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Abstract

Background: Modelling the ligand binding site of a protein is an important component of understanding protein-
ligand interactions and is being actively studied. Even if the side chains are restricted to rotamers, a set of commonly-
observed low-energy conformations, the exhaustive combinatorial search of ligand binding site conformers is known
as NP-hard. Here we propose a new method, ROTAIMAGE, for modelling the plausible conformers for the ligand
binding site given a fixed backbone structure.

Results: ROTAIMAGE includes a procedure of selecting ligand binding site residues, exhaustively searching rotameric
conformers, clustering them by dissimilarities in pocket shape, and suggesting a representative conformer per cluster.
Prior to the clustering, the list of conformers generated by exhaustive search can be reduced by pruning the
conformers that have near identical pocket shapes, which is done using simple bit operations. We tested our approach
by modelling the active-site inhibitor binding pockets of matrix metalloproteinase-1 and -13. For both cases, analyzing
the conformers based on their pocket shapes substantially reduced the 'computational complexity' (10 to 190 fold).
The subsequent clustering revealed that the pocket shapes of both proteins could be grouped into approximately 10
distinct clusters. At this level of clustering, the conformational space spanned by the known crystal structures was well
covered. Heatmap analysis identified a few bit blocks that combinatorially dictated the clustering pattern. Using this
analytical approach, we demonstrated that each of the bit blocks was associated with a specific pocket residue.
Identification of residues that influenced the shape of the pocket is an interesting feature unique to the ROTAIMAGE
algorithm.

Conclusions: ROTAIMAGE is a novel algorithm that was efficient in exploring the conformational space of the ligand

binding site. Its ability to identify 'key' pocket residues also provides further insight into conformational flexibility with
specific implications for protein-ligand interactions.

Background theless the experimental static structures obtained by the

Computer modelling and simulations plays an important
role in the drug discovery process [1]. All protein mole-
cules are inherently dynamic and may have multiple con-
formers with similar energies in both the bound and
unbound states [2-6]. The model of preexisting confor-
mations, together with the "induced-fit" where the ligand
binding event causes a change in protein conformation,
can explain the process of protein-ligand binding. Never-
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X-ray and nmr techniques, let alone the modelled struc-
tures, are the bases for various structure-based drug
design strategies such as de novo design and docking [7-
12]. In these efforts, the consideration of the protein flex-
ibility is important [13-16]. Even the conformational
change of a single amino acid residue can change the size,
shape, and electrostatic property of the binding pocket.
Comparisons of the X-ray structures of the pairs of the
holo and apo forms indicate that the degree of structural
change of the protein varies considerably [17-21]. Some
protein undergoes rather large conformational change of
the backbone. In the majority of the cases studied, how-
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ever, the conformational changes occur only at the side
chain level.

Here we present a new method, ROTAIMAGE, for
modelling the plausible conformers for the ligand binding
site given a fixed backbone structure. There are numer-
ous methods to predict the side-chain conformations as a
component of protein structure prediction and protein
redesign. This is known as the classical side-chain predic-
tion problem [22]. Most of these methods utilize the
rotamer library that restricts side-chain torsion angles to
a set of preferred or commonly-observed low-energy
conformations of a particular side chain [22-26]. Due to
its combinatorial nature, it is considered as NP-hard and
the number of conformers grows steeply as more residues
are considered. For example, 105~10% bump-free con-
formers were generated for a set of 11 residues, while the
number went up to over 1010 conformers for 19 residues
(Table 1). Application of docking to all these conformers,
albeit plausible, is not practical. From now on, we call this
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computational burden due to high number of conformers
to handle as '‘computational complexity'. Various algorith-
mic heuristics have been applied in order to reduce the
'computational complexity' such as Monte Carlo simula-
tions [27,28], steepest-descent minimization with ran-
dom restarts [29], and self consistent mean-field
approaches [30]. The tool SCWRL combines the Dead-
End Elimination (DEE) algorithm, which restricts the
conformational space, with an exhaustive but fast search
of the remaining conformational space [23,31,32].

An alternative approach, called DYNASITE, has been
developed with the aim of reducing the 'computational
complexity' by clustering the conformers based on struc-
tural similarities and performing docking against a repre-
sentative conformer of each cluster [25,33,34]. It used
principal component analysis (PCA) to cluster the con-
formers based on rmsd between the flexible side chain
atoms and successfully generated one of the known con-
formers starting from a different conformer as a template.

Table 1: Statistics on bit string generation for MMP-1 and MMP-13 ligand binding pockets.

Item MMP-1 MMP-13 full MMP-13D MMP-13P
# of FLRs! 23 27 23 13

# of SLRs2 13 21 13 8

# of CCRs3 1 19 1 5

# of all 3D points 809 1,222 614 621
# of points free of contacts 578 740 223 507
# of conditional contact points 231 482 391 114
# of all conformers free of bumping 362,862 71,066,419,200 6,326,207 1,380
# of non-redundant bit strings 8,000 - 358,752 143
# of unique strings after merge* - - 33,172 -
Reduction in ‘computational complexity' (f old) 41 - 190.7 9.58
Run time for two-way clustering (Cluster 3.0)6 9min 370 min <1 sec

The residues within 5 A from the ligand ensemble

2The residues within 3 A from the 3D points that are within 1 A from FLRs

3The residues showing 'conditional' contacts with the 3D points
4Bit strings differ by less than 5 bits were merged

5The ratio defined as [# of all conformers free of bumping]/[# of non-redundant bit strings]
6CPU time elapsed using an Intel Xeon E5430 CPU operating at 2.66 GHz with 24 GB of main memory (the maximum virtual memory usage

was 4.4 GB) on a linux box.
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However, some practical limitations were noticed with
this approach. In order to keep the number of conformers
for clustering under a practical limit (~10%), the rotamer
combination was restricted to the pocket residues with
movements observed experimentally; the maximum
number of pocket residues was 11 for the proteins stud-
ied [35].

