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Semantic annotation of morphological
descriptions: an overall strategy
Hong Cui

Abstract

Background: Large volumes of morphological descriptions of whole organisms have been created as print or
electronic text in a human-readable format. Converting the descriptions into computer- readable formats gives a
new life to the valuable knowledge on biodiversity. Research in this area started 20 years ago, yet not sufficient
progress has been made to produce an automated system that requires only minimal human intervention but
works on descriptions of various plant and animal groups. This paper attempts to examine the hindering factors by
identifying the mismatches between existing research and the characteristics of morphological descriptions.

Results: This paper reviews the techniques that have been used for automated annotation, reports exploratory
results on characteristics of morphological descriptions as a genre, and identifies challenges facing automated
annotation systems. Based on these criteria, the paper proposes an overall strategy for converting descriptions of
various taxon groups with the least human effort.

Conclusions: A combined unsupervised and supervised machine learning strategy is needed to construct domain
ontologies and lexicons and to ultimately achieve automated semantic annotation of morphological descriptions.
Further, we suggest that each effort in creating a new description or annotating an individual description
collection should be shared and contribute to the “biodiversity information commons” for the Semantic Web. This
cannot be done without a sound strategy and a close partnership between and among information scientists and
biologists.

Background
Converting free text morphological descriptions of
whole organisms into a computer-readable representa-
tion where organ names and characters are explicitly
marked with meaningful tags promises more effective
use of biodiversity knowledge and better support for
biodiversity research. The conversion task is commonly
called “semantic markup” or “semantic annotation.”
Here “semantic” means each concept is assigned one
and only one unambiguously defined meaning. Due to
the volume of the documents, automatic procedures are
needed to perform the task. Semantic annotation
research has been very active and conducted in various
domains. The domain of morphological descriptions
presents rather distinctive characteristics. Figure 1
shows an annotated plant description in XML (eXtensi-
ble Markup Language) format.

Semantic annotation of morphological descriptions
may be at “clause” or “character” level. A clause is a seg-
ment of text terminated by a semicolon (;) or period (.).
In morphological descriptions, a clause may not be a
grammatical sentence (see examples in Figure 1).
Clause-level annotation labels individual clauses with a
meaningful tag, while character-level annotation identi-
fies character/state pairs for describing organs. In addi-
tion, a method distinguishing description paragraphs for
nomenclature, distribution, and other types of sections
is also needed. Figure 1 illustrates the three levels of
annotation in XML for a plant description from the
Flora of North America [1].
The inserted tags bring a computer’s “understanding”

of morphological descriptions to a higher level that
would support more intelligent usages of the informa-
tion than keyword-based search. Besides improving the
accuracy of information retrieval, the tags make it possi-
ble for a computer to quickly merge or compare differ-
ent descriptions organ by organ and character by
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character. This new capability will impact comparative
biological research, the methods used in generating
identification keys, and even the way an editor reviews
manuscripts [2,3].
Relevant research in annotating biosystematic litera-

ture will be reviewed next.

Methods
Methods used for semantic annotation of taxonomic
documents
A syntactic parsing technique was used by a number of
earlier projects. Taylor and Abascal & Sanchenz hand-
crafted a set of simple grammar rules and a small lexicon
specifically for extracting character states from several
Floras [4,5]. Taylor’s performances were not scientifically
evaluated but estimated at 60% to 80% recall.
The major advantage of the syntactic parsing approach

lies in the ease of constructing a parser once the lexicon

and grammar rules are prepared. The main drawback is
precisely its reliance on the lexicon and grammar rules.
Because of the diverse terminologies and the deviated
syntax from natural language (see Characteristics of
morphological descriptions in the Results section), pre-
paring lexicons and grammar rules for each individual
collection or taxon group would be prohibitively
expensive.
Rules called “regular expression patterns” that rely on

the regularity in the style and the use of punctuation
marks were hand-crafted and found to be useful for
extracting nomenclature and distribution information
[6-8]. However, this approach is not useful for morpho-
logical descriptions, because of (1) the lack of such regu-
larity in morphological descriptions and (2) the low
reusability of such rules on a different description col-
lection. Lydon et al. showed that the narratives on five
common species were so different among six English

Figure 1 An annotated morphological description. “<>“ enclosed text is a tag. Bold font represents paragraph level annotation, bold and
italic clause level annotation, and italic character level annotation. Annotation produced by an annotation system created for FNA by the author.
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Floras that only 9% of information was expressed in the
same way [9].
Regular expression patterns may be generated automa-

tically using the supervised machine learning technique,
where an algorithm uses the occurrences of different
patterns in training examples to statistically predict the
pattern that is likely to fit a new example. Soderland
developed such an algorithm to extract information
from semi-structured documents such as apartment ren-
tal ads [10]. Figure 2 shows such an extraction pattern.
This algorithm was adapted by Tang & Heidorn to
extract leaf shape, size, color, arrangement, and fruit/nut
shape from 1600 FNA species descriptions [2]. They
reported the extraction accuracies ranging from 30% to
100%.
Supervised learning technique was also used by Cui, in

which the algorithm performed clause level annotation
by learning from training examples what are called
“association rules,” which are less sensitive to text varia-
tions, compared to the extraction pattern discussed
above [11]. Its annotation accuracy ranged between
upper 80% to upper 90% on three different Floras (Flora
of North America, Flora of China, and Flora of North
Central Texas) of over ten thousand descriptions
[1,12-15].
Machine learning has the advantage over manual work

in its ability to programmatically evaluate its learning
and adjust candidate patterns/rules based on what is
seen in the training examples. However, the need for
training examples is also a shortcoming, as training
examples must be prepared for different taxon groups

and even different collections. More importantly, if cer-
tain organs/characters are not included in the prede-
fined extraction targets, they will be quietly ignored,
resulting in loss of information. This “inadequate tem-
plate” problem was also noted by Wood et al., where
manually-created dictionaries, an ontology, and a lookup
list were used to extract and correlate characters/states
from a set of 18 plant species descriptions [16]. They
had to tag organs that were not in their lists “Unknown-
PlantPart.” Wood et al. used parallel text to find three
times more targeted information, which would otherwise
be missed, and improved extraction recall three times.
Diederich, Fortuner & Milton reported a system called
Terminator, which is very similar to Wood et al.’s in
that they both use a hand-crafted domain ontology to
support character extraction [17].
The previous approaches share the inadequate tem-

plate problem because a fixed template cannot be
expected to cover the diverse terms in morphological
descriptions well. Manually adding new terms to the
templates has been suggested as a way to solve the pro-
blem [16]. Table 1 summarizes the techniques reviewed.
The performances reported may not be comparable, as
different evaluation schemes were used.
The techniques reviewed here all have their strengths,

despite weaknesses, yet, when facing the millions of
OCRed text descriptions produced by the Biodiversity
Heritage Library, none of them seems to be both effec-
tive and efficient [18]. The reason, we suggest, lies in
the special characteristics of the morphological
descriptions.

Figure 2 Two regular expression patterns. The first (Soderland, 1999) is for extracting bedroom number and rent from apartment rental ads.
The pattern extracts the digit before “BR” as the number of bedrooms ($1) and the number after a “$” as the rent ($2). The pattern produces
the correct result for Input 1 but a wrong result for Input 2, as $600 was the price for one room, not four rooms. The pattern will not match or
extract anything from “1 large BR $500” or “1 master BR $500.” The second (Tang & Heidorn, 2007) extracts leaf blade dimension by looking for a
range between the words “blade” and “base.”
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Results
In this section we present our exploratory results on the
characteristics of morphological descriptions and on an
unsupervised machine learning strategy. Insights gained
via these exercises give rise to an overall strategy for
semantic annotation of morphological descriptions,
which we shall discuss at the end of this section.

Characteristics of morphological descriptions
The performance of a semantic annotation technique
depends, at least in part, on the characteristics of the
documents to be annotated. A technique that identifies
organ names by looking for bold words, for example, is
not very useful for the task overall, because many
descriptions are not styled that way. Here, in our search
for a sound overall strategy to mark up all morphologi-
cal descriptions in English, we consider some general
characteristics of morphological descriptions which are
challenging or beneficial for an automated semantic
annotation technique.
1. Challenging characteristics
Diverse terminology: each biodiversity branch has a
more or less distinct set of terminology. Not only are
terms used in brachiopod (Animalia) descriptions differ-
ent from those in plant descriptions, but terms in one
plant family description are somewhat different from
those in another. Several previous researchers (e.g.

Wood et al., and Cui & Heidorn) have reported that
when applying a system crafted from one set of docu-
ments to a different set, new concepts that were
unknown to the system were encountered, forcing an
automated system to work in an interactive and iterative
fashion to incorporate new concepts along the way
[16,19].
To find out how biodiversity concepts are distributed

in description collections, a simple procedure was used
on several collections of morphological descriptions of
different taxa and different size, including 120 descrip-
tions from Part V of Treatise on Invertebrate Paleontol-
ogy (TIP), 2300 descriptions from Flora of North
America (FNA), and 13,000 descriptions from Flora of
China (FOC). Concepts collected from the collections are
included in the Additional Files 1, 2, and 3. The proce-
dure involves using the Brown Corpus to filter out non-
domain concepts and then having the computer read the
descriptions one by one in the order the descriptions are
presented in the original publications [20]. In our experi-
ments, the top x percent of the most frequent words
were taken from all sections of Brown Corpus, except for
section “J: Learned,” to form a set of most common non-
technical terms in English. Not counting section “J,” the
Brown Corpus contains 979,304 words, of which 42,262
are unique. Words appearing in morphological descrip-
tions but not in this set were considered domain

Table 1 Review of the existing annotation techniques.

