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Detecting disease associated modules and
prioritizing active genes based on high
throughput data
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Abstract

Background: The accumulation of high-throughput data greatly promotes computational investigation of gene
function in the context of complex biological systems. However, a biological function is not simply controlled by
an individual gene since genes function in a cooperative manner to achieve biological processes. In the study of
human diseases, rather than to discover disease related genes, identifying disease associated pathways and
modules becomes an essential problem in the field of systems biology.

Results: In this paper, we propose a novel method to detect disease related gene modules or dysfunctional
pathways based on global characteristics of interactome coupled with gene expression data. Specifically, we exploit
interacting relationships between genes to define a gene’s active score function based on the kernel trick, which
can represent nonlinear effects of gene cooperativity. Then, modules or pathways are inferred based on the active
scores evaluated by the support vector regression in a global and integrative manner. The efficiency and
robustness of the proposed method are comprehensively validated by using both simulated and real data with the
comparison to existing methods.

Conclusions: By applying the proposed method to two cancer related problems, i.e. breast cancer and prostate
cancer, we successfully identified active modules or dysfunctional pathways related to these two types of cancers
with literature confirmed evidences. We show that this network-based method is highly efficient and can be
applied to a large-scale problem especially for human disease related modules or pathway extraction. Moreover,
this method can also be used for prioritizing genes associated with a specific phenotype or disease.

Background
High-throughput experimental data such as protein-pro-
tein interaction [1,2], gene expression [3], and ChIP-
chip data [4], are now widely explored to study the
complicated behaviors of living organisms from various
aspects at molecular level. However, single type of data
only provides limited information, e.g. protein-protein
interaction data only tells us possible interactions
among proteins rather than when and where they inter-
act. Moreover, these data are diverse from data type to

scale, e.g. protein interaction data is generally quantified
as discrete values while gene expression data are usually
expressed in the form of continuous values. Therefore,
how to integrate these heterogeneous data to elucidate
biological mechanisms is an essential and challenging
problem in computational biology and systems biology.
Generally, genes and their product proteins function in
a concert rather than isolated manner. In particular,
proteins interacting with other proteins, DNA, RNA and
small molecules, form modules (e.g. complexes or path-
ways) to carry out cellular functions [5]. In contrast to
individual components, it has been recognized that bio-
molecular networks or pathways are ultimately responsi-
ble to the forms and functions of living organisms, and
can also reasonably explain the causes of various pheno-
types. On the other hand, although protein interaction
networks or pathways are available for many organisms
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based on accumulated protein interaction data and other
experimental evidence, it is still a difficult task to iden-
tify active pathways or modules due to the changing
conditions and environments in each living cell. In
other words, while some genes, e.g. housekeeping genes,
are constitutively expressed under various conditions to
carry out basic cellular processes for growth and suste-
nance, most of genes or pathways are actually active
only under defined conditions (e.g. at specific time and
tissue). For such a problem, microarray offers a powerful
tool to study gene expression patterns or active path-
ways under different conditions when combined with
proteomic data.
The condition-specific gene analysis methods such as

SAM [6] for exploring gene expression data as well as
computational methods for identifying disease genes [7]
have been well studied. However, these methods don’t
consider condition-dependent changes and cooperations
among genes simultaneously. By integrating gene
expression data and prior established biological knowl-
edge, such as GO function categories [8] and KEGG
pathway database [9], gene set analysis approaches, such
as MAPPFinder [10], GSEA [11,12] and so on, are pro-
posed to detect disease related differentially expressed
gene sets. The principle of those methods is to rank
gene sets based on enrichment of differentially
expressed genes involved. Although these methods can
reveal subtle but coherent gene expression changes, a
major drawback is that they can not discovery new
pathways correlated to phenotypes or diseases which
have no records in pathway databases.
Recently, in order to identify gene modules associated

to phenotypes, diseases or changing conditions, many
methods [13-21] have been developed by integrating
interactome with gene expression data. A disease asso-
ciated active module can be considered as a connected
subnetwork or dysfunctional pathway in a biomolecular
interaction network which has close relationship with a
specific disease. Previous works to detect an active mod-
ule generally include two steps. In the first step, a scor-
ing scheme to evaluate a module’s active level is
adopted based on each gene’s or interaction’s active
level from gene expression data. The scoring function is
usually designed to be an additive function of each
gene’s active level. Ideker et al. [13] first formulated the
problem of the active pathway detection, where the
scoring scheme is given by a summational function of
all genes’ differentially expressed p-value within the sub-
network. Dittrich et al. [19] used an additive function of
p-values based on a mixture model. Breitling et al. [14]
proposed a method named GiGA to score subnetworks
in terms of genes’ order of their differential expression
significance. In these methods, genes in the same path-
way are assumed to be independent, and the correlation

