using the A549
cell line than when the T24 cell line was used. Targets
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within the CRAF1 and AKT2 mRNAs were more suc-
cessfully exploited than those within the BCL2 and PKC-
a mRNAs, by differences of between 7 and 13% (Table 4).
This latter difference did not seem to be dependent on
the region of the mRNA being targeted, since about 50%
of the target sequences were within the coding regions of
the CRAF1, AKT2, and BCL2 mRNAs (12 of 26, 4 of 7,
and 14 of 29, respectively) and the remainder were out-
side the coding regions. (All but one of the target
sequences for PKC-a were in the coding region.) It is pos-
sible that these cell and target-specific parameters reflect
differences in mRNA target secondary structures, life-
times of the mRNA or protein, the presence of competing
off-target sites, oligomer uptake, and/or other intracellu-
lar differences. Most relevant for the present work is that
using sets of experiments that differ in their mRNA target
sites, cell lines, or other aspects need not prevent the der-
ivation of a consistent set of NNN triplet parameters.
Moreover, the offset parameters themselves could lead to
an appreciation of the magnitudes of effects that are sec-
ondary to the calculated sequence dependence of anti-
sense DNA inhibition of protein expression. In the
present work, the use of different cell lines and mRNA
gene targets influenced the inhibitory efficacy of the anti-
sense S-DNAs by about 10% within a range of from 11 to
66% inhibition of net protein accumulation.

Methods

Data set

Our analysis used a data set of 112 measurements of the
reduction by antisense S-DNA oligomers of net intracel-
lular protein synthesis (protein synthesized minus pro-
tein degraded). Data were obtained as described below
for the antisense inhibition of CRAF1 protein accumula-
tion in human A549 lung carcinoma cells and T24 blad-
der carcinoma cells (26 experiments each), AKT2 protein
in A549 cells (7 experiments), BCL2 protein in A549 cells
(29 experiments), and PKC-a protein in T24 cells (24
experiments). Percentage reductions in the net accumula-
tions of these proteins after antisense DNA treatments
are available in additional file 1.

Antisense DNAs

20-mer antisense oligomer DNA sequences with phos-
phorothioate linkages (S-DNAs) were purchased from
the Midland Certified Reagent Company (TX) and Oligos
Etc. (OR). Sequences were selected to have complemen-
tarity to coding or to 3' or 5' non-coding regions of the
mRNA (but not to introns), to have minimal base com-
plementary in the human genome outside of the gene tar-
get of interest (by BLAST searches), to have no more than
six adjacent self-complementary bases (since there is a
negative correlation between intrastrand DNA nucleotide
pairing and antisense efficacy [3]), and to have no more
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than three adjacent G's to minimize the possibility of G-
quadruplex formation. The G+C content of the S-DNAs
ranged from about 30 to 85%. Using a simple nearest-
neighbor model, the predicted stabilities of DNA:RNA
hybrids that would be formed with these sequences
[14,15] ranged from a AG (37°) of -19 to -42 kcal/mol and
were highly correlated with the percentage G+C content
(correlation coefficient 0.94). Thus, the oligomers were
chosen to have a wide range of hybridization stabilities.
In previous work, we have shown that the melting tem-
peratures of S-DNA:RNA hybrids rank closely with those
of unmodified DNA:RNA hybrids of the same sequences
[16].

Antisense treatment of cell lines

Following procedures essentially the same as in previous
publications [23,25], human A549 lung carcinoma and
T24 bladder carcinoma cells were respectively cultured in
McCoy's or RPMI media (Gibco BRL, MD) in the pres-
ence of 10% fetal bovine serum. The cells were trans-
fected with 20-mer phosphorothioate DNA oligomers at
0.5 pM, pre-mixed with lipofectin (Life Technologies,
CA) at a ratio of 1 lipofectin positive charge per 1.5 to 2
DNA phosphates. Following transfection for 4 hours, the
transfecting solution was removed and the cells were
incubated for a further 20-24 h in fresh medium. Cells
were harvested and lysed in 1% (v/v) Triton X-100 or
NP40 detergent, 1 mM dithiothreitol, 0.02% (w/v) sodium
azide, 5-10% protease inhibitor cocktail (Sigma, MO),
0.15 M NaCl, and 0.05 M Tris-HCI, pH 8.0. Protein quan-
tities in the lysates were quantitated using Bradford
assays (Bio-Rad, CA) and 30 micrograms of protein from
each lysate were electrophoresed in 7% or 12% polyacryl-
amide gels. In each case, the gel density was adjusted
until controls showed complete removal of blotted pro-
teins from the gel.

We were able to obtain significant reductions in PKC-«
accumulation without the necessity of a phorbol pre-
treatment as used by Dean et al. [17] to reduce the quan-
tity of PKC-a protein present in cells prior to antisense
oligomer treatment. Our results were consistent with the
PKC-a protein having a half-life at the lower end of the
reported range of 6.7-24 h [17]. Also, the inhibition of
PKC-a protein accumulation was not altered by the pres-
ence of serum in some of our experiments (used to pre-
vent apoptosis due to serum deprivation).