Each conformer of the pocket residues generates a
unique shape of complementary pocket volume. Thus
clustering based on the pocket shape dissimilarity would
be equivalent to that based on structural rmsd between
conformers. Our method presented here, ROTAIMAGE,
clusters the pocket conformers based on the dissimilarity
of their complementary pocket volumes. The shape simi-
larity between two different volume objects can be
defined as a relative volume overlap between them. Since
they are already in common coordinate system, the rela-
tive volume overlap can be numerically integrated over a
set of three-dimensional (3D) grid points that encompass
the ensemble of the pocket volumes. The grid spacing
controls the granularity of volume assimilation. At its
given level, the pocket volumes that differ only in fine
detail can be treated as identical.

Computationally, each 3D volume object is distin-
guished by the status of every one of the 3D grid points
whether one is inside or outside the volume. The status of
a point is encoded into a bit position of a string, whose
value instances a particular pocket surface shape. This is
widely used in the field of 3D image recognition in com-
puter science. Representation of a volume object by a bit
string enables efficient operation of tasks such as identifi-
cation of those objects that are treated as having identical
shapes at the given granularity and calculation of similar-
ity index between two objects. For example, the former
can be achieved by storing the bit strings into a hash
table. While preserving the connection between a con-
former and a bit string, only unique strings are identified
and used in the subsequent analyses. Compared to the
original number of conformers, one would expect reduc-
tion in the number of unique strings. The reduction in
'computational complexity' was substantial with our test
cases, allowing to enumerate sterically allowed conform-
ers with more pocket residues than those used by DYNA-
SITE and to yield a manageable number of unique bit
strings for clustering. Calculation of the dissimilarity
between two strings, defined as the Tanimoto coefficient
between them, involves bitwise AND and OR operations
and should be more efficient than that of rmsd between
two conformers.

Application of standard clustering algorithms using the
dissimilarity matrix would segregate the pockets by the
similarity in shape. Selection of a representative pocket
shape from each cluster would reduce the 'computational
complexity' to a degree amenable to the downstream
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ligand docking in a practical way. For example, each of
our test cases yielded a handful of clusters. Here we pres-
ent details of ROTAIMAGE and demonstrate its utility by
modelling the ligand binding site of human matrix metal-
loproteinase-1 (MMP-1) and -13 (MMP-13), which have
been actively studied due to their pharmacological and
biochemical importance [25,33,36,37].

Methods

Algorithm

The main objective of our algorithm, ROTAIMAGE, is to
manage the ligand binding pocket shape using a bit string
and to apply this technique to reduce the 'computational
complexity' in handling the binding site conformers gen-
erated through the exhaustive search of rotameric combi-
nation of side chains on fixed backbone. There are three
preparatory steps prior to the main algorithm: (i) recog-
nition of binding site residues; (ii) mapping the binding
pocket by 3D points; (iii) generation of multiple binding
site conformers by rotamer assignment and concurrent
checking for steric clashes. The core steps include check-
ing the contact between the 3D points and each con-
former and binary representation of the contact
configuration, and pruning the conformers that produce
identical bit strings. The resulting set of bit strings are
then analyzed using standard clustering algorithms. The
algorithm is outlined in Figure 1 and described below in
detail.

(1) Recognition of binding site residues and mapping the
binding pocket by 3-D points

Identification of ligand binding pockets and analysis of
their shapes have been an active area of research, as
reviewed by Weisel et al. [38]. There are many algorithms
available for this, such as PASS [39], POCKET [40], LIG-
SITE [41], SURFNET [42], CASTp [43], and PocketPicker
[38,44]. Our main objectives are to explore the conforma-
tional varieties of the ligand binding site via rotameric
combination, and to map the corresponding variations of
the pocket shape. For this, we need a maximally
expanded pocket where the side chains of the pocket resi-
dues are substituted by Ala. Thus the following simple
and straightforward approach would suffice for our pur-
pose. For a given protein, the crystal structures of reason-
ably high resolution are collected. If multiple structures
are available, one of them is chosen as a template and all
the others are superposed to it. Since our algorithm
assumes fixed backbone conformation, any outliers in
terms of backbone overlaps are excluded from consider-
ation. Although our algorithm should work with a tem-
plate structure of either ligand-bound (halo) or ligand-
free (apo) form, we describe first the procedure for a halo
form as the template. The superposition of protein back-
bones creates a ligand ensemble if multiple structures of
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Figure 1 Outline of the ROTAIMAGE algorithm. Each box repre-
sents an identifiable step of the ROTAIMAGE algorithm. The arrows in-
dicate the flow of information. The top three small boxes constitute
the preparatory steps.