or cooperativity between genes are not considered.
Thus, Guo et al. [17] and Nacu et al. [16] modeled the
relationship between genes in a local manner so that
only neighborhood relations of genes are considered. In
the second step, a search procedure is implemented to
find an active module from a molecular interaction net-
work such that the nodes of the active module are con-
nected in the subnetwork with a highest score.
Unfortunately, this procedure is an NP-hard problem as
was proved by [13]. Several heuristic or approximate
methods were proposed to deal with this problem, e.g.
simulated annealing based [13,17], locally greedy search
based [14-16,18] and mathematical programming based
methods [19,21]. However, these methods typically suf-
fer from inefficiency and inaccuracy problems due to
the NP-hard nature, thereby are not tractable for practi-
cal applications.
In this paper, with the consideration of the global rela-

tionship among genes, we propose a novel network-
based method to identify disease associated modules by
integrating both protein-protein interaction and gene
expression data in an efficient and accurate manner.
The proposed method based on a regression model with
a diffusion kernel is denoted as RegMOD, which not
only can theoretically model the nonlinear effect of gene
cooperativity but also is computationally efficient. We
have tested RegMOD on both simulated and real world
datasets. The results of numerical experiments demon-
strate its efficiency and robustness. Furthermore, by
applying to the breast cancer and prostate cancer data-
sets, we successfully and efficiently identified disease
related active modules which have been confirmed to
correspond to the known molecular mechanism of these
two types of cancers. Clearly, the identified active mod-
ules display a possible scenario of dysfunctional gene
cooperativity for complex diseases.

Methods
Principle of RegMOD method
Genes or proteins are linked to form a network by inter-
actions, which facilitates biological functions. From the
perspective of information flow, the information of bio-
logical systems contained in genes is transferred to pro-
teins or other molecules for executing biological
functions. In this paper, we do not distinguish gene with
its product protein as used in the seminal paper of Ide-
ker et al. [13]. The nodes in the interaction network
represent genes and links between genes represent inter-
actions including protein-protein interaction, protein-
DNA interaction or other functional linkages.
Based on the assumption that interacting genes have

similar active scores which measure the extent to which
genes respond to a specific disease. The active score of
a gene is defined by a nonlinear active scoring function

Qiu et al. BMC Bioinformatics 2010, 11:26
http://www.biomedcentral.com/1471-2105/11/26

Page 2 of 12



which considers the cooperations among genes. To esti-
mate these underlying active scores defined by the active
scoring function, a kind of observed active scores
defined as differentially expressed levels of genes is cal-
culated from the case-control microarray data. The goal
is to estimate the underlying active scores for each
genes which approach to the observed active scores and
capture the cooperative pattern simultaneously. This is
formulated as a typical regression problem by fitting the
active scoring function to the observed active scores. In
this paper, we use the support vector regression method
with a diffusion kernel to evaluate each gene’s underly-
ing active score. This procedure can be regarded as a
smoothing process that gives each gene a new active
score. It can eliminate acute changes among neighboring
genes in the network and infer underlying active scores
of genes whose expression level could not be measured
(Figure 1). It can significantly improve the accuracy and
robustness of the predicted activity of genes and reduce
the effect of noise and incompleteness of the high-
throughput data. Finally, the induced subnetworks of
significantly scored genes form the active modules
which are expected to be related with a specific

phenotype or disease. Particularly, prioritizing genes
according to their active scores can provide the order of
gene’s association level with a specific phenotype or
disease.
Regression Model with Diffusion Kernel
Genes interacting with each other can be expressed as a
network. The gene expression data provides valuable
information on gene’s activity, which can be represented
by weights of genes and interactions in the network.
Formally, an interaction network with weighted nodes
and weighted edges can be expressed as G = (V, E, S,
C), where node set V represents genes, edge set E repre-
sents interactions, S represents the scores or weights of
nodes, i.e. the active level of each node, and C repre-
sents the weight of edges. Since coexpressed genes are
more likely to function together, the edge weight is
defined as absolute Pearson correlation coefficient of
expression profile of two node genes as following

C
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Figure 1 Illustration of the effect of RegMOD. (A) shows the grid network where the red nodes represent the active module. (B) and (D)
illustrate the active score surfaces before and after the processing of RegMOD respectively. (E) shows the active score surface obtained by
RegMOD when the nodes represented by blue triangle are deleted. In the randomly generated network example, the recall-precision plot and
box-plot of F-measure for RegMOD are shown in (C). In the edge-weighted case, the performance is significantly improved. The recall-precision
plot and box-plot of F-measure for RegMOD are shown in (F).
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where y and z are two expression profiles, y and z
are mean expression values. For a node subset V’ ⊆ V,
G’ = (V’, E’, S’, C’), where
         S s s s v Vv v v ii i i

