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Abstract
Background: Large-scale genomic studies often identify large gene lists, for example, the genes sharing the same 
expression patterns. The interpretation of these gene lists is generally achieved by extracting concepts 
overrepresented in the gene lists. This analysis often depends on manual annotation of genes based on controlled 
vocabularies, in particular, Gene Ontology (GO). However, the annotation of genes is a labor-intensive process; and the 
vocabularies are generally incomplete, leaving some important biological domains inadequately covered.

Results: We propose a statistical method that uses the primary literature, i.e. free-text, as the source to perform 
overrepresentation analysis. The method is based on a statistical framework of mixture model and addresses the 
methodological flaws in several existing programs. We implemented this method within a literature mining system, 
BeeSpace, taking advantage of its analysis environment and added features that facilitate the interactive analysis of 
gene sets. Through experimentation with several datasets, we showed that our program can effectively summarize the 
important conceptual themes of large gene sets, even when traditional GO-based analysis does not yield informative 
results.

Conclusions: We conclude that the current work will provide biologists with a tool that effectively complements the 
existing ones for overrepresentation analysis from genomic experiments. Our program, Genelist Analyzer, is freely 
available at: http://workerbee.igb.uiuc.edu:8080/BeeSpace/Search.jsp

Background
One of the changes associated with the advances in
genomic and systems biology is that biologists are no lon-
ger limited to studying one gene at a time. At the concep-
tual level, this is necessary because functionally-related
genes, or modules, create the natural bridge from single
genes to the complexity of the entire organism [1]. In
practice, biologists study groups of genes found through
various ways: for instance, the genes differentially
expressed under different conditions in DNA microarray
studies; the genes sharing similar expression profiles
across a large number of conditions; and the genes show-
ing similar patterns of evolution [2].

An essential component of these studies is the interpre-
tation of a set of genes: whether there is any common

functionality among these genes. Typically, this is formu-
lated as the problem of identifying concepts overrepre-
sented in a given list of genes, or simply
overrepresentation analysis. This problem is commonly
addressed by using Gene Ontology (GO) [3]. In GO sys-
tem, one gene is associated with a number of terms that
are organized in a directed acyclic graph. A statistical test
can then be performed to assess the significance of the
association of a term with the gene set being analyzed.
The standard test for this purpose is hypergeometric test,
coupled with some correction to account for multiple
hypothesis testing [4-6].

The main limitation of the GO-based methods is their
dependence on the existing annotations. The process of
annotating genes with some controlled vocabulary
requires the efforts of biologist curators, who need to
read and digest a large amount of textual information. As
a result, it is very difficult to keep up with the rapidly
growing literature in almost all biological areas. Further-
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more, the curators are limited by the scopes of the exist-
ing vocabularies or ontologies. For example, GO coverage
of certain biological domains such as diseases and animal
behavior, is very inadequate in comparison with its cover-
age of molecular functions.

The ultimate source of information lies in literature,
thus techniques that automatically mine information
from text may be able to overcome limitations of overrep-
resentation analysis based on manually curated ontology.
Text mining techniques have found a number of success-
ful applications in the biological domain, for instance, the
identification of gene names, and the extraction of pro-
tein-protein interactions [7,8]. Text mining has also been
applied to analyze gene sets obtained from microarray
experiments. A large number of methods attempted to
summarize gene functions and reveal gene similarities
using text mining. Some of the methods in this category
are: the literature profiling method [9], Neighbor Diver-
gence method [10], Latent Semantic Indexing [11], Con-
ceptMaker [12], Non-negative matrix factorization
(NMF) [13,14] and Anni [15,16]. The idea is that the
terms associated with a gene can be viewed as some kind
of text "profile" of this gene, similar to the expression pro-
file measured in microarray experiments. Therefore, the
functions and relationship among genes can be explored
using the same techniques in expression data analysis,
such as cluster analysis for grouping similar genes. This
purpose is quite different from ours, which is to explicitly
extract overrepresented concepts in gene lists. As such,
none of these methods provides a statistical test of signif-
icance of concepts, a crucial component of overrepresen-
tation analysis.

It is possible to apply the text mining techniques for the
overrepresentation analysis of gene lists. The idea is basi-
cally parallel to GO-based analysis: terms co-occurred
with many genes in the list are likely to reflect the com-
monalities of the gene list. GEISHA [17] measures the
importance of a term (word or bigram) with respect to a
given gene group by its overrepresentation in the docu-
ment set of this gene group versus some reference group.
The TXTGate system [18] creates a "profile" of a gene
from the literature about this gene, defining profile as a
weighted vector of associated terms. The profiles of all
genes in a set will be averaged and the terms with high
weights can thus be identified. The program MeSHer [19]
extracts MeSH terms from Medline documents of a gene
and converts the document set of a gene into a a list of
associated MeSH terms. Then the standard Fisher's exact
test can be applied to a gene set. The MILANO system
[20] could help biologists analyze a gene set by retrieving
documents where the gene names and some user-defined
terms co-occur. Recently, Leong and Kipling developed a
new system, PAKORA, that is an extension of the stan-
dard hypergeometric test. PAKORA is motivated by the

need of addressing annotation bias, that is, some genes
are associated with much more documents than other
genes simply because of their biological importance and
may bias the statistical tests [21].