ligand complexes are available. In order to identify the
residues that are subject of conformational search, we
conduct multiple steps of selection and pruning (see
Additional File 1: Figure S1 for the schematic representa-
tion). Firstly, all protein residues that are within 5 A of the
ligand ensemble are identified and refer to as the 'first
layer residues (FLRs)'. These residues except for Gly are
then substituted with Ala. This creates an afore-men-
tioned artificial volume enlarged compared to the origi-
nal ligand-binding pocket. It would be the volume
maximally accessible by the exploration of side-chain
conformations with fixed backbone atoms. Nevertheless,
it is referred to as the ligand-binding pocket. The second
step is the generation of the 3-dimensional points that
map this ligand-binding pocket. As mentioned above
there are several algorithms available for this and we use
POCKET, which generates a lattice-like 3D array and
allows rather simple manipulation of the lattice spacing.
The lattice spacing is set to 1.0 A. The 3D lattice points
fill in the pocket by approaching the binding site residues
as close as their van der Waals radius. The points that are
more than 6 A away from the binding site residues or
ligand ensemble are trimmed. Once side chains are put
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back into the FLR, they are likely in contact with the
outer layer of the 3D points. The last step is the recogni-
tion of the residues whose rotameric combination would
be explored. If we limit the scope to those residues that
might have direct contacts with the 3D points and do not
allow simultaneous flexible movement of residues deeper
inside the protein core, most rotameric variations except
a few would face resistance from the wall of those second-
ary residues. Hence, it would make more sense to con-
sider the residues underneath the pocket surface than the
residues within a certain distance from the ligand ensem-
ble like the FLRs. For convenience, we define the 'second
layer residues (SLRs)' as those residues within 3 A from
the 3D points that are in contact with FLRs. Some FLRs
are bound to be included in SLRs, but not all of them.
Selection of FLRs depends on the ligands included in the
ensemble since the ligands are filtered by the distance
from the FLRs. On the other hand, selection of the SLRs
is not directly influenced by the choice of the ligand
ensemble. Rather the shape of the pocket dictates the dis-
tribution of the 3D points, which, in turn, governs the
SLRs.

If no halo form can serve as the template structure, one
would select FLRs manually based on prior knowledge
from literature or skip it to the 3D point generation. For
the latter case, the potential pocket residues are not sub-
stituted by Ala and thus the pocket is not maximally
expanded. Once 3D points are generated, SLRs can be
identified by the same procedure. However the number
of SLRs would be somewhat less than that of the former.

(2) Rotamer combination and steric clash tests

We take into account the side chain flexibility by placing
the so-called backbone-independent rotamers [32] back
on each of the SLRs defined in the previous step and per-
forming an exhaustive search of binding site conformers.
In general, the computational load for enumerating com-
binations of rotamers and subsequent filtering of the
steric clashes in the resulting conformers grows exponen-
tially with increasing number of rotamers. In order to cir-
cumvent this problem, the rotamer library is reduced by
checking the bumping between the main chain and the
side chain of each rotamer using Equation (1) [25]. Two
atoms Al and A2 are considered to clash if

CTD < (vdw radiusA, + vdw radiusA, — Distance | A, -

where CTD stands for clash tolerance distance. Based
on the reduced library of the surviving rotamers only, the
interactions between the residues are mapped as a graph,
which is then searched by a backtracking and branch-
and-bound algorithm that concurrently checks the
bumping between the side chain atoms of each pair of
residues. This part of our algorithm follows the published
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graph theoretic cluster algorithm in SCWRL [24], except
for the step of dead-end elimination and the scoring func-
tions themselves.

(3) Binary image representation in protein binding site

The 3-dimensional points representing the enlarged
binding pocket as obtained in the first step are screened
for overlap with the atoms of each conformer that has
been generated by rotamer combination and that has sur-
vived the subsequent bumping checks. The contact
between a binding site point 'P' and a SLR atom A’ is eval-
uated using

CPD < (vdw radius A — Distance | A —P |) (2)

where CPD stands for contact padding distance, which
is set to 0.5 A. Summarizing the results over all the con-
formers, the points always in contact with some SLRs
regardless of conformers are eliminated, while the points
always free of contacts are set aside and included later in
the complete construction of the binding site. Only those
points in 'conditional' contacts depending on the con-
formers are retained to discriminate the conformers. For
some residues in the SLRs, none of the rotamers may
contact the 'conditional’ points at all; these SLRs are elim-
inated. The rest of the SLRs, which have 'conditional' con-
tacts with the 3D points, have potential for modulating
the pocket shape and are defined as 'conditional contact
residues (CCRs)'". As shown in Figure 2, each conformer is
represented by a configuration of which points are in
contacts or not. As it is a combination of binary states,
the result is conveniently encoded by a bit string where
each bit designates whether the corresponding point is in
contact or not. Such representation of a 3-dimensional
object by a bit string has been widely used in the field of
image recognition in computer science [45].