Methods Handmade
prerequisites and
their reusability

Annotation Level Results and their
reusability

Scope of
evaluation

Performance
(*)

Syntactic parsing:
1. Abascal & Sanchenz (1999)
2. Taylor (1995)

Lexicon & grammar
rules:
Not good for
another taxon
group/collection.

1. Paragraph
2. Character

1. Style clues: Less
reusable.
2. Organ names &
character states:
Reusable.

1. FNA v. 19
2. Flora of New
South Wales,
Flora of Australia.

1. Not
reported
2. Roughly
estimated
recall:60%-80%

Supervised machine learning–
text classification: Cui & al.
(2002)

Training examples:
Not good for
another taxon group.

paragraph Classification models:
Less reusable.

1500+
descriptions from
FNA

Recall: 94%
Precision: 97%

Ontology based extraction:
1. Diederich, Fortuner &
Milton (1999)
2. Wood & al. (2003)

Dictionaries,
ontology, &
checklists:
Not good for
another taxon group.

Character Organ names &
character states:
Reusable.

1. 16 descriptions
2. 18 species
descriptions from
six Floras.

1. Accuracy on
1 sample:76%
2. Recall: 66%
Precision: 74%

Supervised machine learning–
extraction patterns: Tang &
Heidorn (2007)

Extraction template
& training examples:
Not good for
another taxon group.

Character, limit to these
character states: leaf shape,
size, color; Fruit type.

Extraction patterns:
Sensitive to text
variations, less reusable.
Character states:
Reusable.

1600 FNA species
descriptions.

Recall: 33%-
80%
Precision:75%-
100%

Supervised machine learning–
association rules: Cui (2008a)

Annotation template
& training examples:
Not good for
another taxon group.

Clause Association rules:
Reusable only within
the same taxon group

16,000
descriptions from
FNA, FOC, and
FNCT

Recall and
precision: 80%-
95%

Unsupervised learning: Cui
(2008b)

No prerequisites 1. Clause
2. Character

Organ names &
character states:
Reusable.

FNA, FOC, &
Treatises Part H

Precision 88-
95%
Recall 50%-
75%

* Precision is the proportion of the computer’s decisions that is correct. Recall is the proportion of all targets correctly discovered by the computer.
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concepts, which may include organ names, characters,
and character states (lists of extracted domain concepts,
with x set to 10%, from the three sources are included in
Additional Files). We used three settings for x: x = 1%,
10%, or 50%. The computer recorded the number of
domain concepts in a description that were seen for the
first time while reading the descriptions one by one. The
resulting plots using different x and description sources
are shown in Figures 3, 4, and 5. The plots suggest that
new concepts are constantly encountered regardless of
the size of a collection and the size of the common word
filter. In other words, systems built based on a sample of
a collection will encounter new concepts constantly
when used on the remaining part of the collection. The
diverse terminologies and the absence of a comprehen-
sive computer-readable dictionary/lexicon covering all
these terminologies present a challenge for automated
semantic annotation systems, because a) words are the
basic unit in language processing–a higher level of under-
standing of the text cannot be obtained without a good
understanding of the words and b) this characteristic
makes a system crafted for one (or portion of a) descrip-
tion collection easily fail on the new concepts contained
in another (or another portion of the) collection.
Diverse meanings: While it is well-known that the same
word could have different meanings in different

domains, the exact meaning of a term in one taxon
group is not always well-defined either. For example,
the term “erect” takes on a number of different mean-
ings depending on which botanical thesaurus one con-
sults: the FNA Glossary defines “erect” as a state of
orientation, the Oxford Virtual Field Herbarium Plant
Characteristics defines it as a state of habit, and two dif-
ferent versions of PATO ontology labeled the concept
placement and position respectively [21-23]. Cui con-
ducted a comparison of four machine-readable glossaries
in botany (including the above-mentioned three) and
found that among 1964 character states extracted from
five volumes of FNA and four volumes of FOC, 64 were
included by all four glossaries, and only 12 of the 64
were given the same definition by all four glossaries
[24]. In the biomedical domain, UMLS (the Unified
Medical Language System) is being built since 1986 to
bridge different biomedical thesauri. Natural language
processing in the biodiversity domain needs a compar-
able ontological infrastructure. Without consolidating
ambiguous definitions, the ability for different annotated
collections to communicate with each other is lost,
defeating the purpose of semantic annotation.
Deviated syntax: Many morphological descriptions are

written in a syntax that deviates from standard English
syntax (Figure 6 shows some clauses in such a syntax).

Figure 3 The counts of new domain concepts in Part V of TIP using different sized common word filters.
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Figure 4 The counts of new domain concepts in FNA using different sized common word filters.

Figure 5 The counts of new domain concepts in FOC using different sized common word filters.
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The syntax makes it difficult to adopt existing natural
language parsing tools as part of a semantic annotation
system. Syntactic parsers such as the Stanford Parser
(SNLP) perform well on sentences using standard gram-
mar, for example, “apical flagellomere is the longest,”
but not so well for typical sentences in morphological
descriptions such as “apical flagellomere longest” (Figure
6). Incorrect parsing at the syntax level will lead to
incorrect semantic annotation. There are ways to make
modern parsers more useful for biodiversity domain

text. Besides retraining a parser with human-annotated
domain sentences, one can give the parser useful infor-
mation directly to guide the parsing. As an exploratory
study, a random sample of 20 sentences of different syn-
tactic complexity was parsed using the Stanford Parser
(using the Probabilistic Context-Free Grammar: Eng-
lishPCFG) [25]. These sentences include five sentences
involving one organ/structure, five sentences involving
two organs/structures with at least one preposition, five
sentences involving two organs/structures with at least

Figure 6 Parsing trees produced by the Stanford Parser for descriptive sentences. The first two trees contrast the incorrect parsing of a
descriptive sentence in the deviated grammar to the correct parsing of a similar sentence in standard English grammar. The remaining contrasts
the incorrect parsing of 3 typical descriptive clauses in the deviated syntax to the correct parsing when the correct Part of Speech (POS) tags
were given to the parser. The nodes closest to the words in the parsing trees are the POS tags.
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one verb, and five sentences involving three or more
organs/structures. Fifteen of the twenty parsing results
contain errors. The majority of the errors seem to have
stemmed from an incorrect Part of Speech (POS) tag
given to a domain term. When corrected POSs were
given to the parser, a better parsing resulted for each of
the 15 cases, even though a few structural problems
remained. Figure 6 shows the improvements that
resulted from corrected POS tags for three sentences.
The command, the complete set of sentences, and the
parsing results can be found in Additional Files 4, 5,
and 6. Since general lexicons, e.g., WordNet, for natural
language processing, are not very useful (the Stanford
Parser uses one of such) and no domain-specific lexicon
for biodiversity exists, now the question becomes: where
can we find correct POS tags for each of the domain
terms?
2. Beneficial characteristics
While the deviated syntax presents a challenge to gen-
eral-purpose parsers, the fact that the syntax is much
simpler than standard English syntax should be consid-
ered an advantageous factor. The other two characteris-
tics of morphological descriptions which may be
beneficial to a semantic annotation technique are: (1)
highly repetitive usage of terms. Morphological descrip-
tions have a very high term repetition rate. Table 2
shows the ratio of the number of unique words to the
number of clauses sampled from FNA and Part H of the
Treatise of Invertebrate Paleontology [26]. This means
that the same term is often used many times in descrip-
tions in different contexts. (2) the availability of parallel
text. One taxon is often described and/or redescribed
many times. Multiple texts describing the same taxon
are called “parallel text” [16]. These two characteristics
can be helpful to a semantic annotation system as they
provide multiple chances for a system to learn the
meaning of a term.