The statistical treatment of all these methods are some-
what inadequate. As the authors noted in their paper, the
GEISHA method fails to handle the representational bias
of genes in literature. The method pools documents from
all genes in a group together, as a result, if some gene has
a very large number of associated documents, this gene
will dominate the document set of this group and thus
strongly bias the result. This is certainly a problem as our
goal is to uncover common themes in the given gene list,
thus we should favor terms that are associated with more
genes. In TXTGate, MeSHer and PAKORA, the impor-
tant information of how often a term co-occurs with a
gene is ignored. Instead, if a term co-occurs with a gene,
it will be considered as an association and will be used for
the statistical test of overrepresentation. This is highly
undesirable because co-occurrence alone is not a very
reliable indicator of semantics, so it is important to attach
some confidence value to the association between terms
and genes. There is some other statistical bias in the
TXTGate approach of averaging gene profiles, which is
explained in [15]. MILANO is mainly a system for
retrieving and navigating articles about gene sets, but
does not provide any statistical test for important terms.

In this paper, we proposed a new method based on a
rigorous statistical model to identify overrepresented
concepts in gene lists from free-text. We implemented a
system that allows users to perform the proposed analysis
efficiently. Furthermore, our program is embedded into
BeeSpace http://www.beespace.uiuc.edu/, an integrated
environment for biomedical literature retrieval and min-
ing, to take advantage of its many features. We evaluated
our program, Genelist Analyzer (or simply Analyzer), on
several gene lists, including one simple list commonly
used for evaluation and two large lists derived from our
microarry experiments of social behavior of honey bees.
We compared our results with the standard GO term
enrichment analysis and found that Analyzer is capable of
recovering the important themes in GO analysis and pro-
viding additional information when GO analysis is not
very informative. In addition, we compared Analyzer
with two other methods that are closest to ours, GEISHA
and PAKORA, and demonstrated that our method is sta-
tistically superior and offers additional features that are
beneficial in practice.

Results
Genelist Analyzer: a system for identifying important 
concepts in gene lists
We developed a system, Genelist Analyzer, for experi-
mental biologists to conduct overrepresentation analysis
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on gene lists. The program, Genelist Analyzer, can be
accessed at: http://workerbee.igb.uiuc.edu:8080/
BeeSpace/Search.jsp. Our system uses the textual terms
(words and phrases) from literature, thus overcoming the
limitations of controlled vocabularies such as GO. A con-
ceptual overview of our system is shown in Figure 1. We
created organism-specific document collection from
Medline. The retrieval of documents for a given gene is
based on the mapping from gene identifiers to synonyms,
as curated in the Entrez Gene database [22]. Our novel
statistical method is used to identify terms that are most
likely to represent the common features of the input gene
list. The program outputs the most enriched terms and
their significance values (LRT scores). Further support is
provided to allow users to examine the gene-term associ-
ations and navigate the literature. The details of how each
step is implemented are described in Methods.

Below, we briefly describe the general analysis proce-
dure with our system (the detailed information of how to
run the system can be found in the website). In the Ana-
lyzer interface, a user could choose an organism, a docu-
ment collection (which may be created by the user as
explained above), and paste the gene list he wants to
investigate. The result page lists the most overrepre-
sented terms, their LRT scores and the estimated per-
centage of genes related to the terms (Figure 2). If a term
is recognized as a gene name, it will be highlighted and
linked to the Gene Summarizer program in BeeSpace
[23], which is able to automatically generate summaries
of genes from literature text, covering aspects such as
gene expression patterns and genetic interactions. The
user has a flexible control of the results: he could choose
what to display (genes or ordinary terms; words or