(4) Pruning multiple conformers having identical bit strings
The mapping relationship between the bit strings and the
conformers is stored in a hash table. By looking up those
strings that are observed more than once, we can identify
the strings that are mapped to multiple conformers.
These conformers have the identical status of contacts
with the 3D points, i.e., their pocket shapes are indistin-
guishable at the specified CTD in Equation (1). There are
several situations when this can happen. As described in
the previous section, some SLRs are not included in the
CCR list. Their rotamers would not generate new bit
strings. Even for CCRs, some of their rotamers may not
contact the 3D points, resulting in some redundant
strings. It is likely to occur at the periphery of the pocket.
Besides, the coarser 3D points may cause the less sensi-
tive differentiation of conformers. In such cases identical
bit strings may also result from different conformers.
Since we keep track of which conformers are assigned to
which bit strings, we do not lose any detail and reduce the
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computation complexity by dealing with non-redundant
bit strings in the subsequent process.

(5) Clustering analysis of multiple binding sites and
selection of representative conformers

The shape of the binding site is approximated using a set
of 3D points, which are recorded as simple bit strings of
length equal to the number of points. Each bit position
corresponds to a sphere centered at a defined 3D point. A
shape-fingerprint Tanimoto (SFT) coefficient between
two such bit strings [46,47], given by

SFTABzNAB/(NA"'NB_NAB) (3)

measures the proportion of bits shared between the
two strings, where N, and Nj represent the number of
bits set in the strings A and B, respectively, while N, 5 is
the number of bit position set commonly in A and B. This
is equivalent to a finite numerical integration of the rela-
tive volume overlap between two 3D volume objects. A
relative volume overlap between two 3D objects can be
considered as one of the similarity indices, whose approx-
imation can be given by a Tanimoto coefficient. With
such a similarity index, clustering analysis such as multi-
dimensional scaling (MDS) can be performed. The opti-
mum member of clusters is determined through a visual
inspection of the MDS plot in 3D using GGobi [48]. MDS
was conducted using the R statistical system [49]. A two-
way hierarchical clustering of both bit strings and bits can
be useful in analyzing the dependency between conform-
ers and 3D points. It was done with the Linux implemen-
tation of Cluster 3.0 [50] using an m x n bit pattern
matrix, where m and » are the number of unique bit
strings and the bit size, respectively. The time complexity
of complete linkage hierarchical clustering is known as
O(N2logN) [51]. It should be noted that hierarchical clus-
tering involving a few tens of thousands of bit strings can
take extremely long (see Table 1).

One would need a representative conformer for each
cluster for follow-up applications such as virtual screen-
ing or structural analyses. Since we use bit strings, a
numerical averaging would not make sense. We choose
the medoid string as the representative of each cluster.
The medoid is defined as the member of the cluster
whose average dissimilarity to all the other members is
minimal [52]. The pocket shapes and conformers corre-
sponding to the medoid strings can be retrieved from the
stored mapping information (see the Section (4) of Meth-
ods).

Results and Discussion

Target proteins

We have tested our algorithm, ROTAIMAGE, by model-
ling the ligand-binding pockets of MMP-1 and MMP-13.
There are several reasons why we have tested our algo-
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Figure 2 The ligand binding pocket of MMP-1 for an instance of a conformer. The pocket enlarged by Ala-substitution was mapped by 809 3D
points using the POCKET algorithm. The 3D points are depicted by small spheres color-coded according to their contact states: 578 points were free
of contacts with any of the conformers (gray); 231 points that had 'conditional' contacts with some but not all of the conformers were shown in blue
(free of contact for a given conformer) or red (in contact in this case). In the zoomed portion, the points are labeled and their contact status is coded

at the corresponding position in the bit string shown below (1 in contact; O for free of contact).

rithm using these two MMPs: (1) they are important tar-
gets for drug design and many inhibitors have been
developed [53,54]; (2) multiple ligand-bound complex
crystal structures have been determined for each of them
at reasonably high resolution [36,37,55-58]; (3) most
importantly, their crystal structures showed multiple
conformer configurations in the ligand binding pocket
[25,36,37]. In addition, their conformational differences
are large enough to prohibit rigid-body docking simula-
tions of a known ligand from one configuration to the
crystal structures from another configuration. It would be
interesting to see whether we can recover all of the con-
formers seen in the crystal structures from its clustered
pools of conformers, or more precisely, whether those
ligands could be fit into the representative binding pocket
shapes that would result from the clustering of a number
of shapes. It would be more important to know how many
clusters we have to consider in order to cover all the
experimentally observed ligands. Beyond the commonali-
ties, the ligand binding sites of MMP-1 and MMP-13
have quite distinct shapes and properties. The side chain

of Arg 214 of MMP-1 limits the S1' pocket to a size suit-
able for an aromatic ring, while the corresponding resi-
due in MMP-13 is replaced by Leu 218 [36], creating a
long channel called S1"* [37]. Consequently, many more
residues are involved in MMP-13 than MMP-1. By testing
our algorithm with cases of different complexities, we
may gain more insight on variations of its performance.