{ | ; } ,          S s s s v Vv v v ii i i
{ | ; }

and              C c c c v v Vv v v v v v i ji j i j i j
{ | ; , } , is the induced

subnetwork of V’ from G.
To model the relationship between active scores and

genes, we construct a function in which underlying
active score fi of gene i is taken as a response variable
and genes x1, x2,..., xn are viewed as explain variables,
i.e.,

f f x x x xi i n ( ; , , , ),1 2 

where xi, i = 1,..., n is the attribute vector of each gene
which contains the biological information. Clearly, each
gene’s active score is affected by other genes. The rela-
tionships between genes are involved in this nonlinear
function rather than an additive function which assumes
non-cooperativity among genes. In other words, in con-
trast to the existing methods, the proposed model can
represent cooperative effect among genes.
By a nonlinear mapping j as in [22,23], we transform

the relationship of genes and active scores from the
input space of x into a feature space (such as reprodu-
cing kernel Hilbert space). Then, the nonlinear function
f in the input space can be expressed as a linear func-
tion in the feature space

f x u x bi i( ) , ( ) . 

Based on the representation theorem [22,23], u can be
expressed as u xj jj

n   ( )
1

in the reproducing ker-
nel Hilbert space which has good theoretical properties.
Using the kernel trick as mentioned in [22,23], the inner
products in the feature space can be calculated by a ker-
nel function in the input space, i.e. kij = 〈j(xi), j(xj)〉, i, j
= 1, 2,..., n. Then

f x k bi j ij

j

n

( ) , 

 
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where kij is the kernel function which is the similarity
of gene i and gene j. Thus, it is unnecessary to know
neither the mapping j nor the feature space exactly due
to the kernel trick. In other words, the transformed
nonlinear function can be numerically evaluated simply
by a linear mode, thereby greatly simplifying computa-
tion. Evaluating the kernel function on all pairs of genes
yields a kernel matrix K = (kij), i, j = 1, 2,..., n, which is
symmetric and positive semi-definite. There are many
kernels such as Gaussian kernel, polynomial kernel and
spline kernel to describe the similarity of continuous

variables. To model similarity of nodes in a network
which has a discrete structure, the following diffusion
graph kernel from [24] which simulates the heat trans-
duction in the network is adopted [23],

K e L  ,

where τ controls the magnitude of the diffusion and L
is the graph Laplacian matrix
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where d Ci ijj

n  1
is the degree of node i. For edge-

unweighted case, Cij = 1 if node i and j are adjacent and
Cij = 0 otherwise. Note that even for an edge-weighted
network, its diffusion kernel can be calculated in the
same way. kij describing the similarity of two nodes
increases with the shortest-path distance and the num-
ber of all possible paths between them [24]. Thus, with
diffusion kernel, f is calculated based on nodes’ topologi-
cal similarity in the network.
In the following part, we introduce how to define the

observed active score for each gene. For a microarray
dataset including two classes of samples, e.g. case and
control, the observed active score of each gene is evalu-
ated by the Signal to Noise Ratio (SNR). For the ith
gene, its expression profile can be divided into two
classes and its SNR active score can be calculated as

w i i
i i

i 



 
 

1 2
1 2

,

where μi1 and μi2 are the means of the expression
levels of gene i in sample set 1 and sample set 2 respec-
tively, and si1 and si2 are the standard deviations of
gene i in sample set 1 and sample set 2 respectively.
There are only a few number of samples contained in
the microarray data which can hardly meet the statistical
significance, therefore this simple metric SNR is more
compatible and has been successfully used to detect dis-
ease related genes and gene sets [11,25]. Other statistics
such as t-statistics and statistics used in SAM [6] have
also been tested. SNR performances better than other
statistics, thus we adopt this metric for further analysis
(See Figure S2 in the Additional file 1).
The SNR score of each gene wi is regarded as the

observed value of underlying active score fi. Due to the
noise and incompleteness of the microarray data, the
observed active score may not well reflect the fact that
interacting genes have similar active scores. Thus, using
f to fit the observed score can predict the underlying
active score which captures the cooperative patterns
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among genes and is most close to the observation. In
practice, the fitting process is to estimate the parameters
b in function f towards wi. This forms a nonlinear
regression problem, which can be solved by the follow-
ing support vector regression (SVR) [22] model,

min || || * || || ,
1
2

2 2

1

u C f wi i

i

n

 



where 1
2

2|| ||u is the regularization term and C* is a
regularization constant, they control the complexity of f
and prevent from overfitting. This problem is solved in
its dual space by converting the primal problem to its
dual problem which is a convex quadratic programming:
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where ai and  i
 are Lagrange multipliers, bi = (ai -

 i
 ), ε is a small constant. Thus, the globally optimal

solution can be obtained even for a large scale problem.
In this study, the widely used software LIBSVM from
[26] was employed to solve the SVR problem.
After f is fitted, each gene gets a new active score fi

which is regarded as the underlying active score. Since the
observed active score is noisy and has many outliers, the
proposed method RegMOD can smooth out the outliers
and estimate the underlying active score by integrating the
network topological similarity between genes. A gene with
a low w score but functioning as a bridge to connect high
weighted genes will get a newly high f score. Conversely, a
gene with a high w score but interacting with low score
genes will get a newly low f score. The Matlab code of
RegMOD is available in the Additional file 2.
Based on the estimated underlying active score, we

extract the active modules from the network. The high
scoring region in the network constitutes active modules
which associate to the specific phenotype or disease. To
extract these modules, the high scoring active gene set
including up-regulated gene set VUf and down-regulated
gene set VDf, are selected as follows,