Protein quantitation

The actual amounts of protein in the gel wells were quan-
titated by cutting the gel across the lanes and staining of
the region of the gel containing actin with Coomassie
Blue or Sypro stain. The remaining portion of the gel,
containing the protein of interest, was blotted for 50 or 60
min onto Immobilon-P polyvinylidene fluoride mem-
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branes (Millipore, MA). Controls demonstrated no more
than 1-5% leakage of protein from the first membrane
onto a second membrane placed behind it. Immunoprob-
ing of blotted membranes with antibodies to CRAF1 (BD
Transduction Labs, CA), AKT2 (Santa Cruz, CA), BCL2
(Santa Cruz, CA), or PKC-a (Upstate Biotechnology/Mil-
lipore, MA) was followed by treatment with alkaline
phosphatase-conjugated secondary antibodies (Jackson
ImmunoResearch, PA), extensive washing, incubation
with enhanced chemifluorescent substrate reagent (GE
Healthcare, NJ), detection of fluorescence in a Molecular
Dynamics STORM phosphorimager, and quantitation
using ImageQuant software (version 5.0, GE Healthcare
NJ). Further details are in previous publications [23,25].

Next-nearest-neighbor data analysis
Following the procedures for the analysis of nearest-
neighbor properties of hybrid duplexes [6,14], the set of
112 data points for the percent reduction of net accumu-
lated protein by 20-mer antisense S-DNA oligomers was
analyzed by singular value decomposition (SVD) to
determine the relative importance of next-nearest-neigh-
bor triplet combinations in the target mRNA sequence
for hybridization with an antisense S-DNA oligomer. The
next-nearest-neighbor triplets in a sequence, compared
with nearest-neighbor base pairs, are illustrated in addi-
tional file 2. To simplify the consideration of NNN at the
ends (i.e. to eliminate end triplets ENN and NNE', where
N is any base, in the notation of Goldstein & Benight
[26]), the assumption was made that each of the 20-mer
mRNA target sequences was a closed circular sequence.
This meant that the two end triplets were each consid-
ered to be composed of two NN, one correct and one
approximated as if the two end nucleotides were adjacent.
The resulting error amounted to 5-10%, depending on
whether the inhibitory properties at the ends were domi-
nated by the NN or NNN (i.e. 1/20 NN or 2/20 NNN are
involved in closing a circular sequence). With this
assumption, it was possible to derive parameters for 49
independent target sequences from our limited data set.
For the SVD analysis, each of the mRNA target
sequences was separated into its 20 constituent NNN
triplets, and the numbers of each of the possible 64 NNN
for that target sequence were arrayed in one row of a
matrix. The 86 target sequences for which the reductions
in accumulated protein were determined (26 of which
were used in both A549 and T24 cell lines) thus gave 112
rows in a 112 row x 64 column matrix. An example 3 x 64
matrix for three CRAF1 sequences is illustrated in addi-
tional file 3. In addition, five extra columns were added to
the matrix, one of which was used to designate the cell
type (with the number 1 in the column if the experiment
with that target sequence used A549 cells), and four of
which were used to designate the targeted gene (with the
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number 1 in the column of the gene specific to that
mRNA). The final result was a 112 row x 69 column
matrix. The 64 NNN were all generally well represented
in the data base, averaging 35 £ 16, with only four NNN
being present less than 15 times (CUA, UAG, UUA, and
UAA were represented 14, 11, 10, and 8 times, respec-
tively; see Table 1, last column). Each row of values was
divided by the error for that experiment to give the
matrix of values, Ny | (h = 1...112, k = 1...69). Experimen-
tal values of percent reductions in accumulated protein
for the 112 antisense experiments (divided by their
respective errors) were arrayed in a column vector I;. The
matrix equation Ny | x P = I; was then solved for the vec-
tor array P, of 69 inhibition parameters for the 64 NNN, 4
different gene targets, and cell line, using SVD as
described by Press et al. [13] and in our previous work [6].

Following the reasoning described by Gray [14], there
are only 49 linearly independent combinations of the 64
NNN because there are 15 constraints on arranging the
NNN when they are in a closed circular sequence. There
was also a relationship among the columns of the matrix
that specified which genes are targeted, in that their sum
was constrained to 1. Therefore, the N, | matrix was a
singular matrix with 16 singular values of essentially zero
(105 less than the smallest significant singular value).
Only five of the 69 parameters describing the reduction
in accumulated protein were directly meaningful, those
for the triplet NNNs of AAA, UUU, GGG, and CCC, and
for the cell type. However, the significance of the remain-
ing triplet NNNs could be meaningfully described in
terms of the values for independent sequence combina-
tions, and gene combinations, just as if the parameters for
the independent combinations were directly derived from
a nonsingular matrix [13,14].
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