phrases) and how to sort them. Analzyer allows a user to
select terms of interest and explore the genes related to
the selected terms. This is accomplished by first selecting
some terms of interest in the result page, and then analyz-
ing the gene-term association matrix (this is trigged by
clicking the "Analyze" button after terms are chosen). The
matrix will show the counts of chosen terms in the docu-
ments of each gene (Figure 3). In particular, the genes are
ranked by their relevance to the user-selected terms,
using the standard TF-IDF scoring method in informa-
tion retrieval. If the input gene list is large and many sig-
nificant terms are identified, this gene-term matrix will
be a very easy way for one to focus on a subset of genes
and terms. If the count for a gene-term pair is not zero,
the user can follow the link and will be redirected to the
documents that mention both the term and the gene.
This stands in contrast with GO-based analysis, where
the lists of overrepresented terms are the end results. It is
not straightforward to retrieve documents about GO
terms as typically they do not appear in text in their exact
forms. In our system, the exploration of documents could
serve as a starting point for further analysis. We also note
that for every concept, our program will estimate the pro-
portion of genes in the input that are associated with this
concept, the weight of the foreground distribution under
our mixture model (the parameter θ). Thus to further
guard against the representational bias, a user could sim-
ply ignore the concepts that are statistical significant, but
have low weights (called Ratio in the output screen, see
Figure 2). Finally, we note that Analyzer is highly efficient.
It takes less than three minutes to execute a query con-
sisting of 173 genes in the document collection of fruit
fly, and small queries typically take less than a minute.

Figure 1 Conceptual overview of Genelist Analyzer. The program takes a group of genes as input, retrieves the relevant documents for each gene, 
and identifies the terms that are associated with this gene group (enriched terms). Further interactive analysis will allow a user to trace back the doc-
uments containing the terms and genes. The example shown in this figure is hypothetical.
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Analyzer addresses the representational bias
We show that Analyzer solves the representational bias
problem by comparison with GEISHA. The problem is
defined as the bias of results toward terms from well-
studied genes which tend to have a large supporting liter-
ature and dominate the relevant document set. It is easy
to appreciate the importance of this problem when doing
text-based gene list analysis: for example, the query of
gene "p53" returns 43,200 abstracts in PubMed search;
while a large proportion of genes in all model organisms
have no associated abstracts.

We evaluated our program on the gene cluster K from
the yeast microarray data of cell-cycle in [24]. This is also
one example used in [17]. In this cluster of 15 genes, 12
are genes in respiratory complex, one (VDAC, voltage-
dependent anion channel) is a membrane channel and the
last two are a metabolic enzymes. In their paper, the
authors of GEISHA noted that VDAC was an extensively-
studied gene and dominated the results. A large portion

of the top terms were those about VDAC, including:
"voltage-dependent", "pores", and "channel" [17]. Our
experimentation confirms the representational bias:
VDAC returns 59 documents in the yeast collection,
while the second most represented gene returns only 19
documents. However, none of the above VDAC associ-
ated terms appear in the top 100 terms identified by our
program. Our analysis, instead, produces many terms
related to respiration in the top 50 terms, such as: "elec-
tron transport", "respiratory", "mitochondrial mem-
brane", "oxidoreductase", "succinate dehydrogenase",
"ubiquinone", "cytochrome", etc (the genes and the top 50
terms are listed in Additional file 1 Table S1). Other terms
(not shown here due to space limitations) are often
related to respiration, sometimes indirectly, and many of
them are names of related genes. Based on this example,
we observe that our program does not suffer from the
gene representational bias problem that affects the per-

Figure 2 The result page of Genelist Analyzer. The top part of the screen provides control of the output; the "Significant Concepts" table displays 
the main concepts identified along with the relevant statistics (note that gene names are underline and linked to the external program Gene Sum-
marizer). The Ratio field of a concept is the percentage of genes associated with this concept and the Significance field displays the statistical confi-
dence score of that concept. The concepts are automatically clustered, and the index of the cluster which a concept belongs to is also shown. The 
"Genes Found" table display the information of the input gene: the name and the number of documents retrieved for each gene. This page is gener-
ated from the genes up-regulated by methoprene treatment in honey bees.
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formance of a text-mining program for gene lists, if not
handled properly.

One possible concern with the overrepresentation anal-
ysis is that it may identify false conceptual themes simply
by chance. It is generally difficult to quantify the preci-
sion of this analysis as whether a concept is related to a
gene is somewhat subjective, so we instead analyze a list
of genes randomly sampled from yeast genome (see
Additional file 1 Table S2) and see if the results of Ana-
lyzer contain misleading themes. Interestingly, we did
find a set of concepts possibly related to heat shock, such
as "hsp gene" and "stress response". Further inspecting
the gene-concept matrix allows us to identify the related
genes, Hsp26, Cne1, Uga2, Stu1 and Rtg3 (Additional file

1 Table S3). Indeed, both Hsp26 and Cne1 are chaperons
that respond to heat shock, and other genes are all related
in some way. For instance, we find two articles using our
system that supports the relationship between Rtg3 and
stress response [25,26]. The results are in fact not surpris-
ing, retrospectively, given that hundreds of genes are
related to stress response in yeast [27]. Since no other
conceptual themes were identified by Analyzer besides
the stress-related one, it seems that Analyzer does not
provide false, misleading findings. Instead, Analyzer was
able to suggest subtle and unexpected concepts that are
biologically meaningful in this example.