VU v f f i n

VD v f f i n

f i i

f i i
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where f is the median value of f and s is the median
absolute deviation of f, θ represents the fold change
apart from the median. Genes with f value higher than
the fold change are considered significantly active. In
this paper, we found that θ = 6 is reasonable for obtain-
ing biologically significant results in both practical appli-
cations (See Figure S3 in the Additional file 1). Then, we
can obtain the induced subnetwork GUf (GDf) of VUf

(VDf) from the interaction network. The connected
components of GUf (GDf) correspond to the up-regu-
lated (down-regulated) modules.
Performance measurements
To evaluate the performance of the accuracy of the
identified active modules in the simulated dataset, the
recall and precision (denoted as r and p respectively) are
applied and defined as below:

r  the number of correctly detected nodes
the size of the reaal active module

the number of correctly detected nodes

,

p 
tthe size of the indentified module

.

The F-measure which is the harmonic mean of preci-
sion and recall is used to measure total accuracy:

F-measure 


2pr
p r

.

Large F-measure value indicates good performance of
the results. For each identified module by one method,
we calculate the r, p and F-measure. The recall-precision
plot and box-plot of F-measure are implemented to
compare the performance of different methods.
To measure the topological similarity of two genes

within a module, the following index is adopted:

similarity( , ) log ( ),i j kij 10

where kij is the element of the diffusion kernel matrix
K. The logarithmic transformation could facilitate to
visualize subtle changes. Other logarithm base, such as 2
or e, could also be used, which do not affect the results.
The high value of similarity indicates tight or close rela-
tionship between two genes.
Prioritizing genes according to the absolute active

scores can generate a gene ranking list. The distribution
of disease related genes in this ranking list is used for
evaluating the active score’s biological meaning. The
plot of coverage of disease genes versus the rank of
genes is used (See Figure 2G and 3F, Figure S2, S3, S4
and S5 in the Additional file 1), i.e. each point in the
figure represents the number of disease related genes in
the set of genes with higher rank than a value.
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Results and Discussion
Materials
We first tested our method on two simulated networks.
The first one was a grid network with 500 nodes (Figure
1A) which was designed for better visualization. A con-
nected subnetwork with 50 nodes was randomly selected
from the whole network to represent an active module.
Firstly, a seed node was selected as an initial active sub-
network from all nodes of the network. Then, one
neighbor node of the active subnetwork was randomly
selected to be added to the current active subnetwork.
This add-in process was repeated until the subnetwork
size reached to a previously defined value (e.g. 50 in this
example). As the same setting of [15], each node in the
active modules was given an active significance p-value
uniformly distributed between 0 to 10-3, and other
nodes were given p-values uniformly distributed

between 0 to 1 representing the background activity.
Since the p-value assigned to each node cannot be
transformed to a SNR score, it was transformed to a Z-
score to represent active score by an inverse cumulated
standard normal distribution function as used by [13].
The edge weights were all set to 1. To test RegMOD on
general network, another network of 500 nodes with
randomly generated topology structure was used. An
active connected subnetwork of 50 nodes as well as the
active scores was also generated as described in the first
example. Two types of edge weights were tested in this
example. For the edge-weighted case, edges within the
active module were weighted by scores uniformly dis-
tributed in (0.5, 1) and others were weighted by scores
uniformly distributed in (0, 1), to simulate the correla-
tion of gene expression profiles. For the edge-
unweighted case, the weights of all edges are set to 1.

Figure 2 Breast cancer metastasis associated modules identified by RegMOD. The square nodes refer to known breast cancer related
genes. (A) and (D) are up-regulated modules BCUM1 and BCUM2 which are related to cell cycle and apoptosis respectively in red color. (B) and
(E) are down-regulated modules BCDM1 and BCDM2 which are related to signaling transduction and antigen presentation respectively. (C) and
(F) chart the box-plot of the similarity among genes and SNR values of genes involved in active modules found by different methods. The
distributions of breast cancer genes on different gene ranking lists are shown in (G). (H) charts the comparison of gene sets’ coverage of known
breast cancer associated genes using different methods with the significant p-values calculated by hypergeometric distribution.
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The proposed method was applied to study two real bio-
logical problems. The molecular interaction network was
from the HPRD [27] protein-protein interaction database
(release 7) which contains 9460 genes with 37083 interac-
tions. Two gene expression datasets were used to test our
method. One of them was generated by breast cancer
tumor gene expression experiments [28], which contains
gene expression profiles for 286 patients with lymph-node-
negative primary breast cancer. No patient received any
adjuvant therapy. During the follow-up period, 180 of
these patients were relapse-free at 5 years, and 106 of them
developed distant metastasis. The other gene expression
dataset [29] of prostate cancer was from profiling 74
tumor and 41 normal prostate specimens samples using
cDNA microarrays. All expression data were downloaded
from the SMD [30] database. We preprocessed the data in
a popular procedure used by many studies [17,31]. Probes
with missing data in more than 10% of arrays were
screened out. Then, we applied base-2 logarithmic trans-
formation and carried out data normalization so that the