Generation of multiple binding site images

We downloaded eight and seven crystal structures deter-
mined at a resolution of 2.5 A or higher for MMP-1 and
MMP-13, respectively, from Protein Data Bank (PDB)
[59]. Each set of proteins were superposed into a com-
mon reference structure (966¢ (1.7 A resolution) and
1xuc (1.9 A resolution) for MMP-1 and MMP-13, respec-
tively). One of the crystal structures of MMP-1 displayed
a backbone structure distinct from the rest and was
excluded in the subsequent analysis. Otherwise the aver-
age rmsd among backbone Ca atoms were 0.343 A and
0.328 A for MMP-1 and MMP-13, respectively.
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The residues within 5 A from the ligand ensemble
(FLRs) were identified and substituted with Ala. The
enlarged pockets were then filled with 3D lattice points of
1 A spacing. Since FLRs are determined based on the dis-
tances from the known ligands, they may reflect the cur-
rent repertoire of ligands. In order to remove such a bias
and use residues that are within a constant depth under-
neath the pocket, we looked for residues within 3 A from
the 3D points. These residues are referred to as SLRs. See
Figure 1, for the definition of FLRs and SLRs. Some FLRs
deep inside the protein core were not used as SLRs, while
new ones were added at the periphery where the known
ligands did not reach (Figure 1). The next step involved
an exhaustive search of conformers through rotamer
combination and a concurrent bumping check. In order
to tolerate some uncertainty in the atomic positions, we
also adopted the clash tolerance schemes defined in
Equation (1), where CTD was set at 1.0 A [35]. For each
conformer, the 3D points that were in contact with the
side chain atoms were screened using Equation (2) by set-
ting CPD and A to 0.5 A and van der Waals radius,
respectively. After scanning all the conformers, the points
were classified into two groups. When this scheme was
applied to MMP-1, 11 residues out of the FLRs were
retained as CCRs (Table 1). In contrast, a smaller reduc-
tion occurred with MMP-13, i.e., from 27 FLRs to 19. The
number of 3D points indicated that the ligand-binding
pocket of MMP-13 was ~50% larger than the binding
pocket of MMP-1 (1,222 vs 809). After excluding those
points free of contact with any of the conformers, there
were twice as many 3D points with conditional contacts
in MMP-13 than in MMP-1 (482 vs 231). The number of
CCRs or 3D points showing conditional contacts is corre-
lated to the size of the pocket surface area, not directly to
the volume. These numbers were in huge excess of the
volume increase in MMP-13 compared to MMP-1, indi-
cating a larger ratio of contact surface-to-volume in the
former than in the latter. This may be explained by the
fact that MMP-13 had a long and extended binding
pocket unlike MMP-1, which had a globular ligand-bind-
ing site [36].

The 'computational complexity' due to a large number
of conformers is governed by the number of CCRs, while
the number of 3D points showing conditional contacts
with CCRs dictates the variety of pocket shapes. In this
regards, MMP-1 and -13 were useful examples in assess-
ing the complexity associated with these variables. While
the exhaustive rotameric combination generated 362,862
sterically allowed conformers for MMP-1, the same pro-
cedure produced over 71 billion conformers for MMP-13.
Since the number of conformers for MMP-13 was too
large to be handled on a reasonable time scale, we
decided to split the number of 3D points of MMP-13 into
half, with an overlap of points filling the S1' pocket. The

Page 7 of 14

"proximal" ligand-binding site that limited to the S1'
pocket is called MMP-13P, while the "distal" region that
extends to S1™ is called MMP-13D (see for definition
Additional File 1: Figure S2). All subsequent analyses
were conducted independently. After independently gen-
erating the final representative pocket shapes, the full
pocket shapes may be produced by combining them
based on the status of the 3D points shared between
MMP-13D and MMP-13P. Almost twice as many residues
were involved in the pocket of MMP-13D than MMP-
13D, resulting in huge differences in the sterically allowed
conformers (6,326,207 vs 1,380). Interestingly the pocket
volumes were similar in size. However, there were 3.4
times more conditional contact points in MMP-13D than
in MMP-13P (391 vs 114). This implied that there was a
difference in geometric topologies between these two
partitions. Overall, we used three test cases of different
complexities: MMP-1 (middle level of complexity),
MMP-13D (highest level of complexity), and MMP-13P
(lowest level of complexity).

The contact status of each point was checked against
each conformer and coded into a bit string. Since we used
a finite number of 3D points with a fixed non-negligible
spacing (1 A) and the contact check also employed a tol-
erance (CPD of 0.5 A in Equation 2), it was likely that
some conformers generated identical bit strings. This is
one of the interesting features of our approach; for a given
resolution’ defined by the lattice spacing and CPD, we
can set a threshold below which minute differences in the
pocket shapes can be ignored. This has the effect of
greatly reducing the 'computational complexity' without
degrading the 'resolution’. For MMP-1, we obtained 8,000
unique strings of 231 bits from a host of 362,862 con-
formers, reaching at a 41-fold reduction in complexity.
MMP-13P had a rather small number of conformers to
start with (1,380) and yielded only 143 unique strings of
114 bits (~10-fold reduction). For MMP-13D there were
358,752 non-redundant strings after pruning identical
ones. Although more than a 17-fold reduction was
achieved, the number of strings was still too high. An
additional 10-fold reduction was obtained by merging the
strings that differed from each other by less than 5 bits;
thus, a total of 33,172 strings were retained (a total of
190-fold reduction). Even with this much of reduction,
the two-way hierarchical clustering took more than 6
hours for MMP-13D, while the smaller task with MMP-1
took only 9 min (Table 1).