Figure 3 The gene-term matrix from Genelist Analyzer. When the user chooses specific concepts of interest from the result screen and click the 
"Analyze" button, the program will retrieve the genes that actually contain these concepts, ranked by their relevances, and display the gene-term ma-
trix. The supporting documents of gene-term association can be accessed through the hyperlinks in the matrix. This page used the list of genes up-
regulated by methoprene treatment in honey bees.
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Comparison with GO-based enrichment analysis on a 
honey bee gene list
We next analyzed the gene lists derived microarray
experiments on honey bee social behavior. In a honey bee
colony, the worker bees carry out different tasks for the
colony depending on their age. This age dependent per-
formance of tasks is called behavioral maturation.
Younger bees stay in the hive and take care of feeding the
larvae, these workers are called nurses. Once they get
older, they transition to collecting food outside the colony
and are called foragers. Genome-wide analyses of brain
gene expression using microarrays have been carried out
to understand the molecular events that accompany
behavioral maturation in the Western honey bee Apis
mellifera and other species [28,29]. We performed analy-
sis of genes identified in these datasets with the Analyzer
in order to evaluate its performance, and compared the
results with those from GO-based analysis and from
other text-mining systems. We use the Drosophila
orthologs of honey bee genes, as the annotation (in terms
of GO) and the literature about the fly orthologous genes
are the standard information used by bee biologists most
of the time. Similarly we used the Drosophila document
collection as our background. The particular implemen-
tation of GO-based analysis we chose is GOToolBox [5].

In the first experiment, we analyzed the list of genes
that showed species differences in regulation during
behavioral maturation [29]. Table 1 shows the compari-
son between Biological Process terms that were found to
be enriched by GOToolBox and the first 100 terms
retrieved by Genelist Analyzer. We manually group these
terms based on relatedness and/or commonality of genes
underlying these terms and show the related terms from
the Analyzer results. Expert biologists who are the
intended users of Analyzer would be able to do this easily.
We see that most of the GO terms had corresponding
terms retrieved by Analyzer. This is an important valida-
tion of Analyzer, as it is able to recover the important
conceptual themes from plain text without involving
manual annotation of genes. The Analyzer also retrieved
terms that did not have corresponding matches in GO
because GO lacks enough behavior annotations. The
most notable of these was the term diapause, which is the
term for insect hibernation during winter. An analysis of
this term and the associated genes revealed abstracts that
show heatshock proteins being regulated in diapausing
insects [30,31].

Analyzer provides novel insights on a honey bee gene list
In our second example of honey bee gene analysis, we will
illustrate a strength of Analyzer in bringing out associa-
tions that GO enrichment analysis could miss. Treatment
of nurses with hormone analogs like methoprene and
chemicals such as manganese and cGMP results in preco-

cious foraging [28]. We next applied Analyzer on the set
of genes up-regulated in the brain by methoprene treat-
ment. This set has 166 genes out of which 69 have
orthologs in Drosophila melangoster and match at least
one document in Medline. GO-based analysis for this
gene set did not suggest any statistically significant terms.
In contrast, Analyzer identified a few hundred significant
terms. We present the top 30 terms in Table 2 (according
to the order of decreasing significance). Manual inspec-
tion of these terms immediately revealed a myosin-
related theme: light chain, myosin heavy, heavy chain,
thick filament, flight muscle, myosin light, muscle myosin
and myofibril (note that for the phrases, myosin heavy
and myosin light, the term, chain, is missing due to the
fact that we only use bigrams for phrases). Inspection
beyond the top 30 terms revealed more terms in this cate-
gory: nonmuscle (32), mhc gene (34), drosophila myosin
(41), nonmuscle myosin (55), myosin ii (56), flightin (57),
sarcomere (58) (the numbers indicates ranks of terms.
The rest of terms are not listed here).

To further explore the significance of this semantic
theme, we extracted genes related to four chosen terms
using our system. This generated a gene-term association
matrix (Figure 3). We verified that the top five genes are

Table 1: Overrepresented concepts in bee behavior-related 
genes identified by GO Toolbox and Genelist Analyzer.