expression values had the mean 0 and standard deviation 1
in every array. Genes’ expression profiles were mapped
from probe annotation. For the gene measured by many
probes, the mean expression value was used. Finally, pro-
files of genes which were contained in the network were
used for further analysis. There were 7948 genes in the
network which had expression profiles in the breast cancer
dataset, and 6265 genes in the network were profiled in the
prostate cancer dataset.
A list of 60 breast cancer susceptibility genes (52 of

them are present in the network) collected by [31],
which included 13 genes recorded in OMIM [32], was
used to evaluate a module’s coverage of the disease
genes. For the prostate cancer dataset, a list of prostate
cancer related genes included in the Prostate Gene
Database (PGDB) [33] and recorded in OMIM [32] was
used. There were totally 183 prostate cancer related
genes in which 140 genes were present in the network.
In further analysis, the Molecular Signatures Database

(MSigDB) [12], which was a collection of gene sets

Figure 3 Prostate cancer associated modules identified by RegMOD. The square nodes refer to known prostate caner related genes. (A), (B)
and (C) are three down-regulated modules PCDM1, PCDM2 and PCDM3 which are related to cell adhesion, receptor binding and cell growth
respectively. (D) and (E) chart box-plot of the similarity among genes and the SNR of genes involved in active modules found by different
methods. (F) chats the distribution of prostate cancer genes on different gene ranking lists. (G) charts comparison of modules’ coverage of
known prostate cancer related genes using different methods.
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including known, experimental and computational sets
of genes with common properties such as involvement
in the same canonical pathway or GO category, was
used to annotate identified modules. The best overlap-
ping gene set in the database with an identified module
was provided as annotation based on p-value computed
by hypergeometric distribution. Here, two types of gene
sets with known biological function, canonical pathway
and GO category, were used. The significant overlapped
gene sets were ranked by the p-values and the first 20
significant sets such that p-value < 0.05 were selected as
annotations.
Two methods jActiveModues [13] and GiGA [14]

were also applied to the same datasets for comparison.
The jActiveModules which is a plug-in of Cytoscape
[34] implements the method proposed by [13]. The jAc-
tiveModules assigns a Z-score which measures the dif-
ferentially expressed level of a gene to each gene and
searches active subnetworks using two alternative strate-
gies: the simulated annealing and greedy search. In this
paper, the p-values used in jActiveModules were calcu-
lated via t-test. Another method GiGA assigns the rank
of genes based on the differentially expressed level to
each gene. It finds active subnetworks by iteratively
extending subnetworks which are initially from the local
minimal nodes. The gene order lists used in GiGA were
ranked in terms of SNR by ascending or descending
order to find up- or down-regulated modules.
Results on Simulated Dataset
We performed 20 different runs to test the performance
of the proposed RegMOD method and all the different
runs showed very consistent results. Here, for clearly
showing the effect of parameters and comparing with
other methods, we randomly selected one network for
each testing example. To illustrate the visual effect of
RegMOD method, we first assessed our method on a
grid network with a predefined active module (as shown
in Figure 1A). If one regards the score of each node as
the height and connects them with a continuous surface,
it constitutes a ridgy surface (called active score surface)
above the network as shown in Figure 1B. The active
module is composed of some peaks of the surface. After
applying the proposed RegMOD, the active score surface
in Figure 1D became smooth and the active module was
more clear than that in Figure 1B where it was present
as a unique peak of the surface. We randomly deleted
100 nodes from the network and then estimated the
active score surface. As illustrated in Figure 1E, the sur-
face was almost the same as the one without missing
nodes.
More quantitatively, we tested our method on another

randomly generated network (as described in Materials)
to detect the predefined active module. Different para-
meters (τ = {1, 2, 3,4, 5} and θ = {2, 4, 6}, totally 15

different combinations) were set, and corresponding
recall, precision and F-measure were calculated. To
compare with existing methods, we ran the software
jActiveModules 10 times with the simulated annealing
strategy based on different well tuned parameters, and
evaluated results in the same way. The GiGA was also
applied to this data set with different parameter m (m =
40 to 60, which is around the true active subnetwork
size 50). Deleting part of nodes from the network ran-
domly, the proposed RegMOD was also tested. The
recall-precision plot of results (see Figure 1C) showed
that the active module was successfully identified by
RegMOD in some cases even with missing values. We
found that jActiveModules could hardly get the results
which perform well in both recall and precision. The
GiGA had better performance than jActiveModules but
was worse than RegMOD. The box-plot of F-measure of
the results (see Figure 1C) indicated that average perfor-
mance of RegMOD was superior to other methods.
Considering the case of weighted edges (as described