Clustering analysis of multiple binding sites

We have shown that the ‘computational complexity' of
dealing with many conformers generated by combinato-
rial rotamer assignment was greatly reduced by repre-
senting the conformers as bit strings. Since these bit
strings mimic the shape of the binding pocket volume,
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clustering them would be useful to assess the diversity of
their shapes. If a small number of distinctive clusters can
be observed, then the entire conformational space acces-
sible by the ligand-binding pocket residues can be
encompassed by these clusters and the associated 'com-
putational complexity' can be even further dramatically
reduced. Using the non-redundant set of bit strings
(8,000, 33,172, and 143 for MMP-1, MMP-13D, and
MMP-13P, respectively), a pairwise dissimilarity was cal-
culated as 1 - SFT (Equation (3)). Note that the sizes of
the bit strings were 231, 391, and 114 bits for MMP-1,
MMP-13D, and MMP-13P, respectively. Based on the
resulting shape dissimilarity matrix, multidimensional
scaling was conducted (see Additional File 1: Supplemen-
tary Figures 3 and 4). Inspection of the principal compo-
nent plot showed a pattern of distinctive clustering in all
three cases, and led us to select 12, 8, and 8 clusters for
MMP-1, MMP-13D, and MMP-13P, respectively. After
ordering the bit strings according to cluster membership
obtained from the MDS analysis, the bit positions were
then hierarchically clustered based on their dissimilarity
over the conformers. The resulting heat maps are shown
in Figure 3 (MMP-1), Additional File 1: Supplementary
Figures 5 (MMP-13D) and 6 (MMP-13P). Indeed the con-
formers belonging to different clusters showed quite dis-
tinct bit patterns and interestingly some sets of bit
positions that dominated the clustering process were rec-
ognized. For example, the bit status of the blocks labeled
"240" in Figure 3 combinatorially split the conformers
into four super-clusters (1-3, 4-6, 7-9, and 10-12) of
MMP-1. Since the information regarding the contact
relationship between 3D points and the residues per con-
former has been stored, we are able to determine which
residues correspond to the bit blocks and consequently
are the most influential (vide infra). If the clustering pro-
cess were to reflect the real dissimilarity in the pocket
shape of the conformers, its result should satisfy the fol-
lowing criteria: (1) the atomic rmsd within clusters
should be less than that between clusters; (2) the ligand-
binding conformers observed in the known crystal struc-
tures should be found among the non-redundant set of
conformers; (3) the conformers similar in their confor-
mation should be found in the same cluster and the ones
with distinctive conformations should be in different
clusters; (4) the fitness or shape complementarity
between a ligand and a conformer should be congruent
with the clustering pattern. These points are addressed
below.

Structural dissimilarity of shape clustering

Clustering of the conformers in the previous studies has
been based on the dissimilarity in atomic coordinates
[25,33-35]. These results are not necessarily identical to
those of clustering by pocket shape dissimilarity. On the
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other hand, if the latter yields irrelevant outcomes com-
pared to those from the former, it would be hard to accept
these results. We calculated the rmsd between the flexible
atoms of the binding site side-chains. The results are pre-
sented as boxplots for MMP-1, MMP-13D, and MMP-
13P (Figure 4). In all three cases, the atomic rmsd's within
a cluster were consistently less than those between clus-
ters. This indicates that the clustering by pocket shape is
structurally sound, despite the conceptual difference
from the conventional rmsd-based clustering.

Coverage of the conformational space

We have performed an exhaustive search of the confor-
mational space and retained all the sterically allowed con-
formers in the subsequent bit string representation step.
Consequently all the conformers observed in the ligand-
bound or apo crystal structures should be mapped into
the catalog of the predicted conformers, as long as the
known structures did not involve substantial backbone
movements. Furthermore, it is likely that some part of the
predicted conformational space may not be covered by
the known conformers. We, then, asked the following
questions: how many of the clusters corresponded to the
observed conformers (called "known" clusters) and were
there any clusters distinct from the known conformers
(called "unknown" clusters). In order to map each known
conformer to one of the predicted ones, the closest pre-
dicted rotamer was assigned for each binding site residue
(SLR) and their combination was examined among the
pool of the predicted ones. The results are summarized in
Table 2. For MMP-1, all the seven known conformers
were mapped into two so-called "known" clusters (one
ligand complex structure in the cluster 7, and the other
six in the cluster 9), while the other ten clusters have not
been observed in the crystal structures. Among the seven
known structures, four were in ligand-bound forms (one
in the cluster 7, and the other three in the cluster 9). In
the heat map showing the contact status of the CCRs with
the 3D points (Figure 3), the more bit positions that were
set, the less the pocket volume. Compared to the "known"
clusters, the "unknown" clusters showed diminished
pocket volumes. Their pocket shapes were examined
visually (see Additional File 1: Figure S7). It appears that
the "unknown" clusters exhibit a somewhat collapsed
ligand-binding pocket that is also distinct from the apo
form. On the other hand, the known conformers
belonged to the clusters that were the widest open as far
as CCRs were concerned. The collapsed pocket without
the concomitant adjustment of the backbone atoms may
result in energetically unfavorable loose packing of the
side chain atoms. We may heuristically conclude that a
cluster having severely diminished pocket volume is
unrealistic. The pocket shapes of the four known ligand-
bound crystal structures are shown in Figure 5. The most
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Figure 3 The heat maps depicting binary image representations of the ligand binding pocket shapes for MMP-1. On the left panel, each col-
umn represents the conditional bits and each row represents the pocket shape of a given conformer. The bit position is set (red) if the conformer is
in contact with the 3D points. The bit positions were clustered using an agglomerative complete linkage method, while the conformers were ordered
according to the membership in the accompanying MDS plot. Tyr 240 (green) and Arg 214 (blue), the most influential residues in shaping the pockets,
are labeled "240" and "214", respectively, over the bit blocks they are in contact with. For each pocket shape, the number of bits off is counted and
plotted in the middle panel. On the right panel, the heat map depicts shape incompatibility between a conformer and a ligand. The columns represent
the ligands from the known crystal structures, and their incompatibility with each conformer is coded by red (the darker, the more compatible). For
example, the clusters 1~6 could not accommodate any of the known ligands.