GO Toolbox Genelist Analyzer

Defense response Defense, cytokine, fkbp52, 
cactus, fibroblast

Response to stress, response 
to heat, response to 
temperature stimulus

Thermotolerance, Hsp 
(heatshock protein), hsf, hs, 
droj1, hsp40, hsp68, hsp23, 
hsp26, csp, trap1

Protein folding Chaperone, cochaperone

Pigmentation, Dopamine 
metabolism, Catecholamine 
metabolism

Pigment, melanin, Laminin

Carbohydrate metabolism Proteoglycan

Regulation of circadian 
rhythm

Circadian sleep/wake cycle, 
sleep

Transition metal ion 
homeostasis, Iron ion 
homeostasis

Ire, ferritin

Amino acid and derivative 
metabolism

Alanine

Sex determination Pap

Response to pest, pathogen 
or parasite

Bacteria, bacterial, gram, 
pathogen, macrophage, 
antimicrobial, imd
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indeed related to myosin: Mhc (myosin heavy chain) and
Prm are part of myosin complex, Strn-Mlck, jar and sls
bind to myosin light chain or regulate its activity. http://
www.flybase.org. Myosin molecules form intracellular
molecular motors that are part of the cytoskeleton.
Molecular motors are known to be important for neural
development [32], through processes such as cellular
migration and transport of molecules within the cell [33].
This is significant because it is well known that the transi-
tion from nursing behavior to foraging behavior is
accompanied by structural changes in the brain [34],
which may involve these processes. It is likely that metho-
prene treatment triggers changes in the brain that accom-
pany the behavioral transition from nursing to foraging.
Thus Genelist Analyzer performed better than GO analy-
sis in this example by uncovering an interesting biological
insight that could be used to enhance our understanding
of molecular underpinnings of behavioral maturation.

Comparison with other text mining tools
Having demonstrated that text mining can complement
GO-based analysis, we want to test if other text mining
systems for overrepresentation analysis are able to pro-
vide similar benefits. Since GEISHA is only implemented
for E. coli and yeast [17], we tested the program that is
closest to our goal and methodology, PAKORA [21]. No
significant terms can be identified for the second honey
bee gene list (genes up-regulated in the brain by methop-
rene treatment), when either Bonferroni correction (the
default option) or FDR is used to adjust the p values. We
thus use 0.01 as the cutoff for raw p values (given that
thousands of terms are tested simultaneously, this is a
very loose threshold. Indeed, the threshold used by Ana-
lyzer is much stronger). This leads to 27 overrepresented
words shown in Table 2. We found that the terms gener-
ated by PAKORA are much less specific, for example, top
results include words such as, type, well and five. There
are three myosin related words: myosin, myobibril and

sacromere. However, given this much smaller list of terms
and a much looser threshold of p values, it is unclear
whether this theme is really relevant to the query gene
list. The main reason for the difference between Analyzer
and PAKORA in their abilities of detecting statistically
significant terms, we suspect, is that the word count
information is ignored in PAKORA. The association
between a word and a gene is binary, instead of numeri-
cal, as done in our method. The statistical power is likely
to be significantly reduced. Two other differences exist
between PAKORA and Genelist Analyzer. First, PAK-
ORA is completely based on words while Analzyer allows
phrases. We found that this makes an important practical
difference: many informative terms are phrases, for
instance, light chain, nonmuscle myosin. Second, PAK-
ORA does not offer a simple way to get back the subset of
genes related to interested terms. We found that without
this feature, it is difficult to interpret the results. In this
example, being able to identify five genes related to the
myosin theme is crucial for us to validate our findings and
points out a way of further analysis (exploring the roles of
these genes in behavior maturation).

Next, we compare Analyzer with another text mining
tool recently developed, SENT [14]. SENT can also be
used for analyzing gene lists from literature, though
based on a somewhat different philosophy from Analyzer
and PAKORA. Simply speaking, the gene-term matrix is
constructed from the literature text according to the co-
occurrence between genes and terms. Then genes are
grouped according to the similarity of the terms they are
associated with (textual profile of genes), and for each
group, the most relevant terms are identified as the
"semantic feature" of that group. Technically, gene group-
ing and semantic feature identification are performed via
non-negative matrix factorization (NMF). The general
idea of grouping genes based on their literature profiles
has been implemented by several computational tools for
gene list analysis and we think SENT is a representative of
these methods. We note that our goal is finding the over-
represented concepts in a gene list, regardless of how
genes are grouped, and is a direct extension of the com-
monly used GO-based enrichment analysis. SENT and
other tools such as Anni are not designed for this pur-
pose. Nevertheless, we will perform some comparative
analysis to assess the relative strength and weakness of
the two strategies.

Since SENT does not support fruit fly, we used the
same yeast gene list discussed before as the test case. We
ran SENT on this list of 15 genes, setting the number of
factors at five (following the guideline of SENT). The
resulting five gene groups and their characteristic terms
are listed in Additional file 1 Table S4. We note that while
Analyzer detects the major theme of electron transport
chain and respiration (12 out of 15 genes are related to

Table 2: Overrepresented concepts in genes responding to 
methoprene treatment, identified by Genelist Analyzer 
(top 30 terms) and PAKORA (at P < 0.01).