in Materials), the performance of the proposed method
was significantly improved, comparing with unweighted
case (see Figure 1F). The most of identified modules
achieved high recall and precision in all cases even with
missing values. The average F-measure of RegMOD was
high and the variance among different results was small.
Since jActiveModules and GiGA did not use the infor-
mation of edges, the performance was still the same as
previous results. Comparing with these two cases,
clearly, RegMOD achieved high accuracy in the edge-
weighted network, and the performance was also robust
to parameters, noises and missing values. In the follow-
ing real biological applications, we tested the RegMOD
to detect modules and genes related to cancers in
weighted networks which incorporate the correlation of
gene expression profiles into the interaction network.
Results on Breast Cancer Dataset
Since two highly co-expressed genes are more likely to
interact together to facilitate biological functions, we
tested the RegMOD on the edge-weighted interaction
network by integrating the Pearson correlation coeffi-
cient value of two genes’ expression profile, and the dif-
fusion kernel parameter τ = 3 and regularization factor
C* = 1 (sensitivity analysis showed in Figure S3 and S5
in Additional file 1). Ranking the gene’s absolute active
score f, a gene list was given. In the first 2000 genes, the
breast cancer related genes were enriched in this list
comparing with other lists ranked based on absolute
value of SNR and t-statistic (denoted as t-stat) (see Fig-
ure 2G). By setting θ = 6, we got a compact gene list
with 171 genes. BRCA1, KRAS, VDR and AR which are
breast cancer associated genes were presented in this
list. Its induced subnetwork contained 2 up-regulated
modules (denoted as BCUM1 and BCUM2) and 2
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down-regulated modules (denoted as BCDM1 and
BCDM2) according to the activity changing directions of
genes (see Figures 2A, B, D and 2E). Figures 2C and 2F
show that the SNR values of genes in modules identified
by RegMOD were slightly lower than modules by other
methods while the similarity among genes was higher.
We further investigated modules based on the annota-

tion by MSigDB. One up-regulated module BCUM1
(Figure 2A) included 52 genes among which there are
two breast cancer related genes BRCA1 and KRAS. This
module is a cell cycle related module which is enriched
with cell cycle related genes (cell cycle GO terms over-
lapping p-value = 2.53 × 10-11 and cell cycle pathway
overlapping p-value = 8.86 × 10-7). Many studies indi-
cate that cell cycle and proliferation genes are associated
with higher grade, poor prognosis tumors (see [35] and
the references therein). The module is also enriched
with genes associated with membrane progesterone
receptor pathway (p-value = 5.35 × 10-5), and ERBB sig-
nal pathway (p-value = 1.13 × 10-3). Progesterone signal
plays an important role in breast cancer development
and progression [36], and progesterone receptor signal-
ing has a role in breast cancer cell movement and inva-
sion through the actin cytoskeleton [37]. ERBB2 is a
well-established prognostic marker, and the signaling
processes driven by ERBB receptors are related to breast
cancer [38]. Another up-regulated module BCUM2 (Fig-
ure 2B) is an apoptosis related module which is enriched
with apoptosis GO function (p-value = 5.35 × 10-4). We
found that it significantly overlaps with the Fas signaling
pathway which induces apoptosis and NF-kB activation
[39]. Dysregulated apoptosis contributes to malignant
progression in breast cancer [40].
In the two down-regulated modules, BCDM1 (Figure

2D) is a signal transduction related module which con-
tains 33 genes including two breast cancer related genes
AR and VDR. It enriches with signal transduction and
related GO function terms, and significantly overlaps
with Interleukin-6 signal pathway (p-value = 6.38 × 10-
6), apoptosis pathway (p-value = 1.05 × 10-5), epidermal
growth factor signal pathway (p-value = 1.81 × 10-5) etc.
which are related to cell grow, inflammation, prolifera-
tion, and apoptosis signaling transduction. Previous
study of [41,42] pointed out that dysregulation of
growth signaling transduction molecules resulted in
uncontrolled proliferation and survival, ending in tumor
initiation and progression. The other down-regulated
module BCDM2 (Figure 2E) is an antigen presentation
related module containing 8 genes where 7 of them
were involved in antigen processing and presentation
pathway (p-value = 1.26 × 10-12). This confirms the fact
that in patients with advanced-stage breast cancer, anti-
gen presentation was decreased [43,44].