distinctive difference between the two "known" clusters
(7 and 9) was in the region that protruded downward.
Only in 966¢ (Figure 5A) was the pocket deep (shown in
red) enough to accommodate rs2. In the other three
structures (Figure 5B-D), the pocket residues occupied
this region (shown in blue).

We have identified eight clusters for MMP-13D from
the MDS plot. PC1 separated the four "known" (3~6) and
the other four "unknown" clusters (1, 2, 7, and 8). Similar
to MMP-1, the "known" clusters displayed bigger pockets
than the "unknown" ones. Within the "known" cluster
group, the clusters 3 and 4 were separated from the clus-
ters 5 and 6 by PC2 (see Additional File 1: Figure S5).
Among the eight clusters identified from the MDS plot
for MMP-13P, the cluster 6 had the largest volume and
included all the seven known conformers (see Additional
File 1: Figure S6).

It should be noted that the "known" conformers shown
in Table 2 included both ligand-bound (halo) and ligand-
free (apo) forms. In fact all the halo forms except one
belonged to the same cluster as the apo forms in MMP-1.
On the other hand, the apo form belonged to a cluster
distinct from those of halo forms in MMP-13D. As long
as the difference between apo and halo forms is in side
chain conformation with fixed backbone, we can use one
form as the template and can recover the others among
the clusters.

Shape clustering and ligand incompatibility

Having established that the known pocket conformers of
similar shapes fall into the same cluster, we next deter-
mined whether these clusters can distinguish different
ligands or not. The ligand binding pocket of a conformer
may easily accommodate some ligands, but not others. If
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Figure 4 The box plot of average rmsd within and between clusters of MMP-1 (A), MMP-13D (B), and MMP-13P (C). From each cluster, the
medoid conformer was selected and the structural rmsd between the medoid and the rest of the group members was calculated (median at (A) 2.05
A (B)145A,(C) 163 A). Similarly the rmsd between each medoid and the members of the other groups was also calculated (median at (A) 2.65 A, (B)

we measure such shape incompatibility between a con-
former and a ligand, its profile over a series of ligands
should show a uniform pattern for all the member con-
formers in a given cluster. We define the shape incompat-
ibility between a ligand and a pocket as the volume of the
ligand sticking out of the volume encompassed by the
pocket. We applied the following algorithm to estimate it.
We calculate the distance from every ligand atom to the
pocket grid points we have generated based on the tem-
plate structure. The grid points that satisfy Equation (2)
are marked as belonging to the ligand, constituting the

Figure 5 The pocket shapes of the known ligand-bound crystal
structures in MMP-1. The pocket shapes of the four known conform-
ers were compared visually by depicting the pocket points with the
following coloring scheme: the 578 points always free of contacts were
in green, while the 231 conditional points were either in red (free of
contacts) or in blue (in contacts). Only in 966¢ was the pocket deep
(shown in red) enough to accommodate rs2. In the other three struc-
tures, the pocket residues occupied this region (shown in blue).

volume occupied by the ligand. Since they are mapped on
the same lattice, their shapes can be easily compared
using bit strings. Let the bit strings describing the ligand
volume and the pocket L and P, respectively. The incom-
patibility is then calculated as L \ P, the relative comple-
ment of P with respect to L.

As shown in the heat map (Figure 3 right panel), all
members of a cluster had very similar profile of shape
incompatibility with the known ligands of MMP-1. The
"unknown" clusters 1~6 displayed closed pockets that
could not accommodate any of the known ligands.
Although the conformers in the clusters 10~12 have not
been observed in the known crystal structures
("unknown"), it appeared that their shapes were compati-
ble with that of rs2. Since the relatively small rs2 binds
deep inside the pocket, there was little discrimination
against the "unknown" clusters. The "known" clusters 7
and 9 were compatible with their respective known
ligands. The "unknown" cluster 8 showed an incompati-
ble profile similar to those of the clusters 7 and 9 as the
former had a pocket shape similar to those of latter (see
Additional File 1: Figure S7). Similar heat maps were plot-
ted for MMP-13D and MMP-13P, separately (see Addi-
tional File 1: Supplementary Figures 5 and 6). The two
groups of the "known" clusters of MMP-13D separated by
PC2 showed different preferences for the known ligands.
Our analysis of the bit patterns showed the variation in
PC2 was modulated by the rotameric status of Leu 218
(see Additional File 1: Supplementary Figures 5 and 8).
Apparently, the wide-open pocket in the clusters 5 and 6
can accommodate all the known ligands, while the nar-
row-necked pocket in the clusters 3 and 4 preferred 033
and rsl (see Additional File 1: Figure S9). In MMP-13P,
cluster 6 showed very similar patterns of shape incompat-
ibility over the six ligands (see Additional File 1: Figure
S6).
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Figure 6 Rotameric status of the key residues in MMP-1. A total of 8000 pocket shapes were plotted in the MDS plot (PC1~3). Each conformer is