Genelist 
Analyzer

Ca2, filament, sodium, light chain, cytochrome, 
electrophoresis, myosin heavy, sodium channel, 
heavy chain, cytochrome p450, polyacrylamide 
gel, thick filament, flight muscle, Na channel, 
myosin light, pyrethroid, channel gene, indirect 
flight, basement, basement membrane, kdr, 
proteasome, chain kinase, tubule, insecticide, iv, 
ATPase, muscle myosin, myofibril, dh31, indirect

PAKORA phototactic, type, myosin, depressor, lattice, rod, 
insoluble, separation, resistant, oscillatory, flight, 
overlap, would, atpase, well, myofibril, built, 
sarcomere, time, rearing, corresponding, 
smooth, wall, there, ethyl, disappear, five

http://www.flybase.org
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this theme, see above), SENT results have a much more
refined structure. For example, Group 3 consists of four
subunits of the enzyme succinate dehydrogenase (Sdh1/
2/3/4), and Group 1 contains only a singe gene Ach1,
which has a somewhat different function from other
genes. By doing so, however, the semantic theme that
connects the majority of genes in the list may become less
obvious. For instance, even though succinate dehydroge-
nase participates in electron transport chain, the seman-
tic feature of Group 3 does not have this or closely-related
concept; instead, the characteristic terms are those that
capture specific details of succinate dehydrogenase
(instead of its broader function). We suspect that this
may be a general feature of the clustering-based strategy
for gene list analysis: the methods are tuned for finding
the internal structure of the gene list, but not for reveal-
ing the common conceptual theme unifying the genes. At
the practical side, we note that SENT does not offer a
simple way to examine the relationship between genes
and specific concepts of interest. For example, the seman-
tic feature of Group 5 contains a term "life span" and a
user may be interested in exploring exactly which genes
are related to this concept and what are the supporting
documents. However, SENT does not show specific genes
related to a user-selected concept. And the documents it
extracts for a group is based on the relevance of a docu-
ment to the semantic feature of the entire group, which in
this case is dominated by terms such as NADH, mito-
chondria, that are only remotely related to life span. In
summary, we find that SENT is optimized for the task of
gene clustering, while Analyzer is more likely to identify
important concepts capturing the commonality of genes,
and is more flexible in supporting the exploration of
gene-concept relationship.

Discussion and Conclusion
In this paper, we present a new method for automatically
extracting conceptual themes, in the form of overrepre-
sented terms, in a set of genes from literature text. Com-
pared with existing methods for annotating gene lists, our
system provides several important benefits: (1) Our anal-
ysis is based on free text, using both words and phrases as
conceptual units, thus overcomes the limitation of fixed
ontology. (2) We developed a novel statistical method
that is more rigorous and robust than earlier approaches.
(3) Our system supports the interactive analysis of
retrieving genes from a subset of terms and literature
navigation. (4) By linking with the integrative system,
BeeSpace, we offer unique software services, most nota-
bly, the customization of document collections and text
summarization of genes through Gene Summarizer. In
our experimentation, we found that our method could
reasonably summarize the literature information of gene
lists, sometimes providing useful information missing

from the standard GO-based enrichment analysis. Our
comparison with other text mining systems with similar
purpose showed that our system is statistically more rig-
orous, and offers more useful features in practice. We
anticipate that our system will be particularly useful for
two situations: when the analysis based on fixed ontology
is uninformative because of the lack of coverage of the
ontology; and when a user needs to perform more in-
depth investigation of the primary literature, because in
general, the ontology may not be directly associated to
the literature text, as is the case for GO.

One main issue with our current system is the proce-
dure of retrieving documents for genes. Our method is
based on simple string matching of text words and gene
names. The possible ambiguity of gene names (e.g. in
fruit fly, a number of gene names are English words such
as white, for) is not explicitly handled. This does not seem
to be a very serious problem for detecting overrepre-
sented concepts, where the results are based on statistical
patterns, thus may be relatively insensitive to individual
cases of ambiguity. However, we found that name ambi-
guity does affect the downstream analysis of extracting
genes related to terms and the associated literature. Since
gene name ambiguity is a general problem affecting many
literature mining tasks, one of our ongoing projects is to
develop a disambiguation method as part of the BeeSpace
infrastructure [35].