An unsupervised learning method
With the understanding of challenging and beneficial
characteristics of morphological descriptions, Cui
explored an unsupervised learning method that discov-
ered organ names and character states directly from
descriptions, without being limited by any templates.
The algorithm takes advantage of the deviated syntax

and works without any lexicons, extraction templates, or
training examples [27]. Therefore, the algorithm is
expected to work on descriptions of any taxon group
written in the deviated syntax. This removes or signifi-
cantly reduces the manual labor required to craft par-
sers, templates, or training examples on a collection by
collection basis. Different from the supervised learning
approach, the unsupervised algorithm identifies organ
names and character states mentioned in morphological
descriptions by bootstrapping between the subjects
(which are typically organ names) and the subsequent
words (called “boundary words,” over 90% of which are
character states) in the clauses [28]. To illustrate the
idea, for example, the algorithm is primed with knowl-
edge that “petals” is an organ and can be a subject, then
when the algorithm comes across the clause “petals
absent,” the algorithm would infer that “absent” is a
state. Knowing that, the algorithm would further infer
that “subtending bracts” in “subtending bracts absent” is
an organ. By now, the algorithm has learned two new
terms: “absent” is a state and “subtending bracts” is an
organ. The algorithm continues searching through the
descriptions to apply what it has already learned to dis-
cover the unknowns, until there is no new discovery to
be made. The algorithm takes the advantage of the
deviated yet simple syntax and the repetitive usage of
the terms in morphological descriptions. While the
assumption that clauses all start with an organ name
followed by a state is not always true (since the same
organ names or states are often repeatedly used in dif-
ferent combinations in descriptions), the chance for
them to be discovered has been shown to be very good.
The identification of organ names is sufficient to per-

form clause level annotation at an accuracy of 92% to
95%. Compared with the supervised algorithm reported
in Cui on the same dataset (i.e., 633 descriptions from
FNA) on clause level annotation, the unsupervised algo-
rithm achieved better performance, ran five times faster,
and eliminated the need for training examples [11]. Nota-
bly, the unsupervised algorithm marked up all clauses left
out by the supervised learning algorithm due to the
inadequate template problem. Organ names and charac-
ter states learned by the unsupervised algorithm were sig-
nificantly cleaner and more useful for marking up new
descriptions or constructing domain lexicons [27].
The most recent evaluation on several hundred to sev-

eral thousand descriptions from volume 19 (Asteraceae)
of FNA and Part H (Brachiopods) of the Treatises found
that 90% of the organ names learned by the algorithm
were correct (precision) and that accounts for 80% to
90% of all organ names mentioned in the descriptions
(recall). Over 92% to 98% of learned character states
were correct and that accounts for 50% to 75% of all
character states mentioned in the descriptions [29]. A

Table 2 Word repetition in morphological descriptions.

source descriptions
sampled

clauses unique
words

unique word
per clause

FNA 40 500 614 1.228

FNA 81 1048 834 0.800

FNA 942 12500 1959 0.157

Treatise Part H 2038 9760 2583 0.265
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plant description correctly annotated by the algorithm is
shown in Figure 1.
The unsupervised algorithm has two notable limita-

tions. (1) While the algorithm learned organ names and
character states with very good precision, the recall of
character states was only in the range of 50% to75%.
There is hope to further improve the recall by learning
from parallel text. Wood et al. showed that the use of
parallel text improved the recall threefold [16]. (2) To
fully mark up at the character level, the identified char-
acter states must be connected to their characters, and
the characters to organs. However, characters are rarely
explicitly mentioned in the descriptions. For example, in
“stems prostrate to erect,” the character to which “pros-
trate” and “erect” belong is only implied. As discussed
earlier, “erect” may be a habit, an orientation, a position,
or a placement, depending on which source one con-
sults and when. The confusion on the implied characters
is a problem for supervised and unsupervised
approaches alike, but in supervised learning, a designa-
tion is often arbitrarily made (e.g., making “erect” a
habit) and fixed in the extraction templates and training
examples, so the issue seems to be resolved, until the
annotation needs to be merged with another collection
where “erect” is an orientation. Without templates and
training examples, the unsupervised algorithm could
logically group character states of the same character
together by their co-occurrence patterns (e.g., “pros-
trate” and “erect” often appear together, so they are in
the same group), and wait for an authority to determine
what they really are. It is much easier for a domain
scientist to label the group “dark brown,” “chestnut-
colored,” and “greenish-blue” color than annotating
hundreds of training descriptions. The co-occurrence
patterns may provide some useful clues for an expert or
a group of experts to determine a category for the more
troublesome terms such as “erect.”

An overall strategy for semantic annotation of
biodiversity documents
Having learned characteristics of morphological descrip-
tions and strengths and limitations of existing annotation
techniques, in this section we propose an overall strategy
for automated semantic annotation of morphological
descriptions in general. Figure 7 illustrates the proposed
strategy. First, description sections need to be recognized
for annotation. If they are in the standard syntax, the exist-
ing general-purpose syntactic parsers, in combination with
supervised learning methods (not limited to what is
reviewed here) are used. If they are in the deviated syntax,
the unsupervised learning technique is used.
Since the unsupervised learning technique is cheaper

to use than the supervised ones, we propose to process

descriptions in the deviated syntax first whenever such
an option exists, for the following reasons:
A. Organ names and character states learned by the

unsupervised technique can be used to enhance or build
domain lexicons. Knowing organ names are nouns and
character states are adjectives, most of the parsing errors
shown in Figure 6 could be resolved; for example,
knowing “flagellomere” is a noun (NN) would correct
one of the parsing errors. These concepts can also be
used to extend the coverage of the extraction templates
used by supervised learning techniques, addressing the
problem of inadequate templates. In addition, the cheap
yet rather effective unsupervised algorithm may be used
to mark up descriptions to obtain “weak” training exam-
ples, which can then be refined, if necessary, for super-
vised learning techniques.
B. The organ names and groups of character states

discovered from literature via unsupervised learning
may be selected by domain experts to be included in
domain ontologies, which in return ensures the annota-
tion produced by any annotation systems is interoper-
able. Domain knowledge of human experts is best used
here, rather than preparing training examples collection
by collection.
C. The learned concepts may be used for recognizing

and extracting morphological description paragraphs
from their parent documents–a necessary first step
before morphological information can be annotated
further. A description paragraph can simply be distin-
guished from say, a distribution section, by the density
of the words representing organ names and character
states. Sophisticated, supervised text classification algo-
rithms have been used for this purpose, but they require
training examples to run [30]. We have used the con-
cepts learned unsupervised from a portion of FNA to
identify description paragraphs in other volumes with
almost effortless 100% accuracy.
In addition:
D. All marked up descriptions should ideally be

deposited in a common repository as they can be train-
ing examples or otherwise helpful to either supervised
or unsupervised learning techniques.
E. Lastly, many systematic biologists are not aware

that the spreadsheets they use to draft descriptions
could be easily used as training examples for supervised
learning. Spreadsheets are another source (besides the
literature) of distilled domain knowledge, based on
which the meaning of a concept may be verified and
determined.
A flexible system architecture such as that provided by

GoldenGate, Kepler, or others could be used as the base
system where various annotation modules/resources are
plug-ins [7,31].
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Discussion
The proposed strategy above is based on the characteris-
tics of several biodiversity document collections we have
observed. With millions of pages of biosystematic litera-
ture digitized by the Biodiversity Heritage Library and
others, systematic biologists, information scientists, and
others must work together to put the text into a compu-
ter-understandable and interoperable format fast so the
knowledge becomes alive again. Language processing
infrastructure such as domain lexicons and ontologies
should be built and shared not to benefit any particular
project but to stay useful for all. As the number of
active taxonomists is currently declining, their time
should be spent on the most challenging part of the
puzzle, namely defining the meaning of domain con-
cepts, so domain ontologies become useful and exert
lasting power for a long time to come. A strategy that
would lead us to the ultimate goal of a “biodiversity
information commons” on the Semantic Web faster

involves computer scientists using and developing low-
cost unsupervised learning methods for annotating the
literature directly or feeding more expensive supervised-
learning approaches. But more important than anything
else, domain scientists are needed to share their charac-
ter matrices as training data and to verify learning
results produced by the algorithms (including lexicons,
ontologies, and annotated documents). Resources should
be directed to develop reusable knowledge entities,
including benchmarks for evaluating system perfor-
mances, in standard formats for an accumulative growth
of computer-usable knowledge.

Conclusions
We have experimented with a number of semantic
annotation techniques and learned the characteristics of
morphological descriptions over time. These experiences
have led us to the overall strategy proposed above. With
the support of an NSF grant and a group of enthusiastic

Figure 7 An overall strategy to automated semantic annotation of morphological descriptions of various taxon groups.
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domain scientists, we are implementing the strategy,
including developing the unsupervised learning algo-
rithm and using it to help lexicon and ontology con-
structions. All will be further developed and tested on
different taxon groups for character-level annotation
and released for public download by 2011. Post-2011 we
plan to make use of the lexicons and ontologies pro-
duced to annotate biodiversity-related, true natural lan-
guage text. Along the way we hope to develop standard
benchmark datasets for algorithm evaluation in the bio-
diversity domain.

Additional file 1: domainConceptsExtractedFromPartVTreatise.
Contains concepts automatically extracted from Part V of the Treatise on
Invertebrate Paleontology.

Additional file 2: domainConceptsExtractedFromFNA. Contains
concepts automatically extracted from 2300+ descriptions of FNA.

Additional file 3: domainConceptsExtractedFromFOC. Contains
concepts automatically extracted from 13,000+ descriptions of FOC

Additional file 4: lexparserPOS. Executable Windows commandline
commands for running the Stanford Parser. To run the command after
installing the Parser, type the following on the commandline:
lexparserPOS.bat “testsentPOS.txt”. testsentPOS.txt is the Additional file 5.