Feasibility of the representative conformers

We have shown that the conformers of the ligand-binding
residues were clustered based on their pocket shapes and
the clustering pattern reflected the shape incompatibility
between a conformer and a ligand. For follow-up applica-
tions such as virtual screening or structural analyses, one
would need a representative conformer for each cluster.
Since the shape incompatibility profile for the known
ligands was uniform over a cluster, any member of the
cluster could be used to represent the entire cluster. We
chose the medoid string as the representative of each
cluster (see the Section (5) of Methods). Since the medoid
is one of the members, the pocket shape and conformer
corresponding to the medoid string can be retrieved from
the stored mapping. See Additional File 1: Supplementary
Table 1 for the shape incompatibility between the medoid
pockets and the known ligands. In MMP-1, all the known
ligands including rs2 showed minimal bumping with the
medoid of the cluster 7, to which its ostensible binding
site conformer mapped. The medoid of cluster 9 was also
compatible with the three known ligands excluding rs2,
as expected. The compatibility patterns between the clus-
ter medoids and the corresponding known ligands of
MMP-13 were consistent with the cluster mapping
results.

Identification of key pocket residues

The two-way clustering heat map of the bit patterns
depicting the contacts between 3D points and the pocket
residues (Figure 3 and see Additional File 1: Supplemen-
tary Figures 5 and 6) implied that some sets of clustered
bits were more influential than others in clustering the
conformers. If those influential bits were in contact with

a few residues only, the latter may be considered the key
pocket residues. In order to identify such residues, we ran
through the residue list and colored the conformers in the
MDS plot by the residue rotamer status. We visually
inspected each colored plot to see whether the coloring
pattern was segregated along the major principal compo-
nent (PC) axes. As shown in Figure 6 for MMP-1, the
variances along PC1 and PC2 can be explained by the
rotameric status of the Tyr 240 and Arg 214 residues,
respectively. Similarly, the key residues of MMP-13D
were identified as Phe 252, Leu 218, and Lys 249, while
those of MMP-13P were Tyr 244, Glu 223, and Ile 243
(see Additional File 1: Supplementary Figures 8 and 10). It
should be noted that the ability to discern the key binding
site residue is an advantage of the ROTAIMAGE algo-
rithm, which maps the binding pocket by 3D points.
Other approaches that are based only on energy calcula-
tions of the binding site residues would pinpoint which
residue contribute the most to the overall energetics of
the conformer, but would not be able to define which res-
idue most affect the shape of the binding pocket. Calcula-
tions of the accessible surface area [60] may provide
similar information, but it is not necessarily true that
more exposed residues influence the binding pocket
shape more.

Conclusions

The ROTAIMAGE algorithm thoroughly surveys the
sterically allowed conformational space and reduces the
conformational complexity by partitioning the conform-
ers into a reasonable number of groups, as previously
proposed [25,33-35]. These approaches are different from
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Table 2: Mapping the known conformers taken from crystal structures to the pocket shape clusters.

protein pdb code ligand cluster ID
MMP-1 966C RS2 7
2TCL RO4 9
1CGL PHQ
1HFC PLH
1CGF apo
1CGE apo
2J0T apo
protein pdb code ligand cluster ID? cluster ID?
MMP-13 1XUC PB3 5 6
1XUD PB4
1XUR PB5
20W9 SP6 6
1710 033 3
830C RS1
2E2D apo 4
TMMP-13D
2MMP-13P

the traditional ones, which attempt to search for the
global minimum-energy conformation (GMEC) through
energy minimization of the conformers. Instead we pro-
pose a method to extract a list of representative conform-
ers from the exhaustive set of pocket conformers. Since
each one is nearby a distinct local minimum, GMEC can
be sought later by exploring the representative conform-
ers in parallel flexible ligand docking exercises. On the
other hand, ROTAIMAGE is novel and distinct from
DYNASITE in that the former compares and clusters the
shapes of the pocket as opposed to the latter that handles
the binding site conformers (see Additional File 2 Supple-
mentary Note for a detailed comparison with DYNA-
SITE). Considering that a ligand should fit in the pocket
volume, focusing on the shape of the pocket may provide
a strong filter for ligand screening. The ROTAIMAGE
algorithm creates a 3D shape using a bit string, which is

widely used in the field of image recognition in computer
science, and is an efficient way to allow easy manipulation
of the conformers. Judiciary application of the standard
clustering technologies to the bit patterns can partition
the conformers into groups that are structurally sensible.
Bit representation offers the ability to examine the con-
formation context of the rotamers in that the most influ-
ential residues are determined from analysis of the bit
pattern. ROTAIMAGE may find wide acceptance and use
in the area of ligand binding pocket modelling.

Additional material

Additional File 1 Supplementary Figures and Table. This file contains
10 additional figures illustrating the results for the MDS scatterplots, heat
maps, and rotameric status. Furthermore a supplementary table is shown
for shape incompatibility in MMP1, MMP-13D, and MMP-13P.
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Additional File 2 Supplementary Note. This file contains additional
description of comparative features of our ROTAIMAGE and DYNASITE or
Kalblad et al. [25].
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