Another issue with the current system is the presence
of a significant number of non-informative terms often in
the results, even if stringent threshold is used for choos-
ing terms. This seems to be an inherent weakness of text-
mining analysis, comparing with GO-based analysis. By
testing all possible terms in free text, we avoid the con-
straint posed by defined ontologies such as GO, but also
introduce many potential non-informative terms and
some of which may happen to be statistically significant.
Indeed, we noticed that the other tools we tested, PAK-
ORA and SENT, have the same problem (Table 2 and
Additional file 1 Table S4). There does not seem to be a
simple solution of this problem without sacrificing the
completeness of literature text (as opposed to a limited
ontology). In practice, we find this sometimes inconve-
nient, but does not remove the main patterns in the
results. Most often, a biologist user would look for a set of
conceptually coherent terms, as we did in this work, and
this conceptual theme, as a whole, is a much more robust
signal of semantic relationship of genes.

There are a few remaining issues. Firstly, our procedure
of document retrieval for genes is quite simple (see, so
may lead to unstable performance (when a gene list hap-
pens to have many ambiguous genes). We are currently
developing a disambiguation method for gene names
extending the published work [35]. Secondly, tagging
semantic categories of terms identified by Annotator
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would make the results easier to read and analyze, for
example, a user could choose to only look at terms related
to a certain aspect thus eliminating many significant but
uninteresting terms. Possibilities are MeSH and ontolo-
gies maintained at http://obofoundry.org/. Finally, we will
work closely with biologists to test the effectiveness of
our system for real-life discoveries. After all, to aid the
interpretation of results from genomic experiments for
biologists is our ultimate goal.

We discussed the relevance of the representation bias
of genes in literature to our problem, and our comparison
with an existing method suggested that our method is
free from the effect of this bias, at least to a large extent.
We did not directly compare our method with other
recent systems including TXTGate, MeSHer and Anni,
because some advantages of our method are obvious,
such as weighting the literature evidence of gene-term
association; and because these systems use a controlled
vocabulary (often MeSH) instead of general words and
phrases. We pointed out though, our statistical method-
ology is independent of the choice of terms.

Methods
We start with some intuitions of our model. We assume
each gene is associated with a set of documents, which we
will call the document set of this gene (thus, there is one-
to-one correspondence between a gene and a document
set). The problem of assigning documents to genes will be
discussed in the next section. Our goal is to find all terms
that capture the commonalities of the gene set. We test
each term independently, and for any term, we look at
how often it occurs in the document sets. Figure 4 illus-
trates the data we have for testing significance of a term
(two example terms are shown): the second column
shows the count of the term in each document set. In
general, some genes will be truly relevant to this term, in
the semantic sense; while other genes are not relevant,
but may accidentally contain this term in their document
sets. The counts of this term in the relevant genes will be
high while its counts in the non-relevant genes will be low
but not necessarily zero. The term count alone, however,
is not very informative, as a term may occur many times
by chance if the document set is large enough, so the term
count has to be evaluated against the expected counts
from chance occurrences (the third column of Figure 4).
For the purpose of testing significance of a term, we need
a single statistic to summarize the data in the form of Fig-
ure 4, that evaluates whether there are a large number of
genes where the term counts are significantly higher than
expected by chance. For instance, we may infer that the
term in Figure 4A is significant as two genes appear to be
associated with this term (the counts in the first two
genes appear much higher than the expected values), and
the term in Figure 4B is probably not significant as none

of the genes appears to be associated with the term. The
statistical task can be accomplished by using a finite mix-
ture model, where the count of a term follows one of the
two distributions: its rate of occurrence is higher in the
relevant document sets and lower in the non-relevant
document sets. In our case, we use Poisson distribution
for term counts, which has been used in previous studies
for modeling word distribution [36], and the difference
between the two distributions is the rate of the Poisson
distribution.

Next we describe our statistical procedure of testing the
significance of one term, and the same procedure can be
applied to any number of terms. Specifically, we evaluate
the significance of a term t with respect to a list of n genes
(thus n document sets). Let d1, d2, ..., dn be the size of the
document sets of the n genes, respectively; and x1, ..., xn
be the counts of t in the n document sets. Let θ represent
the proportion of the genes relevant to the term t, and λ
and λ0 be the rates of t, under Poisson distribution, in its
relevant and non-relevant document sets respectively
(note that the values of these parameters may be different
for different terms). We assume that the observed data x1,
... xn are generated by the following process: for each i, 1 ≤
i ≤ n, first sample a variable zi from Bernoulli distribution
of parameter θ, zi = 1 suggests this gene is relevant to t, zi
= 0 suggests otherwise. Then xi is sampled from Poisson
distribution of mean λdi if zi = 1; or sampled from Poisson
distribution of mean λ0di if zi = 0.

The values of the parameter λ0 for a term t can be
approximated by the frequency of this term in the entire
collection (called background collection). The parame-
ters θ and λ can be estimated by the maximum-likelihood
method. The likelihood function is given by:

where Pois(·) is the probability density function of the
Poisson distribution. We use the standard Expectation-
Maximization (EM) algorithm to maximize this function
[37]. The formulas for updating θ and λ are given by:

where wi is the posterior probability of zi = 1 given the
current estimate of parameters:
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The details of deriving the update formulas are
described in the Supplementary Materials.