Additional file 5: testsentPOS. Contains the 20 test sentences for the
Stanford Parser. Sentences are listed in the order of complexity.
Sentences parsed incorrectly by the Stanford Parser are listed at least
twice, one of which showing the POS tags assigned by the Stanford
Parser, and the others showing correct alternative POS tags. POS-tagged
by the Stanford Parser and with corrected POS tags. Use this file to run
the command listed in Additional file 4 to obtain the contrasting parsing
results for each sentence. The results are not shown as “trees.” To
generate parsing trees, use the service provided at http://ironcreek.net/
phpsyntaxtree/ (need to all ( ) to [])

Additional file 6: resultPOS. Contains the contrasting parsing results for
the 15 sentences parsed incorrectly by the Stanford Parser.

Acknowledgements
This research is in part supported by an NSF grant EF- 0849982 and a grant
from the Flora of North America Project.

Received: 17 December 2009 Accepted: 25 May 2010
Published: 25 May 2010

References
1. Flora of North America Editorial Committee (Eds): Flora of North

America. [http://www.fna.org/].
2. Tang X, Heidorn PB: Using automatically extracted information in species

page retrieval. Proceedings of TDWG 2007 [http://www.tdwg.org/
proceedings/article/view/195].

3. Cui H, Macklin J, Yu C: Application of semantic annotation for quality
insurance in biosystematics publishing. Proceedings of the Annual Meeting
of American Society of Information Science and Technology 2009 (in CD) 2009.

4. Taylor A: Extracting knowledge from biological descriptions. Proceedings
of 2nd International Conference on Building and Sharing Very Large-Scale
Knowledge Bases 1995, 114-119.

5. Abascal R, Sanchenz J: X-tract: Structure extraction from botanical textual
descriptions. Proceeding of the String Processing & Information Retrieval
Symposium 1999, 2-7.

6. Kirkup D, Malcolm P, Christian G, Paton A: Towards a Digital African Flora.
Taxon 2005, 54(2):457-466.

7. Sautter G, Agosti D, Bohm K: Semi-automated xml markup of
biosystematics legacy literature with the GoldenGATE editor. Proceedings

of Pacific Symposium on Biocomputing, January 3-7, 2007; Wailea, Maui,
Hawaii Altman RB, Murray T, Klein TE, Dunker AK, Hunter L 2007, 391-402.

8. Curry G, Connor R: Automated extraction of data from text using an xml
parser: an earth science example using fossil descriptions. Geosphere
2008, 4(1):159-169.

9. Lydon S, Wood M, Huxley R, Sutton D: Data patterns in multiple botanical
descriptions: implications for automatic processing of legacy data.
Systematics and Biodiversity 2003, 1(2):151-157.

10. Soderland S: Learning information extraction rules for semi-structured
and free text. Machine Learning 1999, 34(1-3):233-272.

11. Cui H: Converting taxonomic descriptions to new digital formats.
Biodiversity Informatics 2008, 5:20-40.

12. Wu ZY, Raven PH, (Eds): Flora of China. Beijing: Science Press & St. Louis:
Missouri Botanical Garden Press 1994.

13. Wu ZY, Hong DY, Raven PH, (Eds): Flora of China. Beijing: Science Press &
St. Louis: Missouri Botanical Garden Press 2001.

14. Diggs G, Lipscomb B, O’Kennon R: Shinners & Mahler’s Illustrated Flora of
North Central Texas. Fort Worth, Texas: Center for Environmental Studies
and Department of Biology, Austin College, Sherman, Texas, and Botanical
Research Institute of Texas (BRIT) 1999.

15. Greenstone Digital Library Software. [http://research.sbs.arizona.edu/gs/
cgi-bin/library].

16. Wood MM, Lydon SJ, Tablan V, Maynard D, Cunningham H: Using parallel
texts to improve recall in IE. recent advances in natural language
processing: In Selected Papers from RANL: 10-12 Sept, 2003; Samokov, Bulgaria
2003, 70-77.

17. Diederich J, Fortuner R, Milton J: Computer-assisted data extraction from
the taxonomical literature.[http://math.ucdavis.edu/~milton/genisys.html].

18. Biodiversity Heritage Library. [http://www.biodiversitylibrary.org/].
19. Cui H, Heidorn PB: The reusability of induced knowledge for the

automatic semantic markup of taxonomic descriptions. Journal of the
American Society for Information Science and Technology 2007, 58(1):133-149.

20. Brown Corpus. [http://khnt.aksis.uib.no/icame/manuals/brown/].
21. Kiger RW, Porter DM: Categorical Glossary for the Flora of North America

Project.[http://huntbot.andrew.cmu.edu/HIBD/Departments/DB-INTRO/
IntroFNA.shtml].

22. Plant Characteristics. [http://herbaria.plants.ox.ac.uk/vfh/image/?
glossary=show].

23. PATO - Phenotypic quality ontology. [http://www.ebi.ac.uk/ontology-
lookup/browse.do?ontName=UO].

24. Cui H: Competency evaluation of plant character ontologies against
domain literature. Journal of American Society of Information Science and
Technology 2010, 61:1144-1165.

25. The Stanford Parser. [http://nlp.stanford.edu/software/lex-parser.shtml].
26. Moore RC, Teichert C, Robison RA, Kaesler RL, Selden PA, (Eds): Treatise on

Invertebrate Paleontology. Lawrence, Kansas: University of Kansas and
Boulder, Colorado: Geological Society of America.

27. Cui H: Unsupervised Semantic Markup of Literature for Biodiversity
Digital Libraries. Proceedings of the 8th ACM/IEEE-CS Joint Conference on
Digital libraries 2008, 25-28.

28. Riloff E, Jones R: Learning dictionaries for information extraction by
multi-level bootstrapping. Proceedings of the Sixteenth National Conference
on Artificial Intelligence, July 18-22, 1999 Orlando, Florida. American
Association for Artificial Intelligence 1999, 474-479.

29. Cui H, Boufford D, Selden P: Semantic annotation of biosystematics
literature without training examples. Journal of American Society of
Information Science and Technology .

30. Cui H, Heidorn P, Zhang H: An approach to automatic classification for
information retrieval. Proceedings of the Second ACM/IEEE-CS Joint
Conference on Digital Libraries: 14-18 July 2002; Portland Association for
Computing MachineryMarchionini G, Hersh W 2002, 96-97.

31. The Kepler Project. [http://kepler-project.org/].

doi:10.1186/1471-2105-11-278
Cite this article as: Cui: Semantic annotation of morphological
descriptions: an overall strategy. BMC Bioinformatics 2010 11:278.

Cui BMC Bioinformatics 2010, 11:278
http://www.biomedcentral.com/1471-2105/11/278