By ranking absolute SNR and t-statistic, both two of
lists for the top 171 genes contain one breast cancer
associated gene. GiGA was also applied to these data,
and the identified 4 significant active subnetworks cov-
ered only one breast cancer associated gene. The jActi-
veModules was used to find active subnetworks for
comparison, and obtained 3 active subnetworks. The
results include 6 breast cancer related genes. The p-
value of coverage significance indicates that our method
is able to efficiently extract compact gene list with a sig-
nificant high coverage for breast cancer related genes
(See Figure 2H). Although subnetworks found by jActi-
vemodules also covered many breast caner associated
genes, the subnetwork is too large to be interpreted, and
do not distinguish the up- and down-regulated modules.
The absolute SNR value of each gene in the active mod-
ules identified by different methods is shown in Figure
2F. The absolute SNR of genes in the modules identified
by RegMOD is a little lower than in other modules.
However, the similarity among genes is higher than
others (see Figure 2C) which means that the identified
modules containing genes with high correlation are
more likely to achieve particular functions.
We further analyzed modules identified by Reg-MOD

and other methods in terms of the overlap of known
pathways and GO categories enrichment(shown in
Tables S1 and S2 in Additional file 1). The down-regu-
lated module BCDM2 (Figure 2E) is highly overlapped
(6 overlapped genes) with one down-regulated module
(18 genes) identified by GiGA and one active subnet-
work (6 genes) identified by jActiveModules. The six
genes in the three modules are all involved in antigen
processing and presentation pathway. The pathways
overlapped and enriched GO categories are almost the
same. This indicates that antigen processing and presen-
tation are inhibited in metastasis tumor. The down
regulated module BCDM1 and one module identified by
GiGA overlap with 6 common pathways and enrich
with 8 common GO terms which are related to signal
transduction. However, there are some differences
between them, for example, Interleukin-6 signal pathway
and epidermal growth factor signal pathway which are
related to breast cancer are present in the pathway over-
lapping list of BCDM1 but missed in the other. The
pathway overlapping and GO category enrichment list
of up-regulated module BCUM1 is highly similar to one
module identified by GiGA and one by jActivemodules.
The three modules all contain BRCA1 and were highly
related to cell cycle. However, some differences still
exist, such as, ERBB signaling pathway which is asso-
ciated to breast cancer is present in the BCUM1 path-
way overlapping list while absent in other lists.
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Results on Prostate Cancer Dataset
In another case study of prostate cancer, we applied
RegMOD with τ = 3 and regularization factor C* = 1
(sensitivity analysis showed in Figure S4 and S5 in Addi-
tional file 1) to the network weighed by Pearson correla-
tion coefficient of two genes’ expression profile. The
ranking list of genes in terms of the estimated underly-
ing active score f enriched with the prostate cancer
related genes comparing with other ranking methods
(see Figure 3F). By setting θ = 6, a list of 299 genes
including 12 prostate cancer related genes were selected
for further analysis. The induced subnetworks contain 3
down-regulated modules (denoted as PCDM1, PCDM2
and PCDM3, which contain 69, 8 and 6 genes respec-
tively) as illustrated in Figures 3A-C. These modules
both have high intra-module similarity and differentially
expressed levels as showed in Figures 3D and 3E.
PCDM1 (see Figure 3A) is a cell adhesion related mod-
ule which contains 6 prostate cancer related genes. It is
significantly overlapped with the cell adhesion related
pathway such as, adherens junction pathway (p-value =
3.35 × 10-6) and focal adhesion pathway (p-value = 1.43
× 10-4). The GO annotation indicates that it is enriched
with cell achesion related GO terms, such as cell sub-
strate adherens junction (p-value = 6.84 × 10-6) and
adherens junction (p-value = 3.15 × 10-5). Cell adhesion
is a hallmark of prostate cancer cells. E-cadherin, N-cad-
herin, b-catenin, integrins, focal adhesion kinase, con-
nexins and matrix metalloproteinases all appear to be
promising biological markers associated with the early
stage metastatic process in prostate cancer [45]. Another
module PCDM2 (Figure 3B) is related to receptor bind-
ing. It enriches with genes of receptor binding GO
annotation and those genes involved 4 pathways such as
regulation of actin cytoskeleton, MAPK signaling path-
way. Several groups have found evidence that the
MAPK signaling pathway is highly associated with pros-
tate cancer [46]. The third module PCDM3 (Figure 3C)
containing one prostate cancer related gene GSTP1 is
related to cell growth. It is enriched with GO terms
related to cell apoptosis, death and development. Dysre-
gulation of these processes contributes to tumor pro-
gress and metastasis [46].
Other methods were also applied to this dataset. The

resulted modules’ coverage of prostate cancer related
genes is showed in Figure 3G. Ranking genes based on
the SNR and t-statistics (denoted as t-stat) and selecting
the top ranked 299 genes, we obtained a gene list con-
taining 7 prostate related genes. The GiGA found 373
genes involving 4 active modules and covering 12 pros-
tate related genes. The jActive-Modules found an active
module of 441 genes which contains 21 prostate related
genes. Comparing with these methods, the gene list
identified by RegMOD is more compact than GiGA and