The statistical significance of the term t is evaluated by
the standard likelihood ratio test [37]. The null hypothe-
sis is that t is not relevant to any gene, which is equivalent
to say, θ = 0; and the alternative hypothesis is θ > 0. The
test statistic is expressed as:

where  and  are maximum likelihood estimator

(MLE) of θ and λ respectively. The asymptotic distribu-

tion of T is known to be χ2 distribution with degree of

freedom equal to 2 in our problem. While it is known that

this asymptotic distribution is not strictly followed in

testing mixture models because of singularity (θ = 0 cor-

responds to the boundary of the region of the parameter

values), the real distribution is actually very similar to χ2

[38]. To test multiple terms simultaneously, we applied

the Bonferroni Correction.
We explain here why the proposed method is statisti-

cally superior to the other methods. First, it does not suf-

fer from the problem of representational bias of genes in
literature. Suppose some gene is particularly well-studied
and has a much larger set of documents than the other
ones. In the GEISHA method, the documents from all
genes are pooled, thus the frequency of a term only rele-
vant to the less studied genes in the pooled document set
must be low and will not be considered significant. In our
model, such terms will be still significant as long as the
number of co-occurrences with the less studied genes sig-
nificantly deviate from the null model. Secondly, our
method does not make the assumption that if a term co-
occurs with a gene, then they must be associated, as
TXTGate, MeSHer and PAKORA do [18,19,21]. Rather,
how significant the co-occurrence count is will depend
on the term frequency in the background collection and
the size of the documents being examined. Finally, the
approximate proportion of genes that are truly relevant to
a candidate term is estimated (θ). This will allow a user to
set additional criterion for choosing terms to inspect, for
example, only those that capture a minimum percentage
of genes in the input set.

System implementation
The entire Medline collection (abstracts only, no full text)
was indexed using the Indri toolkit http://www.lemur-
project.org/indri/. We applied a customized program to
tokenize the text, which aims to normalize and preserve
the integrity of biological entities. These include a num-
ber of rules, some typical ones are: the hyphen symbol is
removed if it appears between a word and a digit (e.g.
brca-1 will be converted to brca1) and replaced by a space
symbol if between two consecutive words (e.g. down-reg-
ulate will be converted to "down regulate"). We created a

w
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Figure 4 Simple examples for the term significance test. Each table represents the (hypothetic) data for one test term. The second column shows 
the count of the test term in the document set of a gene, and the third column shows the expected count according to the null distribution (assuming 
that the term is not related to the gene). The expected count is the product of the frequency of the term in the background collection and the length 
of the document set of the gene. E.g. in the first row of table (A), 5 means the term appears five times in all the documents associated to g1, and 0.1 
is the expected counts according to the background. (A) An example where the term may be related to the first two genes. (B) An example where the 
term does not appear to be significantly related to any gene.
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few organism-specific document collections, which are
used for retrieving gene-related documents. These
include collections for yeast, fruit fly and mouse (102447,
38844 and 856833 abstracts, respectively). These collec-
tions are created by querying the Medline collection with
species names, "yeast", "Drosophila" and "mouse", respec-
tively. We note that a user is allowed to create his own
document collection using the BeeSpace infrastructure.
For example, a user may choose a collection about insect
behavior, and the enriched terms identified in this collec-
tion will be more targeted in the behavior domain. This
facility of adding collections within BeeSpace enhances
the utility of Genelist Analyzer, since these can be used as
problem-specific backgrounds. The terms in our analysis
include both words and phrases (bigrams). Phrases are
extracted from the document collections by the package
NSP, Ngram Statistics Package [39]. We used the χ2 test to
rank the bigrams and selected the top 20 k bigrams for
each collection. Stop words and common English words
are removed from the term lists.

For retrieving documents of given genes, we down-
loaded the Entrez Gene data for gene information [22].

We preprocessed the synonym lists in the downloaded
raw data, roughly following the procedure in ProMiner
[40]. The main purpose is to remove uninformative and
often ambiguous names such as "none" and add some lex-
ical variants of names. The input genes should be speci-
fied as gene identifiers, defined by the model organism
databases, e.g. for Drosophila genes, these should be FLY-
BASE ids. An input gene id will be mapped to all its syn-
onyms using Entrez Gene data and documents matching
any of the synonyms in the corresponding organism-spe-
cific collection will be retrieved. Note that Entrez Gene
was only used for finding all possible synonyms of a gene
identifier, and we did not use its other resources such as
GeneRIF.

Additional material
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