Page 11 of 11

http://www.biomedcentral.com/content/supplementary/1471-2105-11-278-S1.CSV
http://www.biomedcentral.com/content/supplementary/1471-2105-11-278-S2.CSV
http://www.biomedcentral.com/content/supplementary/1471-2105-11-278-S3.CSV
http://www.biomedcentral.com/content/supplementary/1471-2105-11-278-S4.TXT
http://www.biomedcentral.com/content/supplementary/1471-2105-11-278-S5.TXT
BackgroundConverting free text morphological descriptions of whole organisms into a computer-readable representation where organ names and characters are explicitly marked with meaningful tags promises more effective use of biodiversity knowledge and better support for biodiversity research. The conversion task is commonly called �semantic markup� or �semantic annotation.� Here �semantic� means each concept is assigned one and only one unambiguously defined meaning. Due to the volume of the documents, automatic procedures are needed to perform the task. Semantic annotation research has been very active and conducted in various domains. The domain of morphological descriptions presents rather distinctive characteristics. Figure 1 shows an annotated plant description in XML (eXtensible Markup Language) format.Semantic annotation of morphological descriptions may be at �clause� or �character� level. A clause is a segment of text terminated by a semicolon (;) or period (.). In morphological descriptions, a clause may not be a grammatical sentence (see examples in Figure 1). Clause-level annotation labels individual clauses with a meaningful tag, while character-level annotation identifies character/state pairs for describing organs. In addition, a method distinguishing description paragraphs for nomenclature, distribution, and other types of sections is also needed. Figure 1 illustrates the three levels of annotation in XML for a plant description from the Flora of North America 1.The inserted tags bring a computer�s �understanding� of morphological descriptions to a higher level that would support more intelligent usages of the information than keyword-based search. Besides improving the accuracy of information retrieval, the tags make it possible for a computer to quickly merge or compare different descriptions organ by organ and character by character. This new capability will impact comparative biological research, the methods used in generating identification keys, and even the way an editor reviews manuscripts 23.Relevant research in annotating biosystematic literature will be reviewed next.MethodsMethods used for semantic annotation of taxonomic documentsA syntactic parsing technique was used by a number of earlier projects. Taylor and Abascal & Sanchenz hand-crafted a set of simple grammar rules and a small lexicon specifically for extracting character states from several Floras 45. Taylor�s performances were not scientifically evaluated but estimated at 60% to 80% recall.The major advantage of the syntactic parsing approach lies in the ease of constructing a parser once the lexicon and grammar rules are prepared. The main drawback is precisely its reliance on the lexicon and grammar rules. Because of the diverse terminologies and the deviated syntax from natural language (see Characteristics of morphological descriptions in the Results section), preparing lexicons and grammar rules for each individual collection or taxon group would be prohibitively expensive.Rules called �regular expression patterns� that rely on the regularity in the style and the use of punctuation marks were hand-crafted and found to be useful for extracting nomenclature and distribution information 678. However, this approach is not useful for morphological descriptions, because of (1) the lack of such regularity in morphological descriptions and (2) the low reusability of such rules on a different description collection. Lydon et al. showed that the narratives on five common species were so different among six English Floras that only 9% of information was expressed in the same way 9.Regular expression patterns may be generated automatically using the supervised machine learning technique, where an algorithm uses the occurrences of different patterns in training examples to statistically predict the pattern that is likely to fit a new example. Soderland developed such an algorithm to extract information from semi-structured documents such as apartment rental ads 10. Figure 2 shows such an extraction pattern. This algorithm was adapted by Tang & Heidorn to extract leaf shape, size, color, arrangement, and fruit/nut shape from 1600 FNA species descriptions 2. They reported the extraction accuracies ranging from 30% to 100%.Supervised learning technique was also used by Cui, in which the algorithm performed clause level annotation by learning from training examples what are called �association rules,� which are less sensitive to text variations, compared to the extraction pattern discussed above 11. Its annotation accuracy ranged between upper 80% to upper 90% on three different Floras (Flora of North America, Flora of China, and Flora of North Central Texas) of over ten thousand descriptions 112131415.Machine learning has the advantage over manual work in its ability to programmatically evaluate its learning and adjust candidate patterns/rules based on what is seen in the training examples. However, the need for training examples is also a shortcoming, as training examples must be prepared for different taxon groups and even different collections. More importantly, if certain organs/characters are not included in the predefined extraction targets, they will be quietly ignored, resulting in loss of information. This �inadequate template� problem was also noted by Wood et al., where manually-created dictionaries, an ontology, and a lookup list were used to extract and correlate characters/states from a set of 18 plant species descriptions 16. They had to tag organs that were not in their lists �UnknownPlantPart.� Wood et al. used parallel text to find three times more targeted information, which would otherwise be missed, and improved extraction recall three times. Diederich, Fortuner & Milton reported a system called Terminator, which is very similar to Wood et al.�s in that they both use a hand-crafted domain ontology to support character extraction 17.The previous approaches share the inadequate template problem because a fixed template cannot be expected to cover the diverse terms in morphological descriptions well. Manually adding new terms to the templates has been suggested as a way to solve the problem 16. Table 1 summarizes the techniques reviewed. The performances reported may not be comparable, as different evaluation schemes were used.The techniques reviewed here all have their strengths, despite weaknesses, yet, when facing the millions of OCRed text descriptions produced by the Biodiversity Heritage Library, none of them seems to be both effective and efficient 18. The reason, we suggest, lies in the special characteristics of the morphological descriptions.ResultsIn this section we present our exploratory results on the characteristics of morphological descriptions and on an unsupervised machine learning strategy. Insights gained via these exercises give rise to an overall strategy for semantic annotation of morphological descriptions, which we shall discuss at the end of this section.Characteristics of morphological descriptionsThe performance of a semantic annotation technique depends, at least in part, on the characteristics of the documents to be annotated. A technique that identifies organ names by looking for bold words, for example, is not very useful for the task overall, because many descriptions are not styled that way. Here, in our search for a sound overall strategy to mark up all morphological descriptions in English, we consider some general characteristics of morphological descriptions which are challenging or beneficial for an automated semantic annotation technique.1. Challenging characteristicsDiverse terminology: each biodiversity branch has a more or less distinct set of terminology. Not only are terms used in brachiopod (Animalia) descriptions different from those in plant descriptions, but terms in one plant family description are somewhat different from those in another. Several previous researchers (e.g. Wood et al., and Cui & Heidorn) have reported that when applying a system crafted from one set of documents to a different set, new concepts that were unknown to the system were encountered, forcing an automated system to work in an interactive and iterative fashion to incorporate new concepts along the way 1619.To find out how biodiversity concepts are distributed in description collections, a simple procedure was used on several collections of morphological descriptions of different taxa and different size, including 120 descriptions from Part V of Treatise on Invertebrate Paleontology (TIP), 2300 descriptions from Flora of North America (FNA), and 13,000 descriptions from Flora of China (FOC). Concepts collected from the collections are included in the Additional Files 1, 2, and 3. The procedure involves using the Brown Corpus to filter out non-domain concepts and then having the computer read the descriptions one by one in the order the descriptions are presented in the original publications 20. In our experiments, the top x percent of the most frequent words were taken from all sections of Brown Corpus, except for section �J: Learned,� to form a set of most common non-technical terms in English. Not counting section �J,� the Brown Corpus contains 979,304 words, of which 42,262 are unique. Words appearing in morphological descriptions but not in this set were considered domain concepts, which may include organ names, characters, and character states (lists of extracted domain concepts, with x set to 10%, from the three sources are included in Additional Files). We used three settings for x: x = 1%, 10%, or 50%. The computer recorded the number of domain concepts in a description that were seen for the first time while reading the descriptions one by one. The resulting plots using different x and description sources are shown in Figures 3, 4, and 5. The plots suggest that new concepts are constantly encountered regardless of the size of a collection and the size of the common word filter. In other words, systems built based on a sample of a collection will encounter new concepts constantly when used on the remaining part of the collection. The diverse terminologies and the absence of a comprehensive computer-readable dictionary/lexicon covering all these terminologies present a challenge for automated semantic annotation systems, because a) words are the basic unit in language processing--a higher level of understanding of the text cannot be obtained without a good understanding of the words and b) this characteristic makes a system crafted for one (or portion of a) description collection easily fail on the new concepts contained in another (or another portion of the) collection.Diverse meanings: While it is well-known that the same word could have different meanings in different domains, the exact meaning of a term in one taxon group is not always well-defined either. For example, the term �erect� takes on a number of different meanings depending on which botanical thesaurus one consults: the FNA Glossary defines �erect� as a state of orientation, the Oxford Virtual Field Herbarium Plant Characteristics defines it as a state of habit, and two different versions of PATO ontology labeled the concept placement and position respectively 212223. Cui conducted a comparison of four machine-readable glossaries in botany (including the above-mentioned three) and found that among 1964 character states extracted from five volumes of FNA and four volumes of FOC, 64 were included by all four glossaries, and only 12 of the 64 were given the same definition by all four glossaries 24. In the biomedical domain, UMLS (the Unified Medical Language System) is being built since 1986 to bridge different biomedical thesauri. Natural language processing in the biodiversity domain needs a comparable ontological infrastructure. Without consolidating ambiguous definitions, the ability for different annotated collections to communicate with each other is lost, defeating the purpose of semantic annotation.Deviated syntax: Many morphological descriptions are written in a syntax that deviates from standard English syntax (Figure 6 shows some clauses in such a syntax). The syntax makes it difficult to adopt existing natural language parsing tools as part of a semantic annotation system. Syntactic parsers such as the Stanford Parser (SNLP) perform well on sentences using standard grammar, for example, �apical flagellomere is the longest,� but not so well for typical sentences in morphological descriptions such as �apical flagellomere longest� (Figure 6). Incorrect parsing at the syntax level will lead to incorrect semantic annotation. There are ways to make modern parsers more useful for biodiversity domain text. Besides retraining a parser with human-annotated domain sentences, one can give the parser useful