jActiveModules, and covers more prostate cancer related
genes than ranking SNR or t-statistics and GiGA,
thereby verifying the effectiveness and efficiency of our
method.
Further investigation of the annotation of modules

identified by RegMOD and other methods is shown in
Table S3 and S4 (see Additional file 1). PCDM1 has a
similar GO and pathway annotation with two down-
regulated modules found by GiGA and one active mod-
ule by jActiveModules. However, some annotations are
unique in PCMD1, such as renal cell carcinama path-
way, TGFB pathway and nuclear import GO terms. The
TGF beta signaling (TGFB) pathway is related to regula-
tion of growth and proliferation of cells which are also
related to tumor progress [46]. The pathway annotations
of PCDM2 are involved in one module found by GiGA
and the active module found by jActiveModules while
the GO annotation is not. The GO annotations of
PCDM3 are diverse from other modules. As analyzed
above, these GO annotations related to cell growth are
also related to tumor progress.

Discussion
Microarray data and interactomic data play key roles in
the pathway extraction and analysis. Microarray technol-
ogy facilitates the identification of genes involved in the
human diseases by providing disease specific gene activ-
ity information, whereas the inter-actomic data shed
light on the probability of genes and proteins interacting
with each other. Assembling these two types of data can
uncover disease associated genes, pathways and molecu-
lar mechanisms. In this paper, we proposed an efficient
and robust method to identify disease associated mod-
ules, which can be pathways, complexes or crosstalk
subnetworks between pathways related to the disease
process. Specifically, from a systematic perspective, the
relationship between genes and a specific disease is
modeled by a nonlinear active scoring function in this
paper. Then, genes’ active scores which measure the
level of their responses to the disease are defined by a
diffusion kernel, which represent cooperative effect of
genes. The active scoring function is estimated by the
support vector regression method which is efficient even
for a large-scale problem. Finally, the disease related
modules are derived from the high ranking genes. From
computational viewpoint, our method can solve large
scale problems in the global optimization sense, in con-
trast to the conventional heuristic methods. From the
numerical example, we show that our method achieves
high performance and is superior to other methods by
identifying modules with compactness and high cover-
age of disease related genes. Applying our method to
breast cancer and prostate cancer data, we identified
compact breast and prostate cancer related modules
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confirmed by literatures. Note that this method also
provides a gene ranking list which is useful for choosing
the closely related genes for further experimental verifi-
cation. In addition, we can get the active modules with
different sizes which are nested each other by altering
the threshold from high to low. This hierarchical struc-
ture which is similar to the contour map is easy to be
used for exploring the distribution of the active region
in the whole network.
The condition-specific pathway identification and gene

function prediction are two typical problems in bioinfor-
matics. Here we introduce RegMOD to address the first
problem based on the assumption that interacting pro-
teins have similar activity. A related computational fra-
mework employing Markov random field model [47]
and diffusion kernel with the support vector machine
[48] for protein function prediction have been proposed
recently. The underlying rationale is that proteins with
similar function annotation are more likely to interact
with each other. Furthermore, the methodologies are
different since the protein function prediction problem
uses classification method, while RegMOD employs a
regression model. In the numerical and real world
examples, we prove that RegMOD is an effective
method for gene active pattern discovery, the disease
associated pathway identification and genes inference.
The parameters used in the RegMOD are selected

empirically in terms of the topology of the network and
correlation between genes. In the future, we will further
refine the model selection method to improve the com-
putational efficiency. In addition, many sources of data,
such as mass spectrometry, SNP and clinical outcome
data, can be assembled into this model to achieve high
accuracy. For instance, by describing these data as ker-
nel matrices, we can combine them by an additive func-
tion of kernel matrix, thereby integrating different data
sources efficiently. Another factor affecting the perfor-
mance of RegMOD is incompleteness of the interaction
data. While, the identified module is largely restricted
by the topology of the network. One proper way to
address this problem is to integrated other molecular
interaction data, such as protein-DNA interactions or
protein-compound interactions, with protein-protein
interaction data to construct a network as [49] including
signal transduction, gene transcription and metabolic
network. On the other hand, along with deeper research
of biological system, more and more interactions will be
verified by experiments, which will promote the perfor-
mance of RegMOD.

Conclusions
In conclusion, a novel method is proposed for detecting
disease associated modules by integrating protein-pro-
tein interaction and gene expression data. Different

from existing methods, the cooperations of genes are
considered. The testing results on artificial dataset and
real world results indicate that it is robust to noise and
missing values and identifies disease associated modules
with literature confirmed evidences. Due to computa-
tionally efficiency, it can be applied for large scale pro-
blems. In addition, the ReMOD method uncovers each
gene’s active scores which facilitate disease associated
gene ranking.
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