information directly to guide the parsing. As an exploratory study, a random sample of 20 sentences of different syntactic complexity was parsed using the Stanford Parser (using the Probabilistic Context-Free Grammar: EnglishPCFG) 25. These sentences include five sentences involving one organ/structure, five sentences involving two organs/structures with at least one preposition, five sentences involving two organs/structures with at least one verb, and five sentences involving three or more organs/structures. Fifteen of the twenty parsing results contain errors. The majority of the errors seem to have stemmed from an incorrect Part of Speech (POS) tag given to a domain term. When corrected POSs were given to the parser, a better parsing resulted for each of the 15 cases, even though a few structural problems remained. Figure 6 shows the improvements that resulted from corrected POS tags for three sentences. The command, the complete set of sentences, and the parsing results can be found in Additional Files 4, 5, and 6. Since general lexicons, e.g., WordNet, for natural language processing, are not very useful (the Stanford Parser uses one of such) and no domain-specific lexicon for biodiversity exists, now the question becomes: where can we find correct POS tags for each of the domain terms?2. Beneficial characteristicsWhile the deviated syntax presents a challenge to general-purpose parsers, the fact that the syntax is much simpler than standard English syntax should be considered an advantageous factor. The other two characteristics of morphological descriptions which may be beneficial to a semantic annotation technique are: (1) highly repetitive usage of terms. Morphological descriptions have a very high term repetition rate. Table 2 shows the ratio of the number of unique words to the number of clauses sampled from FNA and Part H of the Treatise of Invertebrate Paleontology 26. This means that the same term is often used many times in descriptions in different contexts. (2) the availability of parallel text. One taxon is often described and/or redescribed many times. Multiple texts describing the same taxon are called �parallel text� 16. These two characteristics can be helpful to a semantic annotation system as they provide multiple chances for a system to learn the meaning of a term.An unsupervised learning methodWith the understanding of challenging and beneficial characteristics of morphological descriptions, Cui explored an unsupervised learning method that discovered organ names and character states directly from descriptions, without being limited by any templates. The algorithm takes advantage of the deviated syntax and works without any lexicons, extraction templates, or training examples 27. Therefore, the algorithm is expected to work on descriptions of any taxon group written in the deviated syntax. This removes or significantly reduces the manual labor required to craft parsers, templates, or training examples on a collection by collection basis. Different from the supervised learning approach, the unsupervised algorithm identifies organ names and character states mentioned in morphological descriptions by bootstrapping between the subjects (which are typically organ names) and the subsequent words (called �boundary words,� over 90% of which are character states) in the clauses 28. To illustrate the idea, for example, the algorithm is primed with knowledge that �petals� is an organ and can be a subject, then when the algorithm comes across the clause �petals absent,� the algorithm would infer that �absent� is a state. Knowing that, the algorithm would further infer that �subtending bracts� in �subtending bracts absent� is an organ. By now, the algorithm has learned two new terms: �absent� is a state and �subtending bracts� is an organ. The algorithm continues searching through the descriptions to apply what it has already learned to discover the unknowns, until there is no new discovery to be made. The algorithm takes the advantage of the deviated yet simple syntax and the repetitive usage of the terms in morphological descriptions. While the assumption that clauses all start with an organ name followed by a state is not always true (since the same organ names or states are often repeatedly used in different combinations in descriptions), the chance for them to be discovered has been shown to be very good.The identification of organ names is sufficient to perform clause level annotation at an accuracy of 92% to 95%. Compared with the supervised algorithm reported in Cui on the same dataset (i.e., 633 descriptions from FNA) on clause level annotation, the unsupervised algorithm achieved better performance, ran five times faster, and eliminated the need for training examples 11. Notably, the unsupervised algorithm marked up all clauses left out by the supervised learning algorithm due to the inadequate template problem. Organ names and character states learned by the unsupervised algorithm were significantly cleaner and more useful for marking up new descriptions or constructing domain lexicons 27.The most recent evaluation on several hundred to several thousand descriptions from volume 19 (Asteraceae) of FNA and Part H (Brachiopods) of the Treatises found that 90% of the organ names learned by the algorithm were correct (precision) and that accounts for 80% to 90% of all organ names mentioned in the descriptions (recall). Over 92% to 98% of learned character states were correct and that accounts for 50% to 75% of all character states mentioned in the descriptions 29. A plant description correctly annotated by the algorithm is shown in Figure 1.The unsupervised algorithm has two notable limitations. (1) While the algorithm learned organ names and character states with very good precision, the recall of character states was only in the range of 50% to75%. There is hope to further improve the recall by learning from parallel text. Wood et al. showed that the use of parallel text improved the recall threefold 16. (2) To fully mark up at the character level, the identified character states must be connected to their characters, and the characters to organs. However, characters are rarely explicitly mentioned in the descriptions. For example, in �stems prostrate to erect,� the character to which �prostrate� and �erect� belong is only implied. As discussed earlier, �erect� may be a habit, an orientation, a position, or a placement, depending on which source one consults and when. The confusion on the implied characters is a problem for supervised and unsupervised approaches alike, but in supervised learning, a designation is often arbitrarily made (e.g., making �erect� a habit) and fixed in the extraction templates and training examples, so the issue seems to be resolved, until the annotation needs to be merged with another collection where �erect� is an orientation. Without templates and training examples, the unsupervised algorithm could logically group character states of the same character together by their co-occurrence patterns (e.g., �prostrate� and �erect� often appear together, so they are in the same group), and wait for an authority to determine what they really are. It is much easier for a domain scientist to label the group �dark brown,� �chestnut-colored,� and �greenish-blue� color than annotating hundreds of training descriptions. The co-occurrence patterns may provide some useful clues for an expert or a group of experts to determine a category for the more troublesome terms such as �erect.�An overall strategy for semantic annotation of biodiversity documentsHaving learned characteristics of morphological descriptions and strengths and limitations of existing annotation techniques, in this section we propose an overall strategy for automated semantic annotation of morphological descriptions in general. Figure 7 illustrates the proposed strategy. First, description sections need to be recognized for annotation. If they are in the standard syntax, the existing general-purpose syntactic parsers, in combination with supervised learning methods (not limited to what is reviewed here) are used. If they are in the deviated syntax, the unsupervised learning technique is used.Since the unsupervised learning technique is cheaper to use than the supervised ones, we propose to process descriptions in the deviated syntax first whenever such an option exists, for the following reasons:A. Organ names and character states learned by the unsupervised technique can be used to enhance or build domain lexicons. Knowing organ names are nouns and character states are adjectives, most of the parsing errors shown in Figure 6 could be resolved; for example, knowing �flagellomere� is a noun (NN) would correct one of the parsing errors. These concepts can also be used to extend the coverage of the extraction templates used by supervised learning techniques, addressing the problem of inadequate templates. In addition, the cheap yet rather effective unsupervised algorithm may be used to mark up descriptions to obtain �weak� training examples, which can then be refined, if necessary, for supervised learning techniques.B. The organ names and groups of character states discovered from literature via unsupervised learning may be selected by domain experts to be included in domain ontologies, which in return ensures the annotation produced by any annotation systems is interoperable. Domain knowledge of human experts is best used here, rather than preparing training examples collection by collection.C. The learned concepts may be used for recognizing and extracting morphological description paragraphs from their parent documents--a necessary first step before morphological information can be annotated further. A description paragraph can simply be distinguished from say, a distribution section, by the density of the words representing organ names and character states. Sophisticated, supervised text classification algorithms have been used for this purpose, but they require training examples to run 30. We have used the concepts learned unsupervised from a portion of FNA to identify description paragraphs in other volumes with almost effortless 100% accuracy.In addition:D. All marked up descriptions should ideally be deposited in a common repository as they can be training examples or otherwise helpful to either supervised or unsupervised learning techniques.E. Lastly, many systematic biologists are not aware that the spreadsheets they use to draft descriptions could be easily used as training examples for supervised learning. Spreadsheets are another source (besides the literature) of distilled domain knowledge, based on which the meaning of a concept may be verified and determined.A flexible system architecture such as that provided by GoldenGate, Kepler, or others could be used as the base system where various annotation modules/resources are plug-ins 731.DiscussionThe proposed strategy above is based on the characteristics of several biodiversity document collections we have observed. With millions of pages of biosystematic literature digitized by the Biodiversity Heritage Library and others, systematic biologists, information scientists, and others must work together to put the text into a computer-understandable and interoperable format fast so the knowledge becomes alive again. Language processing infrastructure such as domain lexicons and ontologies should be built and shared not to benefit any particular project but to stay useful for all. As the number of active taxonomists is currently declining, their time should be spent on the most challenging part of the puzzle, namely defining the meaning of domain concepts, so domain ontologies become useful and exert lasting power for a long time to come. A strategy that would lead us to the ultimate goal of a �biodiversity information commons� on the Semantic Web faster involves computer scientists using and developing low-cost unsupervised learning methods for annotating the literature directly or feeding more expensive supervised-learning approaches. But more important than anything else, domain scientists are needed to share their character matrices as training data and to verify learning results produced by the algorithms (including lexicons, ontologies, and annotated documents). Resources should be directed to develop reusable knowledge entities, including benchmarks for evaluating system performances, in standard formats for an accumulative growth of computer-usable knowledge.ConclusionsWe have experimented with a number of semantic annotation techniques and learned the characteristics of morphological descriptions over time. These experiences have led us to the overall strategy proposed above. With the support of an NSF grant and a group of enthusiastic domain scientists, we are implementing the strategy, including developing the unsupervised learning algorithm and using it to help lexicon and ontology constructions. All will be further developed and tested on different taxon groups for character-level annotation and released for public download by 2011. Post-2011 we plan to make use of the lexicons and ontologies produced to annotate biodiversity-related, true natural language text. Along the way we hope to develop standard benchmark datasets for algorithm evaluation in the biodiversity domain.
BackgroundConverting free text morphological descriptions of whole organisms into a computer-readable representation where organ names and characters are explicitly marked with meaningful tags promises more effective use of biodiversity knowledge and better support for biodiversity research. The conversion task is commonly called �semantic markup� or �semantic annotation.� Here �semantic� means each concept is assigned one and only one unambiguously defined meaning. Due to the volume of the documents, automatic procedures are needed to perform the task. Semantic annotation research has been very active and conducted in various domains. The domain of morphological descriptions presents rather distinctive characteristics. Figure 1 shows an annotated plant description in XML (eXtensible Markup Language) format.Semantic annotation of morphological descriptions may be at �clause� or �character� level. A clause is a segment of text terminated by a semicolon (;) or period (.). In morphological descriptions, a clause may not be a grammatical sentence (see examples in Figure 1). Clause-level annotation labels individual clauses with a meaningful tag, while character-level annotation identifies character/state pairs for describing organs. In addition, a method distinguishing description paragraphs for nomenclature, distribution, and other types of sections is also needed. Figure 1 illustrates the three levels of annotation in XML for a plant description from the Flora of North America 1.The inserted tags bring a computer�s �understanding� of morphological descriptions to a higher level that would support more intelligent usages of the information than keyword-based search. Besides improving the accuracy of information retrieval, the tags make it possible for a computer to quickly merge or compare different descriptions organ by organ and character by character. This new capability will impact comparative biological research, the methods used in generating identification keys, and even the way an editor reviews manuscripts 23.Relevant research in annotating biosystematic literature will be reviewed next.MethodsMethods used for semantic annotation of taxonomic documentsA syntactic parsing technique was used by a number of earlier projects. Taylor and Abascal & Sanchenz hand-crafted a set of simple grammar rules and a small lexicon specifically for extracting character states from several Floras 45. Taylor�s performances were not scientifically evaluated but estimated at 60% to 80% recall.The major advantage of the syntactic parsing approach lies in the ease of constructing a parser once the lexicon and grammar rules are prepared. The main drawback is precisely its reliance on the lexicon and grammar rules. Because of the diverse terminologies and the deviated syntax from natural language (see Characteristics of morphological descriptions in the Results section), preparing lexicons and grammar rules for each individual collection or taxon group would be prohibitively expensive.Rules called �regular expression patterns� that rely on the regularity in the style and the use of punctuation marks were hand-crafted and found to be useful for extracting nomenclature and distribution information 678. However, this approach is not useful for morphological descriptions, because of (1) the lack of such regularity in morphological descriptions and (2) the low reusability of such rules on a different description collection. Lydon et al. showed that the narratives on five common species were so different among six English Floras that only 9% of information was expressed in the same way 9.Regular expression patterns may be generated automatically using the supervised machine learning technique, where an algorithm uses the occurrences of different patterns in training examples to statistically predict the pattern that is likely to fit a new example. Soderland developed such an algorithm to extract information from semi-structured documents such as apartment rental ads 10. Figure 2 shows such an extraction pattern. This algorithm was adapted by Tang & Heidorn to extract leaf shape, size, color, arrangement, and fruit/nut shape from 1600 FNA species descriptions 2. They reported the extraction accuracies ranging from 30% to 100%.Supervised learning technique was also used by Cui, in which the algorithm performed clause level annotation by learning from training examples what are called �association rules,� which are less sensitive to text variations, compared to the extraction pattern discussed above 11. Its annotation accuracy ranged between upper 80% to upper 90% on three different Floras (Flora of North America, Flora of China, and Flora of North Central Texas) of over ten thousand descriptions 112131415.Machine learning has the advantage over manual work in its ability to programmatically evaluate its learning and adjust candidate patterns/rules based on what is seen in the training examples. However, the need for training examples is also a shortcoming, as training examples must be prepared for different taxon groups and even different collections. More importantly, if certain organs/characters are not included in the predefined extraction targets, they will be quietly ignored, resulting in loss of information. This �inadequate template� problem was also noted by Wood et al., where manually-created dictionaries, an ontology, and a lookup list were used to extract and correlate characters/states from a set of 18 plant species descriptions 16. They had to tag organs that were not in their lists �UnknownPlantPart.� Wood et al. used parallel text to find three times more targeted information, which would otherwise be missed, and improved extraction recall three times. Diederich, Fortuner & Milton reported a system called Terminator, which is very similar to Wood et al.�s in that they both use a hand-crafted domain ontology to support character extraction 17.The previous approaches share the inadequate template problem because a fixed template cannot be expected to cover the diverse terms in morphological descriptions well. Manually adding new terms to the templates has been suggested as a way to solve the problem 16. Table 1 summarizes the techniques reviewed. The performances reported may not be comparable, as different evaluation schemes were used.The techniques reviewed here all have their strengths, despite weaknesses, yet, when facing the millions of OCRed text descriptions produced by the Biodiversity Heritage Library, none of them seems to be both effective and efficient 18. The reason, we suggest, lies in the special characteristics of the morphological descriptions.ResultsIn this section we present our exploratory results on the characteristics of morphological descriptions and on an unsupervised machine learning strategy. Insights gained via these exercises give rise to an overall strategy for semantic annotation of morphological descriptions, which we shall discuss at the end of this section.Characteristics of morphological descriptionsThe performance of a semantic annotation technique depends, at least in part, on the characteristics of the documents to be annotated. A technique that identifies organ names by looking for bold words, for example, is not very useful for the task overall, because many descriptions are not styled that way. Here, in our search for a sound overall strategy to mark up all morphological descriptions in English, we consider some general characteristics of morphological descriptions which are challenging or beneficial for an automated semantic annotation technique.1. Challenging characteristicsDiverse terminology: each biodiversity branch has a more or less distinct set of terminology. Not only are terms used in brachiopod (Animalia) descriptions different from those in plant descriptions, but terms in one plant family description are somewhat different from those in another. Several previous researchers (e.g. Wood et al., and Cui & Heidorn) have reported that when applying a system crafted from one set of documents to a different set, new concepts that were unknown to the system were encountered, forcing an automated system to work in an interactive and iterative fashion to incorporate new concepts along the way 1619.To find out how biodiversity concepts are distributed in description collections, a simple procedure was used on several collections of morphological descriptions of different taxa and different size, including 120 descriptions from Part V of Treatise on Invertebrate Paleontology (TIP), 2300 descriptions from Flora of North America (FNA), and 13,000 descriptions from Flora of China (FOC). Concepts collected from the collections are included in the Additional Files 1, 2, and 3. The procedure involves using the Brown Corpus to filter out non-domain concepts and then having the computer read the descriptions one by one in the order the descriptions are presented in the original publications 20. In our experiments, the top x percent of the most frequent words were taken from all sections of Brown Corpus, except for section �J: Learned,� to form a set of most common non-technical terms in English. Not counting section �J,� the Brown Corpus contains 979,304 words, of which 42,262 are unique. Words appearing in morphological descriptions but not in this set were considered domain concepts, which may include organ names, characters, and character states (lists of extracted domain concepts, with x set to 10%, from the three sources are included in Additional Files). We used three settings for x: x = 1%, 10%, or 50%. The computer recorded the number of domain concepts in a description that were seen for the first time while reading the descriptions one by one. The resulting plots using different x and description sources are shown in Figures 3, 4, and 5. The plots suggest that new concepts are constantly encountered regardless of the size of a collection and the size of the common word filter. In other words, systems built based on a sample of a collection will encounter new concepts constantly when used on the remaining part of the collection. The diverse terminologies and the absence of a comprehensive computer-readable dictionary/lexicon covering all these terminologies present a challenge for automated semantic annotation systems, because a) words are the basic unit in language processing--a higher level of understanding of the text cannot be obtained without a good understanding of the words and b) this characteristic makes a system crafted for one (or portion of a) description collection easily fail on the new concepts contained in another (or another portion of the) collection.Diverse meanings: While it is well-known that the same word could have different meanings in different domains, the exact meaning of a term in one taxon group is not always well-defined either. For example, the term �erect� takes on a number of different meanings depending on which botanical thesaurus one consults: the FNA Glossary defines �erect� as a state of orientation, the Oxford Virtual Field Herbarium Plant Characteristics defines it as a state of habit, and two different versions of PATO ontology labeled the concept placement and position respectively 212223. Cui conducted a comparison of four machine-readable glossaries in botany (including the above-mentioned three) and found that among 1964 character states extracted from five volumes of FNA and four volumes of FOC, 64 were included by all four glossaries, and only 12 of the 64 were given the same definition by all four glossaries 24. In the biomedical domain, UMLS (the Unified Medical Language System) is being built since 1986 to bridge different biomedical thesauri. Natural language processing in the biodiversity domain needs a comparable ontological infrastructure. Without consolidating ambiguous definitions, the ability for different annotated collections to communicate with each other is lost, defeating the purpose of semantic annotation.Deviated syntax: Many morphological descriptions are written in a syntax that deviates from standard English syntax (Figure 6 shows some clauses in such a syntax). The syntax makes it difficult to adopt existing natural language parsing tools as part of a semantic annotation system. Syntactic parsers such as the Stanford Parser (SNLP) perform well on sentences using standard grammar, for example, �apical flagellomere is the longest,� but not so well for typical sentences in morphological descriptions such as �apical flagellomere longest� (Figure 6). Incorrect parsing at the syntax level will lead to incorrect semantic annotation. There are ways to make modern parsers more useful for biodiversity domain text. Besides retraining a parser with human-annotated domain sentences, one can give the parser useful information directly to guide the parsing. As an exploratory study, a random sample of 20 sentences of different syntactic complexity was parsed using the Stanford Parser (using the Probabilistic Context-Free Grammar: EnglishPCFG) 25. These sentences include five sentences involving one organ/structure, five sentences involving two organs/structures with at least one preposition, five sentences involving two organs/structures with at least one verb, and five sentences involving three or more organs/structures. Fifteen of the twenty parsing results contain errors. The majority of the errors seem to have stemmed from an incorrect Part of Speech (POS) tag given to a domain term. When corrected POSs were given to the parser, a better parsing resulted for each of the 15 cases, even though a few structural problems remained. Figure 6 shows the improvements that resulted from corrected POS tags for three sentences. The command, the complete set of sentences, and the parsing results can be found in Additional Files 4, 5, and 6. Since general lexicons, e.g., WordNet, for natural language processing, are not very useful (the Stanford Parser uses one of such) and no domain-specific lexicon for biodiversity exists, now the question becomes: where can we find correct POS tags for each of the domain terms?2. Beneficial characteristicsWhile the deviated syntax presents a challenge to general-purpose parsers, the fact that the syntax is much simpler than standard English syntax should be considered an advantageous factor. The other two characteristics of morphological descriptions which may be beneficial to a semantic annotation technique are: (1) highly repetitive usage of terms. Morphological descriptions have a very high term repetition rate. Table 2 shows the ratio of the number of unique words to the number of clauses sampled from FNA and Part H of the Treatise of Invertebrate Paleontology 26. This means that the same term is often used many times in descriptions in different contexts. (2) the availability of parallel text. One taxon is often described and/or redescribed many times. Multiple texts describing the same taxon are called �parallel text� 16. These two characteristics can be helpful to a semantic annotation system as they provide multiple chances for a system to learn the meaning of a term.An unsupervised learning methodWith the understanding of challenging and beneficial characteristics of morphological descriptions, Cui explored an unsupervised learning method that discovered organ names and character states directly from descriptions, without being limited by any templates. The algorithm takes advantage of the deviated syntax and works without any lexicons, extraction templates, or training examples 27. Therefore, the algorithm is expected to work on descriptions of any taxon group written in the deviated syntax. This removes or significantly reduces the manual labor required to craft parsers, templates, or training examples on a collection by collection basis. Different from the supervised learning approach, the unsupervised algorithm identifies organ names and character states mentioned in morphological descriptions by bootstrapping between the subjects (which are typically organ names) and the subsequent words (called �boundary words,� over 90% of which are character states) in the clauses 28. To illustrate the idea, for example, the algorithm is primed with knowledge that �petals� is an organ and can be a subject, then when the algorithm comes across the clause �petals absent,� the algorithm would infer that �absent� is a state. Knowing that, the algorithm would further infer that �subtending bracts� in �subtending bracts absent� is an organ. By now, the algorithm has learned two new terms: �absent� is a state and �subtending bracts� is an organ. The algorithm continues searching through the descriptions to apply what it has already learned to discover the unknowns, until there is no new discovery to be made. The algorithm takes the advantage of the deviated yet simple syntax and the repetitive usage of the terms in morphological descriptions. While the assumption that clauses all start with an organ name followed by a state is not always true (since the same organ names or states are often repeatedly used in different combinations in descriptions), the chance for them to be discovered has been shown to be very good.The identification of organ names is sufficient to perform clause level annotation at an accuracy of 92% to 95%. Compared with the supervised algorithm reported in Cui on the same dataset (i.e., 633 descriptions from FNA) on clause level annotation, the unsupervised algorithm achieved better performance, ran five times faster, and eliminated the need for training examples 11. Notably, the unsupervised algorithm marked up all clauses left out by the supervised learning algorithm due to the inadequate template problem. Organ names and character states learned by the unsupervised algorithm were significantly cleaner and more useful for marking up new descriptions or constructing domain lexicons 27.The most recent evaluation on several hundred to several thousand descriptions from volume 19 (Asteraceae) of FNA and Part H (Brachiopods) of the Treatises found that 90% of the organ names learned by the algorithm were correct (precision) and that accounts for 80% to 90% of all organ names mentioned in the descriptions (recall). Over 92% to 98% of learned character states were correct and that accounts for 50% to 75% of all character states mentioned in the descriptions 29. A plant description correctly annotated by the algorithm is shown in Figure 1.The unsupervised algorithm has two notable limitations. (1) While the algorithm learned organ names and character states with very good precision, the recall of character states was only in the range of 50% to75%. There is hope to further improve the recall by learning from parallel text. Wood et al. showed that the use of parallel text improved the recall threefold 16. (2) To fully mark up at the character level, the identified character states must be connected to their characters, and the characters to organs. However, characters are rarely explicitly mentioned in the descriptions. For example, in �stems prostrate to erect,� the character to which �prostrate� and �erect� belong is only implied. As discussed earlier, �erect� may be a habit, an orientation, a position, or a placement, depending on which source one consults and when. The confusion on the implied characters is a problem for supervised and unsupervised approaches alike, but in supervised learning, a designation is often arbitrarily made (e.g., making �erect� a habit) and fixed in the extraction templates and training examples, so the issue seems to be resolved, until the annotation needs to be merged with another collection where �erect� is an orientation. Without templates and training examples, the unsupervised algorithm could logically group character states of the same character together by their co-occurrence patterns (e.g., �prostrate� and �erect� often appear together, so they are in the same group), and wait for an authority to determine what they really are. It is much easier for a domain scientist to label the group �dark brown,� �chestnut-colored,� and �greenish-blue� color than annotating hundreds of training descriptions. The co-occurrence patterns may provide some useful clues for an expert or a group of experts to determine a category for the more troublesome terms such as �erect.�An overall strategy for semantic annotation of biodiversity documentsHaving learned characteristics of morphological descriptions and strengths and limitations of existing annotation techniques, in this section we propose an overall strategy for automated semantic annotation of morphological descriptions in general. Figure 7 illustrates the proposed strategy. First, description sections need to be recognized for annotation. If they are in the standard syntax, the existing general-purpose syntactic parsers, in combination with supervised learning methods (not limited to what is reviewed here) are used. If they are in the deviated syntax, the unsupervised learning technique is used.Since the unsupervised learning technique is cheaper to use than the supervised ones, we propose to process descriptions in the deviated syntax first whenever such an option exists, for the following reasons:A. Organ names and character states learned by the unsupervised technique can be used to enhance or build domain lexicons. Knowing organ names are nouns and character states are adjectives, most of the parsing errors shown in Figure 6 could be resolved; for example, knowing �flagellomere� is a noun (NN) would correct one of the parsing errors. These concepts can also be used to extend the coverage of the extraction templates used by supervised learning techniques, addressing the problem of inadequate templates. In addition, the cheap yet rather effective unsupervised algorithm may be used to mark up descriptions to obtain �weak� training examples, which can then be refined, if necessary, for supervised learning techniques.B. The organ names and groups of character states discovered from literature via unsupervised learning may be selected by domain experts to be included in domain ontologies, which in return ensures the annotation produced by any annotation systems is interoperable. Domain knowledge of human experts is best used here, rather than preparing training examples collection by collection.C. The learned concepts may be used for recognizing and extracting morphological description paragraphs from their parent documents--a necessary first step before morphological information can be annotated further. A description paragraph can simply be distinguished from say, a distribution section, by the density of the words representing organ names and character states. Sophisticated, supervised text classification algorithms have been used for this purpose, but they require training examples to run 30. We have used the concepts learned unsupervised from a portion of FNA to identify description paragraphs in other volumes with almost effortless 100% accuracy.In addition:D. All marked up descriptions should ideally be deposited in a common repository as they can be training examples or otherwise helpful to either supervised or unsupervised learning techniques.E. Lastly, many systematic biologists are not aware that the spreadsheets they use to draft descriptions could be easily used as training examples for supervised learning. Spreadsheets are another source (besides the literature) of distilled domain knowledge, based on which the meaning of a concept may be verified and determined.A flexible system architecture such as that provided by GoldenGate, Kepler, or others could be used as the base system where various annotation modules/resources are plug-ins 731.DiscussionThe proposed strategy above is based on the characteristics of several biodiversity document collections we have observed. With millions of pages of biosystematic literature digitized by the Biodiversity Heritage Library and others, systematic biologists, information scientists, and others must work together to put the text into a computer-understandable and interoperable format fast so the knowledge becomes alive again. Language processing infrastructure such as domain lexicons and ontologies should be built and shared not to benefit any particular project but to stay useful for all. As the number of active taxonomists is currently declining, their time should be spent on the most challenging part of the puzzle, namely defining the meaning of domain concepts, so domain ontologies become useful and exert lasting power for a long time to come. A strategy that would lead us to the ultimate goal of a �biodiversity information commons� on the Semantic Web faster involves computer scientists using and developing low-cost unsupervised learning methods for annotating the literature directly or feeding more expensive supervised-learning approaches. But more important than anything else, domain scientists are needed to share their character matrices as training data and to verify learning results produced by the algorithms (including lexicons, ontologies, and annotated documents). Resources should be directed to develop reusable knowledge entities, including benchmarks for evaluating system performances, in standard formats for an accumulative growth of computer-usable knowledge.ConclusionsWe have experimented with a number of semantic annotation techniques and learned the characteristics of morphological descriptions over time. These experiences have led us to the overall strategy proposed above. With the support of an NSF grant and a group of enthusiastic domain scientists, we are implementing the strategy, including developing the unsupervised learning algorithm and using it to help lexicon and ontology constructions. All will be further developed and tested on different taxon groups for character-level annotation and released for public download by 2011. Post-2011 we plan to make use of the lexicons and ontologies produced to annotate biodiversity-related, true natural language text. Along the way we hope to develop standard benchmark datasets for algorithm evaluation in the biodiversity domain.
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